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PREFACE.

IN this edition many additions and improvements have been

made, particularly in the last half of the book. Many parts have

been re-written in the hope of making the explanations clearer

and briefer. A few sections have been omitted to make room for

more important matter. New subjects, not discussed in the former

editions, have been introduced in order to make the treatise as

complete as possible. Though more than a year has elapsed since

the publication of the first volume of this edition, I have not

found the time at my disposal during the interval too long for

these changes.

Following the same plan as in Vol. I., the several chapters

have been made as independent as possible. The object in view

is that the reader should be able to select his own order of study.

Historical notices and references have been given throughout the

book. I have endeavoured to join to every theorem or problem

the name of the writer who, as far as I know, was the first to

enunciate or solve it.

Numerous examples have been given throughout the book.

Some of these are intended to be merely simple exercises, but

many are important as illustrating and completing the theories

given in the text. Sometimes when the principles of a theory

B. D. II, 6



VI PREFACE.

had been explained numerous applications seemed to arise. In

stead of loading the text with these it appeared preferable to

put them into the form of examples and to give such hints as

would make the solution easy. Everywhere the results have

been given, and care has been taken to secure their accuracy ;

but amongst so many theorems, it cannot be expected that no

errors have escaped detection.

I wish to express my thanks to Mr J. M. Dodds of Peterhouse

for his kind assistance in correcting so many of the proof sheets.

EDWARD J. ROUTE.

PETERHOUSE,

February, 1892.
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In order that the plan of the book may be understood the following short

summary is given of the subjects treated of in Part I.

Chap. 1. Theory of moments of inertia and the ellipsoids of inertia.

Chap. 2. D Alembert s Principle and other fundamental theorems.

Chap. 3. Theory of motion about a fixed axis with applications to the pen

dulum, the numerical value of g, the watch balance, the ballistic pendulum, the

anemometer.

Chap. 4. General principles of motion in two dimensions. Special considera

tion of stress, friction, impulses and relative motion.

Chap. 5. Geometry of motion in three dimensions, with Euler s equations.

Chap. 6. On Momentum, with the discussion of sudden changes of motion.

Chap. 7. On Vis Viva and Work, with some general theorems by Carnot,

Bertrand, Thomson and Gauss.

Chap. 8. Lagrange s equations. Theory of reciprocation, the Harniltonian

transformation and the Modified function.

Chap. 9. Small oscillations. Several methods described. Lagrange s method,

the energy test of stability and the Cavendish experiment.

Chap. 10. Some special problems. Oscillations of rolling bodies, and La-

grange s rule with regard to large tautochronous motions.



DYNAMICS.

CHAPTER I.

MOVING AXES AND RELATIVE MOTION.

Moving Axes.

1. IN many problems in dynamics it is found that the axes

of reference suitable to the initial state of the motion are not

well adapted to follow the body under consideration during its

whole course of motion. It is therefore sometimes convenient to

use axes which themselves move in space so that they always keep
those positions which are most appropriate to the instantaneous

position of the body. Thus, to take a simple case, in dynamics of

a particle we sometimes resolve our forces along the tangent and
normal to the path. This is practically the same as using a set of

Cartesian axes which move so as to be always parallel to the

tangent and normal. This theory has been generalised in Vol. I.

Chap. IV. where the motion is referred to any two lines whatever
which move in one plane. We now propose to extend the theory
still further. We shall discuss the general equations of motion of

a particle arid then those of a rigid body referred to any rectangular
axes which move as we may find convenient.

2. If we make the axes to which we refer the body move, it

is clear that we must have some means of determining the posi
tion and motion of these axes in space. This might be effected

by having another set of axes which are themselves fixed in space
and to which in turn we might refer the moving axes. This is the

course adopted by Euler; thus in the equations usually called

after his name (Vol. I. Chap. V.) he uses two sets of axes. The

advantage of giving motion to the axes is however greatly

R. D. II. 1



2 MOVING AXES. [CHAP. I.

diminished if we must also use a set of fixed axes throughout
the motion. For this reason we shall now determine the motion of
the moving axes by angular velocities 0j, 2 , S about themselves.

In other words, we regard the axes as if they were a material

system of three straight lines at right angles whose motion

at any instant was given by three coexistent angular velocities

about axes which instantaneously coincided with them. In this

way we do not use any fixed axes except at the beginning or

end of the solution, and only in such a manner as we may find

convenient.

3. In order to understand how the motion of a body is re

ferred to moving axes let us first suppose that the body is turning
about a fixed point. Taking this point as origin we determine the

motion of the body by three angular velocities a) lt a&amp;gt;2 ,
o&amp;gt;3 about the

axes in the same manner as if the axes were fixed in space. The

position of the body at the time t + dt may be constructed from

that at the time t by turning the body through the angles co^t,

co2dt, a)3dt successively round the instantaneous positions of the

axes. But it must be remembered that a)3dt does not now give
the angle the body has been turned through relatively to the

plane xz, but relatively to some plane fixed in space passing

through the instantaneous position of the axis of z. The angle
turned through relatively to the plane of xz is (w3 #3) dt.

If there be no fixed point we use the construction explained
in Vol. I. Chap. v. We represent the motion of the body by the

six components u, v, w ; o^ ,
&) 2 ,

o&amp;gt;3 referred to any origin, the

axes being treated as if they were fixed for the moment. Here

u, v, w are the resolved parts in the directions of the axes of the

velocity of the origin or base point, and w,, &&amp;gt;2 , a are the resolved

parts about the same axes of the angular velocity of the body. In
the same way the motion of the axes is given by the components
of motion p, q, r

; ft, 2 &amp;gt; ft. the moving axes being themselves the

instantaneous axes of reference.

In most cases however the axes will be made to turn round
some point which either is fixed or may be treated as fixed.

Their directions in space are made to vary in a manner suitable to

the purpose we have in hand. We then have p, q, r all zero.

Since any point may be reduced to rest by the method explained
in Vol. I. Chap. TV. this supposition, which will be generally made,
does not really limit our choice of axes.

4. Fundamental Theorem. A system of rectangular axes

moves in any manner about a fixed point 0, it is required to establish

the kinematical relations between these axes and a system of axes

fixed in space and coincident with them at any time t.

Let Ox, Oy, Oz be the positions of the moving axes at the
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time t
;
after an interval dt these assume new positions, which we

represent by Ox, Oy ,
Oz. The change of position may be repre

sented by a rotation 6dt about some instantaneous axis, which we

may represent by 01. Let 1} 0.,, 2 be the components of the

angular velocity 6, so that the axes are moved from their positions

Ox, Oy, Oz at the time t into their positions Ox , Oy ,
Oz at the

time t + dt by the three rotations Q^dt, 6^dt, 0-^dt about Ox, Oy, Oz

performed in any order.

Let us represent by the symbol R any directed quantity or

vector, such as a force, a velocity, the moment of a couple about its

axis, or an angular momentum. Let us suppose that the vector

may be resolved and compounded according to the &quot;

parallelogram
law.&quot; Let us represent its components parallel to the three axes

Ox, Oy, Oz by the symbols U, V, W. In the time dt the vector R
has changed its magnitude and direction; in the same time the

axes have also changed. The components of the vector at the

time t + dt in the then direction of the axes of reference, i.e. in

the directions Ox, Oy, Oz are U + dU, V + dV, W + dW.

We wish to find the increase in the time dt of the component
in the direction of the axis Ox supposed fixed in space. Describe
a sphere of unit radius whose centre is at and let the axes cut

the sphere in the points x, y, z, x, y ,
z . Thus we have two

spherical triangles xyz, x y z, all whose sides are right angles.
The resolved part of the vector at the time t + dt along the axis

Ox is

The rotations about Ox and Oy cannot alter the arc xy, but
the rotation about Oz will move y away from x by the arc

3dt. In the same way the rotations about Ox and Oz cannot
alter the arc xz but the rotation about

Oy will move / towards x by the arc

6.dt. Therefore

xy = xy + 3dt,

xz = xz 6*dt.

Also the cosine of the arc xx differs

from unity by the square of a small

quantity. Substituting X, we find that
at the time t + dt the component of

the vector along Ox is

U+dU- V0.dt + W02dt.

The rate of increase of the component of the vector in the
direction Ox is

12
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In the same way the rates of increase of the components in the

directions Oy, Oz are

We have here practically used two sets of axes. One set

Ox, Oy, Oz moves about the fixed origin according to the law

determined by the angular velocities 1} 2 , 3 ,
these are the axes

of reference. Another set coincides with Ox, Oy, Oz at the time t,

but is fixed in space and is therefore left behind by the axes of

reference as they move in the time dt. The symbols U, V, W re

present the resolved parts of the vector along either set of axes at

the time t. The symbols U+dU, V + dV, W + dW represent the

components along the moving axes at the time t + dt
;
and U + Ul dt,

V -f F! dt, W + Wl dt, represent the components along the fixed
axes at the same time t + dt.

5. Important Applications. We may now apply this

general theorem to a variety of vectors*.

(1) Let the vector R be the radius vector of a moving point P.

Then U, V, W represent the co-ordinates x,y,z] while Ul ,
Vlt Wl

represent the component velocities in space. These we now repre
sent by u, v, w. Therefore

dx

dzW= -flj

(2) Let the vector R be the velocity of a moving point P.

Then U, V, W represent the component velocities u, v
t
w

;
while

Ui&amp;gt; Vi, Wi represent the accelerations. These we represent by
X, Y, Z. Therefore

* The sets of equations (1) (2) (3) were given in this form by the late Prof.

Slesser (Cambridge Quarterly Journal, Vol. n., 1858) to whom the two special cases

given further on in Art. 12 had been previously shown by the author, together with

their application to the motion of spheres. Other proofs were given of them in the

following number of the Quarterly Journal by Kev. P. Frost. All four sets of

equations were given by K. B. Hayward in Vol. x. of the Cambridge Transactions,

1856. Similar results were also given in Liouville s Journal, 1858.
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dw
~~di~

il 2 + V *

(3) Let the vector R be the angular velocity n of a body.
Then U, V, W are the components of co about the moving axes,

let us call these a) l , 2 , &amp;lt;&amp;lt;V

Let (oX) wy ,
coz be the components

about the fixed axes. Then we have

dayx _
dt dt

dT~~dt~ ^ 1 + G&amp;gt;1 3

dcoz _ da)z Q
*

dt dt

(4) Let the vector R be the angular momentum of a body.
Let hlt A2 h3 be its components about the moving axes; hx ,

hy ,
h z

the components about fixed axes. Then

dfix dlii i / , 7 /i

If the origin of co-ordinates is also in motion, these equations require some

modifications. Let (p, q, r) be the resolved parts of the velocity of the origin in

the directions of the axes. If (u, v, iv) represent the resolved velocities of the

centre of gravity in space i.e. referred to axes fixed in space we must add p, q, r

respectively to the expressions for u, v, w given by (1). Supposing (u, v, iv) to

continue to represent the velocities referred to axes fixed in space, the expressions

(2) will be unaltered. On the same supposition we must add m
(

-- vr + ivq),

m(-wp + ur), m(-uq + vp) respectively to the expressions for dhjdt &c. given by

(4), where m is the mass of the body.

To prove this let us determine the parts of dhx and dh due to the translational

and rotational motion of the axes separately. Those of the latter are given by the

formulae (4) ;
to find those of the former, let Hx ,

Hv ,
H\ be the angular momenta

about parallel axes through the centre of gravity. Then, by Vol. i. Chap, i.,

hx= h)=IIx - mvz + mwy.
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The differential coefficient dhjdt is obtained from this on the supposition that we

write r + dzjdt, q + dyjdt for dzjdt and dyjdt, because these are the resolved velocities

in space of the centre of gravity. The differential coefficient dhjdt is obtained

without the addition of r and q. We therefore have

dhxldt = dh^/dt
- mvr + mwq.

We may notice that, if the moving set of axes be fixed in the

body and move with it, l =co1) 0&amp;lt;,

= a)2 ,
9z wz . The third set of

equations then show that

do)x _ dd*! do)y _ dco.2 dwz _ da)s

&quot;dt

&quot;

~di dt
~

~dt ~dt

~
~dt

These simplified forms are the ones used by Eulcr in obtaining his

equations of motion of a rigid body about a fixed point. See
Vol. I. Chap. V.

6. The above results may be obtained in other ways, but there is an obvious

advantage in deducing them all by one method.

The equations connecting (u, v, iv) with the co-ordinates (x, y, z) may be

obtained as follows. The resolved velocities in space of a point P are not given

by dxjdt, dyjdt, dz/dt. These are the resolved velocities relatively to the moving
axes. To find the motion in space we must add to these the resolved velocities due

to the motion of the axes. If we supposed the particle to be rigidly connected with

the axes, its velocities would be expressed by the forms
0&amp;lt;p

- 6sy, &c. given in Vol. i.

Chap. v. By adding the parts together the actual resolved velocities of the particle

are found to be those given above.

Since acceleration is the rate of increase of velocity, just as velocity is the rate of

increase of space, it is clear that the relations which hold between accelerations and

velocities must be the same as those which hold between velocities and spaces.

Thus the relations (2) between (X, Y, Z) and (u, v, w) follow at once from those

between (u, v, w) and (x, y, z).

7. Ex. 1. Let the motion be referred to oblique moving axes so that the

sides of the spherical triangle xyz are a, &, c, and the angles A, #, C. Let the equal

quantities sin a sin b sin C, sin b sin c sin A, sin c sin a sin D be called
fj.. Prove

that, if the velocity be represented by the three components w, v, 10 parallel to these

axes, then the resultant acceleration parallel to the axis of z is

, dw du dv
^=-j7 + -rr cos6 + cosa-0 /u + i&amp;gt;01ju,

dt dt dt

with similar expressions for X and Y.

This may be done by the use of the spherical triangles xyz, x y z
, by first proving

zx = b + 2dt sin c sin A, zy = a - O^lt sin c sin #, and then substituting as before.

Ex. 2. Prove in the same way that, if x, y, z be the co-ordinates referred to

oblique axes moving about a fixed origin, and u t v
,
w the resultant velocities

parallel to the axes, w = - + cos b + -- cos a - xd.2/j. + t/0^,

with similar expressions for u and v .
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Ex. 3. Prove also that the equations connecting the components, u, v, iv with

the co-ordinates x, y, z referred to axes with a fixed origin are

_ dz /j.~
l sin 2 c - cot B - cot A

z x y

with two similar expressions for u and v.

Since w is the component parallel to 2 of (u,v,w,), we have ucosb + vcoaa + w= w
t

with similar expressions for u and v . By solving these we get the required values

of u, v, iv.

Ex. 4. If the whole acceleration be represented by the three components

Z, F, Z parallel to the axes, prove that the expressions for these in terms of w, v, iv

may be obtained from those given in the last example by changing x, y, z into w, v, w
and u, v, w into X, Y, Z.

8. To explain another general method of obtaining the kine-

matical relation between fixed and moving axes.

Let U
t V, W be, as before, the components of a vector R. Let

OL be any straight line fixed in space making with the moving
axes the angles a, /3, 7. Let Rl be the resolved part of the vector

along OL. Then

Rl =U cos a + V cos ft + W cos 7,

. dR, dU _ dV_, .
dTF

7r . da ir . ., dp T .,
. dyu sin a -j V sin /3

-- If sin 7 -~
.

cfa dt dt

Since OL is any fixed line in space, let it be so chosen that the

moving axis of z coincides with it at the time t. Then a = i TT,

P = JTT, 7 = 0, also dR^dt = Wlt Since a is the angle OL makes
with the moving axis of x, da/dt expresses the rate at which
the axis of x is separating from a fixed straight line coincident

with the axis of z and this is clearly 0.2 . Similarly d/3/dt
= 9ly

hence

where W expresses the rate of increase of the component W along
the fixed axis of z. The other two equations follow in the same

way. The principle of this method is due to the late Prof. Slesser.

We may obtain the relations between the second and higher differential coeffi

cients in the same way, though the expressions become more complicated. Since

^i vn w\ follow the parallelogram law, we have

cosa+ ~ w$i+ u0* cos
/
3 + - w*+i cos y
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Kepeating the same reasoning, we finally obtain

9. We have now obtained a method of transforming the

equations of motion with regard to fixed axes into those with

regard to axes moving about a fixed origin.

Let any general equation true for all fixed axes having a given

origin be

o/r {cox ,
da)x/dt, &c....}

= 0,

where cox ,
cov ,

coz are the angular velocities about the fixed axes.

Since the fixed axes are arbitrary in position, let them be so

chosen that the three moving axes are passing through them at

the moment under consideration
;
thus at that instant the two

sets are coincident. The equations relative to the moving axes

may then be deduced by replacing coX) wy ,
o&amp;gt;z in the general

equation ty
= by the corresponding quantities c^, o)2 ,

o&amp;gt;3 for the

moving axes
;
and datxjdt, &c. by the equivalents written above

in Art. 5.

The same remarks apply if, instead of wx ,
a)y ,

coz ,
the com

ponents of any other vector entered into the equation.

10. General equations of Motion. To state the general

equations of motion of a system of moving bodies referred to

any rectangular axes moving about a fixed origin.

Let m be the mass of any one body of the system. Let the

impressed forces on the body be represented by the three forces

mX, mY, mZ acting at its centre of gravity and the three

couples L, M}
N. We suppose that the unknown reactions of the

other bodies of the system are included in these expressions.

Let (u, v, w) be the resolved velocities in space of the centre of

gravity of the body. The equations of motion for fixed axes are

u = dx/dt, X =
du/dt, &c. When the axes move, these become

..................... (i).

x=-eiV +0,w ..................... (2),

with corresponding expressions for the other coordinate axes.

Let (h lt h.2) hs) be the angular momenta of the body about paral
lels to the co-ordinate axes drawn through the centre of gravity.
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The equations of moments for fixed axes are dkx/dt = L, &c.,

Vol. I. Chap. II. When the axes are in motion these become

with similar expressions for M and N.

The expressions for (hit A 2 ,
h3) in terms of the angular velo

cities of the body are given in Vol. I. Chap. v. If col) o&amp;gt;2 ,
o&amp;gt;3 be the

angular velocities of the body about the parallels to the axes

through the centre of gravity, and A
t F, &c. the moments and

products of inertia, the fundamental relation is

with similar expressions for A 2 and h s . But there are many others

which cannot be repeated here.

Besides the dynamical equations there will be the geome
trical equations which express the connections of the system. As

every such forced connection is accompanied by some reaction, the

number of geometrical equations will be the same as the number
of unknown reactions. Thus we have sufficient equations to

determine the motion.

Ex. A heavy rigid body is spitted on a smooth circularly-cylindrical rod, on

which it can slide, and which passes through its centre of gravity, and the rod

is made to rotate uniformly with angular velocity w in a right circular cone, semi-

vertical angle a, about a vertical axis. If C is the moment of inertia about the

rod, A and B about two lines fixed in the body perpendicular to the rod, one of

which is inclined at an angle to the plane through the vertical axis and the rod,

and if D, E, F are the products of inertia ; prove that

(7d2 0/d
3= w2 sin2 a

{ (B
-
A) sin cos + F cos 20}

- w2 sin a cos a (E sin +D cos 0).

By resolving the angular velocity w we find c^
- w sin a cos 0, w2

= u sin a sin 0,

w3=0 + u&amp;gt;cosa. Substituting these in the expressions for h^iji3 given in Art. 10,

and equating to zero the moment of the effective forces about the vertical, the

result follows at once.
. [Math. Tripos, 1885.

11. The motion of the moving axes has been supposed to be

determined by the three angular velocities lt 6.2 ,
B3 . To find

their actual position in space we use the Eulerian geometrical

equations already given in Vol. I. Chap. v. Let 0, ty, &amp;lt;/&amp;gt;

be the

Eulerian angular coordinates of the moving axes referred to any
axes fixed in space. We then have

^ d0 . d-dr . n
#! = -

7
- sm 6 ~ sm 6 cos 6

,

dt dt

n dd cty . .

c/o = ,
~ cos 9 + Y~ sin u sin 9 ,

dt dt

These geometrical equations determine 0, &amp;lt;, ty when
are known.
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12. Two important special cases. There are two cases

in which the equations of motion just found admit of great sim

plification. As these often occur, it is worth while to discuss them

separately.

In the first case we suppose the body to be turning round some

point fixed in space and to be such that two of the principal
moments of inertia at the fixed point are equal.

Let OC be the axis of unequal moment of inertia and let us

take this as the moving axis of z. Let us choose as the other axes

of reference two other axes OA, OB which turn round OC in any
manner we please. To fix this let ^ be the angle the plane COA
makes with some plane OCF fixed in the body and passing through
OC. Then we have l

= to^0a
=

a&amp;gt;t)

and 6S
=

o&amp;gt;3 + d^/dt. Also ft,
= Ao)

1 ,

h2
=

-#o&amp;gt;2 ,
h3
= Ccos . The equations of

moments, Art. 10, are now

N

da)*

dt

dt

In this case the most convenient

geometrical equations to express the relations of these moving
axes to axes OX, OY, OZ fixed in space are those usually called

Euler s geometrical equations. They are given at length in the

last article, where ayl} &&amp;gt;2 and o&amp;gt;3 4- d%/dt must of course be written

on the left-hand sides for 6l , 0.,, B3 . In the figure ZG 0,

13. Since
dy^jdt

is arbitrary, it may be chosen to simplify
either the dynamical equations or the geometrical equations.

I. If we put dx/dt
= c0.3 ,

the moving axes of reference

move round the axis of OC with an angular velocity relatively to

the body equal and opposite to that of the body, so that if the
axis OC were fixed in space the axes of reference would be also

fixed in space. The dynamical equations then become

A --,
- + (7ft&amp;gt;2 ft&amp;gt;3

= L

A 2*
dt

= M
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The geometrical equations however are not much simplified.

We may also choose d%/dt
= a)3 (A C)/A when the dyna

mical equations take the simple forms

A dco l r . da).&amp;gt; ,, ~,dc0:i

II. We may so choose d%/dt that
(/&amp;gt;

= 0. In this case the

plane GOA always passes through a straight line OZ fixed in

space. Euler s geometrical equations then become

dO

dt
~ sm u =
dt -^ + ^cos0 = ft)3 .

at at

If we substitute these values in the equations of Art. 12, they
take the form

A d / . ^d^\ dO

AF
sin 6 dt

sin 6 cos 6 { -^r-

dt
= L

+ C sin 6 ft)3 7
- =

dt

0fe*

14. Second special case. In the second special case we

suppose as before that the body is turning about a fixed point, but
that all the moments of inertia at the fixed point are equal. In this

case there are three sets of axes which may be chosen with

advantage.

Firstly. We may choose axes fixed in space. Since every axis

is a principal axis in the body, the general equations of motion
become

dot! _ L da)2 _ M dcos _ N
dt A dt

~
A dt A

Secondly. We may choose one axis, as that of OC, fixed in

space and let the other two move round it in any manner, when,
as in the first special case, the equations of motion become

dx =^
2
dt A

~dt

da)j

dt

M
lA

N

Thirdly. We can take as axes any three straight lines at right

angles moving in space in any proposed manner. The equations
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of motion may be deduced from the first set just written down by
the help of the general rule for changing from fixed to moving
axes. We have therefore

N
dt

~ Wl 2 + W* 1
~
A

The geometrical equations may be conveniently expressed in

the forms given to them in Art. 18.

15. Numerous examples showing the utility of the above
forms of dynamical equations will be found in the following

chapters of this work, and especially in that on motion under any
forces. The following is an instance of their application to a

problem on small oscillations, which includes many cases of frequent
occurrence*.

A body, which can turn freely about a fixed point 0, rotates ivith uniform angular

velocity about one of the principal axes at 0, and is under the action of given forces.

A small disturbance being given, it is required to find the small oscillations.

Let OC be the principal axis about which the body rotates and n the constant

angular velocity. After disturbance OC makes small oscillations about a straight

line OZ fixed in space. Describe a sphere with centre O and radius unity ;
let the

principal axes OA, OB, OC intersect the sphere in the points A, B, C and let OZ
cut it in the point Z. Draw perpendiculars ZM, ZN, on the arcs CB, CA and let

p = ZM, q = ZN. Then (p, q, 1) are the direction cosines of OZ referred to the

principal axes. Also p and q are the coor

dinates of C referred to axes OX, Y moving
round OZ with an angular velocity n. Hence
the velocities of C resolved parallel to MC
and CN are respectively equal to q +pn and

-p + qn, (see Vol. i. Art. 211) where accents

denote differentiations with regard to the time.

But these velocities are wl and wa . We have

therefore

Substituting these in Euler s equations, we
find

Aq&quot; + (A+B-C)np -(B-C)ri*q= .

* A more detailed account of the equations discussed in this article was given
in the first edition of this book. As however it is generally easier to repeat the

process of deriving these equations from general principles than to quote them from

memory this brief account has been thought sufficient.
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The moments of the forces L and M are zero in the undisturbed position and

must be expressed in terms of p, q by the geometry peculiar to the problem.

Since the squares of p and q are neglected, we have

L = alP + a2q, M=blP + btf .............................. (3),

where alt a3 ,
blt 6

3 are constants.

If 6, &amp;lt;f&amp;gt;, \p be the Eulerian angles when estimated positively in the manner

described in Vol. i. Art. 256, we see at once by the figure in that article that

p= - sin cos 0, q= sin 6 sin 0, r= cos0.

We may also notice that the approximate equations (1) follow immediately from

the accurate equations

w
l
cos& = q +p^, wa cos 6= -p + qw-j,

which are given under the heading geometry of moving axes, Art. 18.

The quantities L, M, N are strictly the moments of the impressed forces about

the axes OA, OB, OC respectively. In determining their values in any particular

problem, it will be found useful to notice that, since these moments are small, they
are to the first approximation equal to the moments about axes OX, OY, and OZ,
the two former of which revolve round the latter with a uniform angular velocity

equal to n.

We may also notice that, if (p
f

, q , 1) are the direction cosines of any straight

line OP near OC referred to the axes OA, OB, OC, its direction cosines referred to

OX, OY, OZ are (p -p, q -q, 1). As a corollary we infer that the direction

cosines of OC referred to OX, OY, OZ are
( -p,

-
q, 1).

In this way the determination of the motion can be made to depend on the

solution of two linear differential equations with constant coefficients.

When the body is uniaxal, so that A = B we may sometimes with advantage use

one of the systems of axes described in

Art. 13. For example if we take as the

axes of OA, OB, OC the set in which

dx/dt = -
n, these axes are very nearly

fixed in space. Let OX, OY, OZ be their

mean positions; let (P, Q, 1) be the

direction cosines of OC referred to these

fixed axes, so that P=sin Q cos ^,

Q= sin0 sin\l/. Or, if we construct as

before a sphere of radius unity, and

draw CM, CN perpendicular to the arcs

YZ and XZ, CM=P and CN=--Q. We
therefore have

!=-&amp;lt;?, ,= P ....................................... (4).

Substituting, the equations of motion take the form

-AQ&quot;+CnP

AP&quot;+CnQ

= L\

= M\

As before we notice that L, M, N are strictly the moments of the forces about

the oscillating axes OA, OB, OC but, since they are small quantities, we may
replace them by the moments of the forces about the fixed axes OX, OY, OZ. This

property will often enable us to find the moments without difficulty and to express
L and M in the linear forms
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16. The Geometry of Moving Axes. In order to use

moving axes it is necessary to be able to express with respect to

these axes any conditions which may exist with regard to straight
lines or points which move independently in space. We have
therefore placed together in the following articles a few of the

more important conditions.

17. To express the geometrical conditions that a point whose
co-ordinates are (x, y, z) is fixed in space.

This may be done by equating to zero the resolved velocities

of the point as given in Art. 4. We thus obtain the conditions

with two similar equations.

18. To express the geometrical conditions that a straight line

whose direction cosines are (1, m, n) moves parallel to itself in space,
or that its direction is fixed in space.

Let a straight line OL of unit length be drawn from any point
fixed in space parallel to the given straight line. The co

ordinates of L referred to axes which turn round as an origin
so as to be always parallel to the moving axes will be /, m, n.

Since OL is fixed in space, the resolved velocities of L are zero.

The required geometrical conditions are therefore

-T-?w03 + w02
=

0,

with two similar equations. Since I
2 + m~ + n~ = 1, these three

equations are equivalent to two independent conditions.

It is sometimes necessary to express the direction of the straight line by the

Eulerian angles 6, &amp;lt;p, \f/,
as explained in Vol. i. Chap. v. The moving axes are there

called OA, OB, OC, and the straight line whose direction is to be fixed in space is

represented by OZ. We see that the equations just written down are equivalent to

two of those usually called Euler s geometrical equations, but expressed in a sym
metrical form. The third of Euler s equations follows from Art. 19.

19. Sometimes, while using moving axes, we require to refer

the motion of some straight line OM connected with the moving
axes to an axis of reference fixed in space. The object of the

following theorem is to show how this may be done.

Let the direction cosines of a straight line OM fixed relatively
to the moving axes be (X, //,, v), and let it be required to refer the
motion of OM to some straight line OL fixed in space whose
direction cosines at the time t are (I, m, n). Let the angle LOM
be 6, and let ^ be the angle which the plane LOM makes with any
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plane fixed in space passing through OL. Then it may be shown
that

cos = l\ + m/ji + nv,

sin 2# -~ = 1 (I X cos 0) + 0.2 (m p cos 0) + &., (n v cos 0) I

If 0i, m ,
be the resolved parts of the angular velocities about

OL, OM respectively, the last equation may be written in the form

sm^^^-^costf.

If the straight line OM be not fixed relatively to the axis, then

(X, IJL, v) will be variable, and we must add to the right-hand side

of the second equation the determinant

dii dX d\ . dvdv djjb

In this determinant we may replace X, /A, v, by any quantities
XAC, fjiK, VK proportional to them (whether K be variable or not),

provided we divide the determinant by
2

.

The mode of proof may be indicated as follows. Let P be a point in OM at a

distance unity from O, and let P move about with

OM. Draw PQ perpendicular to OL. First, let

OM be fixed to the system of axes. Let the

angular velocity of the system about its instan

taneous axis be resolved into three components

viz., 0, about OL, 6X about a perpendicular to OL
in the plane LOM, and 6y about a perpendi
cular to the plane LOM. The velocity of P is

6
l .PQ-6x .OQ. Since the velocity of P is also

PQ.d\l/ldt, we have sin 6d\l/ldt=0t
sin 0-0,,. cos 0. Now 0, cos + 6X sin 0=0TO ,

whence substituting for 6X we have the result in the question.

The additional term due to the motion of OM relative to the system may be

easily found by treating the system as if it were at rest. The quantities in brackets

in the determinant are the moments about the axes of the velocity of P. Resolving

these about OL, the determinant follows at once.

20. The motion of a body being given when referred to axes

fixed in the body by the angular velocities
(&&amp;gt;j,

&&amp;gt;2 ,
&&amp;gt;3 ),

it is some
times necessary to find the motion of the instantaneous axis in

space. This is clearly only a case of the theorem in Art. 21.

Let OM be the instantaneous axis, OL, as before, the fixed

line in space, then
t
= m cos 0. The expression for sin2

Od-^/dt is

reduced therefore to the determinant above. The following

examples are obtained by combining Arts. 18 and 21, accents

denoting differentiations with regard to the time,
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Ex. 1. If ft be the angular velocity about the ingtantaneous axis, prove that

d\b I m&quot;
-

l&quot;m

Ex. 2. Show that dfjdt= 6t + Dl(l
2 +m 2 + w 2

),

where, as before, t
is the angular velocity of the body about OL and D is the

following determinant I (m n&quot;
- m&quot;n

) + n
(ril&quot;

-
n&quot;l

) + n (I m&quot;
-

l&quot;m
).

Ex. 3. Show that ft
2 - 0?= V* +m 2 + w 2

.

Ex. 4. Show that the equation to the plane LOM referred to the axes fixed in

the body is I x + m y + riz = 0.

21. Use of Moving axes in Solid Geometry. As we
have sometimes to displace the axes of coordinates independently
of the motion of the body, and even to change the axes without

altering the time, it is convenient to have the fundamental principle
of Art. 4 expressed without reference to dynamical ideas. This is

effected in the following proposition.

Let a system of moving axes be screwed from one position

Ox, Oy, Oz to a consecutive position Ox, Oy , Ozf

by the small

rotations dfa, d(f&amp;gt;
2 , d&amp;lt;j&amp;gt;

3 about their instantaneous positions. Let

U, V, W be the projections or components of a straight line or

vector OL on Ox, Oy, Oz, where U, V, W may be either constant
or variable. Let U+dU, V+dV, W+dW be the projections of

the consecutive position OL of the straight line on Ox
, Oy , Oz ;

and Z7+ BU, V+ 8V, W+ SW the projections of OL on Ox, Oy, Oz.

Then

These follow from Art. (4) by writing O^dt =

If the length OL is taken equal to unity, the projections
U, V, W become the direction cosines of the line. These equa
tions then tell us at once the changes in space of the direction

cosines when the changes relative to the moving axes are known.

Thus if S% be the angle between two consecutive positions
of a line OL, whose direction cosines referred to the moving axes
are U, V, W, we have

Also the direction cosines of the plane through two consecutive

positions of OL are proportional to FSF- TFSF, WSU - USW,
UBV- VW.
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It is not our object here to show the utility of moving axes in Solid

Geometry further than to prove those theorems which are required in Dynamics.

It will be found however that both curves and surfaces are sometimes most easily

treated by referring them to a set of moving axes in which the origin travels

along the curve or surface and the directions of the axes are such tangents and

normals as may be suitable to the property under discussion. We may refer the

reader to a paper by the author in the Cambridge Mathematical Journal (Vol. vu.

18G6), where the application of moving axes to the curvature of curves is illustrated

by several examples. The following examples though of no immediate importance

will be found useful further on.

Ex. 1. The principal axes at any point P of a curve are the radius of curvature,

the tangent and the binomial. If these be respectively taken as the axes of x, y, z,

prove that the components of motion by which the axes are screwed along the curve

through an arc dy are p = 0, q = dy, r= 0; d&amp;lt;f)l
= 0, d&amp;lt;f&amp;gt;2

= -dr, d(p3 -de, where dr

and de are the angles of torsion and contingence.

Ex. 2. The principal axes at any point of a surface are the tangents to the

lines of curvature and the normal to the surface. Let these be called the axes of

x, y, z. Let it be required to move the axes from into the position of the

principal axes at a neighbouring point on the axis of x. If O0 = dx the six

components of motion for the base point are given by

where p, /&amp;gt;

are the principal radii of curvature for the sections xz, yz respectively.

By combining this with a corresponding motion along the axis of y, we can move

the axes from into the positions of the principal axes at any neighbouring point

on the surface.

Ex. 3. Show that the equation to a surface referred to the principal axes at any

point O is

22. Equations of Motion of a changing body. It may be noticed that the

three general equations of motion whose type is

dhi\dt-ej^ + OJis= L ................................. (1)

are not restricted to a rigid body. They hold even when the system is a collection

of particles moving amongst themselves. We may therefore apply them to find the

motion of a body which is changing its shape by transference of heat, or by some

other cause, and is also turning freely in space about its centre of gravity as a fixed

point*.

* The equations of motion of a changing body were given by Liouville in 1858

in the third volume of his Journal in the form shown in equations (6) of the text.

The equations marked (9) agree with those given by Prof. Darwin in the Phil.

Trans. 1876, On the influence of geological changes on the earth s axis of rotation.

The equations (10) are in substance the same as those of Sir W. Thomson in the

Appendix C of Prof. Darwin s paper. These are also to be found in the Mecanique
Celeste of Tisserand, 1891. The first use of mean axes is ascribed by Tisserand to

Gylden, Societe Royale d Upsala, 1871.

R. D. II. 2
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In many cases the mode in which the body is changing its shape is given, so

that, if we find the motion in space of any three rectangular axes connected in a

known manner with the changing body, the motion of every part of the body is

known. The axes thus chosen to define the motion in space of the body may for

shortness be called axes of the body.

There is one method of choosing these axes which has the advantage of

simplifying the equations of motion. Let a system of axes Of, Or], Of move about

the centre of gravity as origin with such angular velocities that, if at any instant

the changing body were suddenly to become rigid the motion of the axes in the time

dt would be the same as if they were fixed in the body. These axes possess the

property that the angular momentum of the changing body about any one of them

is the same as that of an ideal rigid body which is attached to the axes, and has the

same instantaneous moments and products of inertia as the changing body. The

angular momenta can therefore be expressed by the usual formula for a rigid body,

viz. h
l
=A^1

- FQZ -EQ3 ,
&c.

To make this point clear
;
let U, V, W be the resolved velocities in space of a

particle of mass m, Qlt 22 ,
2
3
the angular velocities of the axes. Then as in Art. 5

, &c.

Let A = 2m(n?-W), A^Zmtf -tf), A^= 2m (ft
-

r?f),

so that At, A
,
A are the angular momenta of that part of the motion of the

particles of the body which is relative to the axes
, 77, f. Let

hg,
h

,
h* be the

whole angular momenta about the axes, we then find by substitution

h
f
=Zm(tV-i}U)=Af+CQ$-EQl-DQi .................... (2),

and two similar equations, where A, B, C, D, E, F are the moments and products

of inertia of the body about the axes of
, 77, f.

The choice of axes we have described makes them such that

^
f
=0, ^ = 0, Af=0 ................................. (3).

Such axes have been called mean axes by Tisserand in his Mecanique Celeste. He
remarks that they are characterised by the property that the changes in the body
do not take the form of currents round them.

We may notice that the positions of the axes are not strictly defined by the

property that At= 0, A =0, A+=Q. These equations only determine the motion

when their initial positions have been chosen. To take a single instance, let the

body be initially at rest and let internal changes beginning at any instant alter its

shape and structure. It is evident that at the beginning and throughout all these

changes, the angular momentum about any axis fixed in space is zero. It follows

that any rectangular axes fixed in space form a mean system. The angular
momenta

A^, A^, Ag depend on the motion relative to the axes of
, 77, f, and are

independent of Oj , 2 , 3 . We may therefore now superimpose on the body and the

axes any the same state of motion, and the axes will continue to be a mean system.

It sometimes happens that the changes under consideration are so slow, though

long continued, that the body presents the appearance of being unaltered and rigid

when viewed for any short time. It is evident that in such cases the mean axes

will also be sensibly fixed in the body.

23. Let Of, OTJ, Of be the axes of the body, whether mean axes or not. Let

Ox, Oy, Oz be any other set of axes to which we wish to refer the motion. Let
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Wj, w2 , u.&amp;lt;

be the angular velocities of the axes of the body about the axes of

reference ; 6^ , 0.2 , 3 those of the axes of reference themselves. The angular

momenta of the body about the axes of reference are then

hx= A x + A ojj
Fw.2 E(IJS \

Dw3 .Fwj &amp;gt; (4)

Ewj
- Dw2 j

where Ax ,
A v ,

A z are the components of
Ag, A

,
A* about the axes of reference, and

are zero if the axes of the body are mean axes. Also A, B, C, D, E, F are here the

moments and products of inertia of the body about the axes of reference.

To obtain the equations of motion we substitute these values of hxt hy, hs in

the equations

If the axes of the body are chosen as the axes of reference, we have 61 = Wj ,

2
=w2 , 3

=
o&amp;gt;3 ,

&c. The equations, after substitution for hx &c., take the form

d \

dt Y (6),

with two other equations.

In these equations A, B, C, D, E, F are the moments and products of inertia

about the axes of the body, while the angular velocities Wj, &c., and the moments

L, M, N are referred to these as axes of coordinates.

If the instantaneous positions of the principal axes are taken as the axes of

reference, the expressions (4) for
/*,,.,

hy ,
liz assume very simple forms. The equa

tions of motion (5) now become

d .

(7),

with two similar equations. In these we write

1
= w

1 + a
1 , 3

=
u&amp;gt;2 + a

2 , #3= w3 + a3 (8),

so that alt a2 , a
;{
are the angular velocities with which the principal axes are

separating from axes of the body. This substitution is made because in most cases

a1? a2 ,
a3 are very small. The equations now take the form

| (
A ,)

-
(B

-
C) co2

a,3
-
Bwaaj, + C^a, + ~ Ax

- A, (wa + a3) + A, (ut + o
3 )
= L...(9),

with two similar equations. In these equations A, B, C are the instantaneous

values of the principal moments of inertia of the body, and the angular velocities

ult &c., alf &c, are referred to the principal axes as axes of coordinates.

24. These equations admit of simplification when the instantaneous axis of ro

tation is nearly coincident with one principal axis. Taking this axis as that of z,

both w
x
and o&amp;gt;2 are then small quantities. If also the internal changes are small and

periodic, or slow and limited, so that the principal axes do not wander much in the

body, the angular velocities Wj and w.2 will remain small throughout the motion. In

such cases we may sometimes be able to neglect the angular momenta A x ,
A y ,

A z

due to these internal changes. Taking a set of axes in the body such that the

principal axes do not deviate far from them, the angular velocities
cij ,

a2 , a
:t
will

also be small. We shall also suppose that ^=0 and that L, M are small.

22
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The third of equations (9) then shows that d (Cu3}[dt differs from zero by the

squares of small quantities. We may therefore write in the small terms of the two

first equations Cw3 =(r, where G is a constant. We thus obtain

B - C \
,

\

BC
(10).

1 A \

dt^
w2

~
\TGA~

G
-^)

A(j}i- Gai=M
)

When the body is uniaxal and remains so throughout all changes, A = B. Since

we may now take any axes in the equator of the body as principal axes, we may
further simplify the equations by so choosing these axes that a3 = 0.

In using these equations the internal changes of the body relatively to the axes

of the body are supposed to be given, so that 04, a2 ,
a3 and A, B, C are known

functions of t. These differential equations when solved will then determine ^ and

w.,. The motion in the body of the instantaneous axis follows at once. If required,

6
l , 2 &amp;gt; ^3 also may be found, and the motion in space of the principal axes may be

deduced from Euler s equations.

Taking the case of a uniaxal body, let us suppose that the motion in the body
of the axis of figure Oz is given by its angular co-ordinates (, rj, 1) referred to the axes

0, 0-rj, Of; then , 77 are known functions of t. Since (a-,, a.,, a3) are the angular

velocities with which the principal axes are moving relatively to axes in the body,

we have
a.^

-
dri/dt and a2

= d^dt.

If we also suppose that the changes in the body are such that, though the

positions in the body of the principal axes are sensibly altered, yet the changes
in magnitude of A, A, C are so small that we may neglect their variations when

multiplied by wlt w2 &amp;gt;

tne equations become

-^=L
,.(11),

where /*
= G (C - A)/A C and v = G/A.

In other problems the positions of the principal axes may be fixed in the body
while the changes in the moments of inertia are given. In such cases we put

04
=

0, a2 = 0, a3
= and regard A, J5, C as known functions of the time.

Ex. 1. Let the earth be regarded as a uniaxal body, having all its principal

moments of inertia nearly equal, and rotating about its axis of figure with an

angular velocity n. If the internal changes of the earth are such that the pole of

the axis of figure has a small annual motion round its mean place so that its

coordinates are =pcosmt, -rj-qsinmt, the magnitudes of the principal moments
of inertia remaining sensibly unaltered, prove that the co-ordinates of the pole of

the instantaneous axis of rotation are

* = - cos^ +^ cos 0* + *), *= - Bin mt

where H, K are two arbitrary constants. Helmert s problem. Astron. Nadir.

Vol. cxxvi.

To prove these results we put L= Q, M=0 in the equations (11) and substitute for

, ??
their given values; then

1
=

+faJj/n and ??] =?j-|-a&amp;gt;a///.
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In the actual case of the earth 2?r/^, is equal to ten months nearly, and 2?r/wi is

equal to a year.

Ex. 2. An ellipsoid, whose centre is fixed, contracts by cooling, and being

set in motion in any manner is under the action of no forces. Find the motion.

The principal diameters are principal axes at throughout the motion. Let us

take them as axes of reference. The expressions for the angular moments about

the axes are h^Aw^ h2=Bw2 ,
fc
3=Cw3 . The equations (6) then become

jt
(A^-(B-C}u.^= Q

and two similar equations.

Multiplying these equations by Au^ Bu.2 , Cw3 , adding, and integrating we see

that A2^ + -B 2w2
2 + Cw3

2 is constant throughout the motion. To obtain another

integral, let A = AJ(t), B = BJ(t], C = CJ(t) where
/(&amp;lt;) expresses the law of cool

ing which has been supposed such that the body changes its form very slowly. Let

= fi2 , Hjftf{t)=O|i and put dtldt =f(t), then the equations become

and two similar equations. These may be treated as in the chapter on the motion

of a body under no forces. Liouville s Journal, 1858.

On relative motion.

25. Clairaut s Theorem*. The theory of relative motion is

best understood by viewing it in as many aspects as possible. We
shall therefore now consider a method of determining the motion
which is more elementary, and does not in the result make an
exclusive use of Cartesian co-ordinates.

Let it be required to refer the motion of a particle P to any
given set of moving axes. Let P be the position of P at any
time t and let P be attached to the axes and move with them

during any short interval. Let f represent the acceleration of P
in direction and magnitude at the time t. The particle P will of

course separate from P
,
but as is explained in dynamics of a

particle the actual acceleration of P in space is the resultant of

its acceleration relative to P treated as a fixed point and the

acceleration / of P . The acceleration of P is called the &quot;accele

ration of the moving space.&quot;

Let x, y, z be the co-ordinates of the particle P referred to the

* This method of determining the relative motion of a particle was first given

by Clairaut in 1742, and afterwards the same rule was demonstrated in a different

manner by Coriolis. The arguments of the former were criticized and improved by
M. Bertrand in the nineteenth volume of the Journal Poly technique. The mode of

proof of the latter is altogether independent of all co-ordinates. Another demon

stration by the use of polar co-ordinates was given in Vol. xn. of the Quarterly

Journal of Mathematics by the Eev. H. W. Watson.
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moving axes, and let X, F, Z be the impressed forces on the

particle resolved parallel to the axes. Let p, q, r be the re

solved velocities of the origin; adding these to the right-hand
sides of equation (1) in Art. 5 and substituting in (2) we have

with similar expressions for F and Z. Here A, B, C, D are func

tions of lt Oz ,
63 , p, q, r and their differential coefficients with

regard to t which it is unnecessary to write down. If x, y, z were

constants, all the terms of X would disappear except the last four.

These then, with the corresponding terms in F and Z, express the

acceleration y of a point P , rigidly attached to the axes, but

occupying the instantaneous position of P.

We have now to examine the effect of the remaining terms.

The motion of the axes of reference during any interval dt may
be constructed by a screw motion along and round some central

axis 01. Let Udt be the translation along and IIdt the rotation

round 01. Let V represent the velocity of P relative to these

axes, and let 6 be the angle made by the direction of V with 01.

Consider now the second arid third terms of X taken together,
and the corresponding terms of F and Z, neglecting for the

moment all the other terms. If we multiply the expressions for

X, F, Z by 0j, 0.2) S respectively the sum of these terms is zero.

The resultant of the accelerations is therefore perpendicular to

07. Again, if we multiply the expressions for X, F, Z by dx/dt,

dy/dt, dzjdt respectively the sum of the terms is again zero.

The resultant of the accelerations is therefore perpendicular to

the direction of the relative velocity F. Finally, by adding up
the squares of the terms, we find that the magnitude of the

resultant acceleration is 2OF sin 9.

To determine the manner in which these forces should be

applied, we must transpose the terms which represent them to the

other sides of the equations. The first equation then becomes

and the other two take similar forms. These are the equa
tions of motion of a particle referred to fixed axes, moving under
the same impressed forces as before, but with two additional forces.

These are, first, a force equal and opposite to that represented by
mfy

where/ is the acceleration of the point of moving space occu

pied by the particle ;
and secondly, a force whose magnitude has

been shown to be 2wFfi sin 6. To determine the direction of this

force, let the axis of z be taken along the axis 01, and let the

plane of yz be parallel to the direction of motion of the particle,



ART. 27.] MOTION OF A PARTICLE. 23

then #i = 0, #2 = 0, and dx/dt
= 0. We then easily see that this

force disappears from the equations giving m&yjdP and m&zjdtf ;

while in that giving md?x/d&, we have the single term 2m03dy/dt.
The magnitude of this force is obviously 2mVl sin 6, and it acts

along the positive direction of the axis of x. This is the left-

hand side when the receding particle is viewed from the central

axis 01.

When these equations have been integrated, the arbitrary con

stants are to be determined from the initial values of x, y, z&amp;gt;

dx/dt, dyjdt, dzjdt. These differential coefficients are clearly the

components of the initial velocity of the particle, taken relatively
to the moving axes.

26. Relative motion of a particle. We may express these

conclusions in the following rule.

In finding the motion of a particle of mass ra with reference

to any moving axes we may treat the axes as if they were fixed

in space, provided that we regard the particle as acted on, in

addition to the impressed forces, by two other forces :

(1) a force equal and opposite to mf, where f represents in

direction and magnitude the acceleration of the point of moving
space occupied by the particle. The force mf is called the

&quot;force

of moving space ;

&quot;

(2) a force perpendicular to the direction of relative motion
of the particle, and also to the central axis or axis of rotation of

the moving axes. This force is measured by 2mVl sin 6 where
V is the relative velocity of the particle, H the resultant angular
velocity of the moving axes, and 6 is the angle between the

direction of the velocity and the central axis. This force is called

the compound centrifugal force.

To find the direction in which the force is to be applied ;
stand

with the back along the central axis so that the rotation appears
to be in the direction of the hands of a watch

;
then viewing

the particle receding from the central axis the force acts to the

left-hand. The central axis may be conveniently called the axis

of the centrifugal forces.

27. Ex. If the particle be constrained to move along a curve which is itself

moving in any manner, the compound centrifugal force, being perpendicular to the

direction of the relative velocity of the particle, may be included in the reaction of

the curve. The only force which it is necessary to impress on the particle is the

force of the moving space. If the curve be turning about a fixed axis with an

angular velocity O, the components of the accelerating force of moving space are

clearly ft
2r tending directly from the axis of rotation, and rd^jdt perpendicular

to the plane containing the particle and the axis, where r is the distance of

the particle from the axis. This agrees with the result obtained in the section on

relative motion in Vol. i. Chap. iv. Art. 213.
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28. In finding the compound centrifugal force it is useful

to remember, that we may resolve the angular velocity 11 or

the linear velocity V in any manner that we please, and find

the forces due to each of the components separately. Though we
have thus more than two forces which must be applied to the

particle, yet, by making a proper resolution, some of these may
either produce no effect, and may therefore be omitted, or may
produce an effect which is easily taken account of.

29. Relative motion of a Rigid body. When we wish to

apply Clairaut s theorem to the motion of a rigid body, we must
consider each particle to be acted on by the two forces which

depend on the position and velocity of that particle. To find the

resultant of all these forces, we generally have to effect an

integration throughout the body. This integration though not

difficult is sometimes troublesome. Methods of abbreviating
the process have been formulated but they are omitted here

because such problems are generally more easily solved by using
the methods described in Art. 10.

30. Principle of Vis Viva applied to moving axes. Suppose the system at

any instant to become fixed to the set of moving axes relative to ivhich the motion is

required, and calculate what would then be the effective forces on the system. These

have been called in Art. 25 the forces of moving space. If we apply them as ad

ditional impressed forces on the system, but reversed in direction, we, maij use the

equation of Vis Viva to determine the relative motion as if the axes werejixed in

space. This theorem is due to Coriolis, Journal Polytech. 1831.

If we follow the notation of Art. 24 the accelerations of any point P resolved

parallel to the rectangular moving axes are

with two similar expressions for the axes of y and z. The last four terms, with the

corresponding terms in the other expressions, are the resolved accelerations of

a point P rigidly attached to the axes, but occupying the instantaneous position of

P. Let us call these JT
,
7

,
Z .

Let us now recur to the proof of the principle of Vis Viva given in Vol. i.

Chap. vn. Art. 350. To adapt that proof to our present case we have merely to

substitute the above expressions for d2
x[dt*, &c. in the general equation of virtual

moments. After substituting for the displacements 8x, 5y, 5z their values dx, dy,
dz, it is clear that the terms containing dxjdt, dyjdt, dzjdt disappear. The

equation after integration becomes

31. Another proof. This theorem of Coriolis also follows at once from that

given in Art. 25 for all kinds of relative motion. The mode of proof just given has
the advantage of recurring to first principles.
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It is clear that when we use the principle of virtual velocities any force whose

line of action is perpendicular to the displacement given to its point of application

must disappear from the equation. Now in the principle of Vis Viva the displace

ment given to every point is the elementary arc described by that point in the time

dt relative to the axes. The compound centrifugal force acts perpendicularly to

this arc, and therefore disappears from the equation. But the virtual moments of

the forces of moving space are not zero, and must be allowed for in the equation.

32. Ex. A sphere rolls on a perfectly rough plane, which turns with a

uniform angular velocity n about a horizontal axis in its own plane. Supposing the

motion of the sphere to take place in a vertical plane perpendicular to the axis of

rotation, find the motion of the sphere relatively to the plane.

Let Ox be the trace described by the sphere as it rolls on the plane, and let

Oy be drawn through the axis of rotation perpendicular to Ox in the plane of

motion of the sphere. Let nt be the angle which Ox makes with a horizontal plane

through the axis of rotation. Let be the angle that the radius of the sphere which

was initially perpendicular to the plane makes with the axis of y. Let x, y be the

co-ordinates of P the centre of the sphere, and Mk 2 the moment of inertia of the

sphere about a diameter.

If the sphere were fixed relatively to the plane its effective forces would be Mn*x

and Mn2
y acting at the centre, of gravity, and a couple Mk2

dn/dt= round the centre

of gravity. See Vol. i. Chap, iv., note to Art. 450. Also the impressed force, viz.,

gravity, is equivalent to g sin nt and -
g cos nt parallel to the moving axes. The

equation of Vis Viva for relative motion is therefore

d lfdx\
2

fdy\
2

7 o/^0^
2
) _ 2

dx
&amp;lt;^,dy _ ^,,-^,+dx dy

dt dt

(fir
Here

ds/&amp;lt;fc=a&amp;lt;ty/&amp;lt;ff
and dyjdt = 0. We have therefore

&quot;

This equation might also have been derived from the formulae for moving axes

given in Vol. i. Chap. iv. Art 21].

If k*= | a2 this equation leads to *3 - JL -2 sin nt + Ae
n^ + De~n^^

where A and B are two constants which depend on the initial conditions of the

sphere.

On Motion relative to the Earth.

33. The motion of a body on the surface of the earth is not

exactly the same as if the earth were at rest. As an illustration

of the use of the equations of this chapter, we shall proceed to

determine the equations of motion of a particle referred to axes

of co-ordinates fixed in the earth and moving with it.

Let be any point on the surface of the earth whose latitude is

X. Thus A, is the angle which the normal to the surface of still water
at makes with the plane of the equator. Let the axis of z be
the vertical at 0, measured positively in the direction opposite to

gravity. Let the axes of x and y be respectively a tangent to the
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meridian and a perpendicular to it, their positive directions being

respectively south and west. In the figure the axis of y is dotted

to indicate that it is perpendicular to the plane of the paper. Let

co be the angular velocity of the earth, b the distance of the point
from the axis of rotation.

We may reduce the point to rest by applying to every

point under consideration an acceleration equal and opposite to

that of 0, and therefore equal to o&amp;gt;

26 and tending from the axis of

rotation. We must also apply a velocity equal and opposite to

the initial velocity of 0. This velocity is wb. The whole figure
will then be turning about an axis 01, parallel to the axis of

rotation of the earth, with an angular velocity co.

When the particle has been projected from the earth it is acted

on by the attraction of the earth and the applied acceleration

a)
2
b. The attraction of the earth is not what we call gravity.

Gravity is the resultant of the attraction of the earth and the

centrifugal force, and the earth is of such a form that this resultant

acts perpendicular to the surface of still water. If it were not

so, particles resting on the earth would tend to slide along the

surface. It appears, therefore, that the force on a particle at 0,

after O has been reduced to rest, is equal to gravity. Let this be

represented by g.

The equations of motion are much simplified if we neglect
such small quantities as the difference between the attractions of

the earth at different points near 0. If a is the equatorial
radius of the earth, the attraction at a height z above is nearly

equal to g (I zja). Since a is 20926629 feet and 2?r/a) is

24 hours, we easily find that the centrifugal force at the equator,
a)

2

a, is equal to #/289. Hence if we neglect the small term

gz/a we must also neglect w?z at all points near 0. The term GJ%
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is not neglected, because at places near the equator 6 is nearly as

large as the radius of the earth.

Since the earth is turning round 01 with angular velocity co,

the resolved part about Oz is co sin X, since the angle lOz is the

complement of X
;

since the rotation is from west to east, the

resolved angular velocity is from y to sc, which is the negative
direction, hence 6-A

= co sin X. The resolved angular velocity
round Ox is co cos X, and is from y to . z, which is the positive

direction, hence Ol
= co cos X. Also since 01 is perpendicular to

a,
0., = 0. Hence, by Art. 4, the actual velocities of any particle

ose co-ordinates are (#, y, z) are

dx .

u -T7 + ft) sin \yat

dy
v = j, to cos X^ &) sin \as

at

dz
w =

-j-
+ co cos XT/.

To find the equations of motion it is only necessary to substitute

these values in the equations of Art. 5.

We thus have

d-x dv

d*y o ^ dz . dx -,r
-j 2ft) cos X -

7
- - 2ft) sin \-

7
- = Y

dt2 dt dt

dy -

where the terms (X, Y, Z) include all the accelerating forces,

except gravity, which act on the particle. These equations agree
with those given by Poissori, Journal Polytechnique, 1838.

34. If we retain the terms containing &r, and include the

difference between the attractions at (#, y, z) and in the forces

X, Y, Z, the equations of motion are

i h 2ft) sin X -^ &)- sin- \x tar sin X cos \z = X,
at- at

dy o -*
^ o - ^dx

77! Zco cos X f Zft) sin X -^
--

&)-?/ = Jr ,

eft
2

(Z^ c?^

cl^Z fill

-j
+ 2ft) cos X - co- cos- \z &)- sin X cos \a = g + Z.

at~ at
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35. Ex. 1. As an example, let us consider the case of a particle dropped from a

height It. The initial conditions are therefore x, T/, dx/dt, dyjdt, dzjdt all zero, and

z = h. As a first approximation, neglect all the terms containing the small factor w.

Then we have x= 0, y = 0, z = h -
%gt

2
.

For a second approximation, we may substitute these values of (x, y, z) in the

small terms. We have after integration

x= , y= -

Thus there will be a small deviation towards the east, proportional to the cube

of the time of descent. There will be no southerly deviation, and the vertical

motion will be the same as if the earth were at rest.

An elementary demonstration of this result will make the whole argument
clearer. Let the particle be dropped from a height h vertically over 0. Then,

being reduced to rest, the particle is really projected eastwards with a velocity

w/i cos X. Hence, if the direction of gravity did not alter owing to the rotation of

the earth about 01, the particle would describe a parabola, and the easterly deviation

would be (wh cos X) t, where t is the time of falling. Since h= ^gt
2

,
this deviation is

Jw cos \gt*. The rotation u&amp;gt; about 01 is equivalent to w sin X about Oz and w cos X

about Ox. The former does not alter the position of OC the normal to the surface

of the earth, which is the direction of gravity. The latter turns OC in any
time t through an angle w cos \t. Thus gravity gradually changes its direction

as the particle falls. The particle is therefore acted on by a westerly component

=g sin (w cos Xt), which, since ut is small, is nearly equal to gu cos \t. Let y be the

distance of the particle from the position of the plane xz in space at the moment
when the particle began to fall, and let y be measured positively to the west. The

equation of motion of the particle in space is therefore d?y ldt
2
=gut cos X. Inte

grating this and remembering that, as explained above, dy jdt = -
&amp;lt;ah cos X when

t= 0, we get y = -ulit cos X + #w 3 cos X. When the particle reaches the ground we
have y = y very nearly, and h= ^gt

2
,
thus the deviation westwards is - ^ ugt

3 cos\,

which is the same as before. If it be not evident that y = y, it may be shown thus.

In the time t, Oy, Oz have turned through a very small angle 6 = 10 cos \t, hence, as

in transformation of axes, y = y cos 6 - z sin 0, which gives y = y when we reject the

squares of 9.

Ex. 2. A particle is projected vertically upwards in vacuo with a velocity V.

Show that on reaching the ground again there is no deviation to the south but the

deviation to the west is 4w cos X F3
/3#

2
. [Laplace, iv. p. 341.]

Ex. 3. A particle is dropped from a height h and falls to the earth. If the

resistance of the air be kvn
,
where v is the relative velocity of the particle and air,

show that the deviation to the south is still zero, but the deviation to the east is

^1- (M + 2H
wheref *8 the time of Ascent and the squares of k

are neglected. Laplace gives the expansion for several powers of k when the

resistance varies as the square of the relative velocity. [Mec. Celeste, iv. p. 337.]

36. In many cases it will be found convenient to refer the
motion to axes more generally placed. Let be the origin, and
let the axes be fixed relatively to the earth, but in any directions

at right angles to each other. Let 6lt tl 3 be the resolved
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parts of &&amp;gt; about these axes, then 6l) 2} #3 are known constants.

After substituting from Art. 4 in the equations of motion given
in Art. 5 we get

dx dy

For example, if we wish to determine the motion of a projectile, it is

convenient to take the axis of z vertical and the plane of xz to be the plane of

projection. Let the axis of x make an angle |8
with the meridian, the angle being

measured from the south towards the west. Then

dl
= a) cos X cos

/?, 63= -
wcosXsin/3, 63= - w sin X.

These equations may be solved in any particular case by the

method of continued approximation. If we neglect the small

terms we get a first approximation to the values of (x, y, z). To
find a second approximation we may substitute these values in the

terms containing w, and integrate the resulting equations. As
the equations are only true on the supposition that o&amp;gt;

2

may be

neglected, we cannot proceed to a third approximation.

37. Ex. 1. A particle is projected with a velocity V in a direction making an

angle a with the horizontal plane, and such that the vertical plane through the

direction of projection makes an angle /3
with the plane of the meridian, the angle /3

being measured from the south towards the west. If x be measured horizontally in

the plane of projection, y be measured horizontally in a direction making an angle

j3 + ^7r with the meridian, and z vertically upwards from the point of projection,

prove that x = V cos at + (
V sin at2 - i#

3
)
w cos X sin

/3,

y = (V sin at2 - %gt
3
)
u cos X cos (3+V cos a 2w sin X,

z = V sin at-^gt
2 -V cos a 2w cos X sin

/3,

where X is the latitude of the place, and w the angular velocity of the earth about its

axis of figure.

Show also that the increase of range on the horizontal plane through the point
of projection is 4w sin @ cos X sin a

(
sin2 a - cos2

a) F3
/&amp;lt;?

2
,

and that the deviation to the right of the plane of projection is

4w sin2 a (^ cos X cos j3 sin a + sin X cos a) F 3
/0

2
.

Ex. 2. A bullet is projected from a gun nearly horizontally with great velocity

so that the trajectory is nearly flat, prove that the deviation is nearly equal to

Rtu sin X, where R is the range, and the other letters have the same meaning as in

the last question. The deviation is always to the right of the plane of firing in the

Northern hemisphere, and to the left in the Southern hemisphere. It is asserted

(Comptes Rendus, 1866) that the deviation due to the earth s rotation as calculated

by this formula is as much as half the actual deviation in Whitworth s gun.
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We may arrive at this result in an elementary way. The bullet after it leaves

the earth describes its path in space, while the axes of reference turn with the earth

round the vertical at the point of projection with an angular velocity u sin X. The

bullet is therefore left behind by the axes, and after a time t we have
i/
= xtusin\.

As explained in Art. 35, the effect of the resolved angular velocity about a horizontal

line at the point of projection is here neglected. The solution is therefore only

approximately true when the trajectory is flat and the error increases with the time

of flight.

The terms containing the factor o&amp;gt; are so small that it is unusual to make any
allowance for them in aiming a gun at a target, except when the velocity of pro

jection V is very great. In such cases it is enough to retain the terms which contain

V as a factor. If however the trajectory is flat, the vertical velocity F sin a is small

and there is no reason for retaining the term. Taking only the principal terms, we
see from the results of the last example that

x=Vcosat y= V cos at2w sin X

z = V sin at - \gt?
- V cos a 2w cos X sin .

It follows that throughout the motion y = xut sin X. It appears also that the

time the bullet takes to reach the target is (on these suppositions) independent of the

motion of the earth. The vertical deviation of the bullet from its parabolic path at

the moment of reaching the target is - xtu cos X sin
j8.

This is to be measured

upwards when positive ;
the deviation is therefore upwards or downwards according

as the target is on the east or the west side of the meridian.

It may be objected that in obtaining these results we have neglected the resistance

of the air, whose effects in altering the parabolic path are much greater than those

of the rotation of the earth. So long however as we reject the squares both of w
and of the constant of resistance, the deviations due to w from an unresisted are the

same as those from a resisted path.

38. Disturbance of a Pendulum. Let us apply the equa
tions of Art. 36 to determine the effect of the rotation of the earth
on the motion of a pendulum. In this, as in some other cases, it

is found advantageous to refer the motion to axes not fixed in

the earth but moving in some known manner. Let the axis of z
be vertical as before, and let the axes of x and y move slowly
round the vertical with angular velocity to sin A, in the direction

from the south towards the west. In this case we have

0! = &amp;lt;*&amp;gt; cos \ cos /3, 2
= - to cos X sin

,

and 3
= to sin \ + o&amp;gt; sin X = 0,

where ft is the angle the axis of x makes with the tangent to the

meridian, so that d/3/dt
= co sin X. If, as before, we neglect quanti

ties which contain the square of co as a factor, the terms which
contain dBJdt and dO^dt must be omitted. Hence the required
equations may be obtained from those of Art. 36 by putting 3

= 0.

If m be the mass of the particle, I the length of the string, and
T the tension

;
the equations are
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3?x . Q dz Tx
-j- 2ft) cos X sin p ,,

- = -=

dt2 dt ml

&y o n dz T yJ
2ft&amp;gt; cos X cos /3 -T =

y
oY2 ^

dt ml
d-z n dx Q dy T l-z
,- + 2ft) cos X sin 8 -=- + 2&) cos X cos p ~ = - g -\- r
a L at ac m 6

the origin being taken at the lowest point of the arc of oscillation.

If the oscillation be sufficiently small z differs from zero by small

quantities of the order of a2
,
where a is the semi-angle of oscil

lation. The last equation then shows that T differs from mg by
quantities of the order of coo. at least. Ifthen we neglect terms of the

order of a&amp;gt;a? and a3
,
we may put mg for T in the two first equations,

and neglect the terms containing codz/dt. The equations of motion
thus become the same as for a pendulum attached to a fixed

point. If In* = g the solutions of the equations are clearly

x = A cos (nt +C), y = B sin (nt + D).

The small oscillations of a pendulum on the earth referred to

axes turning round the vertical with angular velocity &) sin X are

therefore the same as those of an imaginary pendulum suspended
from an absolutely fixed point.

Let us then suppose the pendulum to be drawn aside so as to

make with the vertical a small angle a and then let go. Relatively
therefore to the axes moving round the vertical with angular
velocity w sin X we must suppose the particle to be projected with

a velocity I sin act) sin X perpendicular to the initial plane of dis

placement. We have then when t = 0, x = la, y 0, dx\dt 0,

dyjdt
= laa) sin X. It is then easy to see that in the above values

of x and y, C and D are both zero, and that the particle describes

an ellipse, the ratio of the axes being &) sin X (l/g)^. The effect of

the rotation of the earth is to make this ellipse turn round the

vertical with uniform angular velocity co sin X in a direction from
south to west. If the angle a be not so small that its square may
be neglected, it is known by dynamics of a particle that, indepen
dently of all considerations of the rotation of the earth, there will

be a progression of the apsides of the ellipse. It is therefore

necessary for the success of the experiment that the length I of

the pendulum should be very great. This motion of the apsides

depending on the magnitude of a is in the opposite direction to

that caused by the rotation of the earth.

It also appears that the time of oscillation is unaffected by the

rotation of the earth, provided the arc of oscillation be so small

that the effects of forces whose magnitude contains the factor &&amp;gt;-

may be neglected.
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39. Ex. 1. In Foncault s experiment, a long pendulum is suspended from a

point over the centre of a circular table, and the arc of oscillation is seen to pass
from one diameter to another. Show that the arc of the circular rim of the table

described by the plane of oscillation in one day is equal to the difference in length

between two parallels of latitude one through the centre and the other through the

northern or southern point of the rim. This theorem is due to Prof. J. K. Young.

Ex. 2. A heavy particle is suspended from a fixed point of support by a string

of length a, and the effect of the rotation of the earth is neglected. In the two

following cases the path of the particle is very nearly an ellipse whose apses advance

in each complete revolution of the particle through an angle /3 . 2ir. If b and c be

the major and minor semi-axes of the ellipse, prove (1) that when 6 and c are small

compared with a, /3
= f be

jet
2
,
and (2) that when b and c are not small compared with

a, but are very nearly equal, (/S + l)~
2= l -

f 62/a
2

.

Ex. 3. A pendulum, at rest relatively to the earth, is started in any direction

with a small angular velocity, show that the oscillations will take place in a vertical

plane turning uniformly round the vertical so that the pendulum becomes vertical

once in each half oscillation.

Ex. 4. Let be the angle which a pendulum of length I makes with the vertical,

and the angle which the vertical plane containing the pendulum makes with a

vertical plane which turns round the vertical with uniform angular velocity a sin \

in a direction from south to west. Prove that, when terms depending on w2 are

neglected, the equations of motion become

where A is an arbitrary constant, and the other letters have the meanings given to

them in Art. 36. See M. Quet in Liouville s Journal, 1853.

These equations will be found convenient in treating the motion of a pendulum.
They may be easily obtained by transforming those given in Art. 38 to polar
co-ordinates.

40. Disturbances of motion in one plane. In the first volume of this treatise

a chapter was devoted to the discussion of the motion of a body or a system of

bodies constrained to remain in a fixed plane. This plane was treated as if it

were really fixed in space. But since no plane can be found which does not move
with the earth, it is important to determine what effect the rotation of the earth will

have on the motion of these bodies. Let us treat this as an example of the method
of Clairaut and Coriolis given in Art: 25.

Let the plane make an angle X with the axis of the earth. Let a point O in

this plane be on the surface of the earth, and let it be reduced to rest. Then, as

proved in Art. 33, the moving bodies while in the neighbourhood of O are acted on

by their weights in a direction normal to the surface of the earth. The earth is

now turning round an axis through parallel to the axis of figure with a constant

angular velocity w. Let this angular velocity be resolved into two, viz.,
- w sin X

about an axis perpendicular to the plane, and w cos X about an axis in the plane.
Now the square of w is to be rejected, hence, by the principle of the superposition of

small motions, we may determine the whole effect of these two rotations by adding
together the effects produced by each separately.
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It is a known theorem that if a particle be constrained to move in a plane which

turns round any axis in that plane with a constant angular velocity w cos X, the

motion may be found by regarding the plane as fixed and impressing an accelera

tion w2r cos2 X on the particle, where r is the distance of the particle from the axis.

This may be deduced, as in Art. 26, from the theorem of Clairaut. This impressed
acceleration is to be neglected because it depends on the square of w. The angular

velocity w cos X has therefore no sensible effect.

If the bodies be free to move in the plane, the effect of the rotation - w sin X is to

turn the axes of reference round the normal to the plane drawn through the point

0. If then we calculate the motion without regard to the rotation of the earth,

taking the initial conditions relative to fixed space, the effect of the rotation of the

earth may be allowed for by referring this motion to axes turning round the normal

with angular velocity
- w sin X. For example, if the body be a heavy particle sus

pended by a long string from a point fixed relatively to the earth, it is really

constrained to move in a horizontal plane, and the reasoning given above shows

that the plane of oscillation will appear to a spectator on the earth to revolve with

angular velocity
- w sin X round the vertical.

If the bodies be constrained to revolve with the plane, it will be required to find

the motion relatively to that plane. We must therefore apply to each particle the

force of moving space and the compound centrifugal force. If r be the distance of

any particle of mass in from 0, the former is wrw2 sin2 X. This is to be neglected

because it depends on the square of w. The latter is therefore the only force to be

considered. Let us replace it by a resultant force acting at the centre of gravity

of the body and a couple. We notice that, by Art. 24, the components of the

compound centrifugal force on any particle are algebraic functions of dx/dt, dy/dt,

dzjdt of the first degree. By Vol. i. Art. 14, their moment about the centre of

gravity is equal to that of the compound centrifugal forces after the centre of

gravity has been reduced to rest. Since each particle of the body is then moving
in the plane of constraint perpendicular to its radius vector drawn from the centre

of gravity as origin, the compound centrifugal force on it acts along the radius

vector, and has therefore no moment about the centre of gravity. The couple

therefore is zero. Again, the resultant force at the centre of gravity is the same as

if all the mass were collected at that point, and is therefore equal to - 2JJ/Fw sin X,

where M is the mass of the body and V the velocity of the centre of gravity.

The effect of the rotation of the earth may therefore be allowed for by treating

the earth as fixed and applying this force at the centre of gravity of the body.

The ratio of this force to gravity for a particle moving 32 feet per second, is at

most 47T/24.60.60, which is less than a five thousandth. This is so small that,

except under special circumstances, its effect is imperceptible.

41. Disturbance of the motion of a rigid body. Hitherto
we have considered chiefly the motion of a single particle. The
effect of the rotation of the earth on the motion of a rigid body
will be more easily understood when the methods to be described

in the following chapters have been read. If, for example, a body
be set in rotation about its centre of gravity, it will not be difficult

to determine its motion as viewed by a spectator on the earth,
when we know its motion in space. It seems, therefore, sufficient

R. D. II. 3
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here to consider the peculiarities which these problems present,

and to seek illustrations which do not require any extended use of

the equations of motion.

42. The effect of the rotation of the earth is in general so

small compared with that of gravity, that it is necessary to fix the

centre of gravity in order that the effects of the former may be

perceptible. Even when this is done, the friction on the points of

support and the other resistances, cannot be wholly done away
with. If, however, the apparatus be made with such care that

these resistances are small, the effects of the rotation of the earth

may be made to accumulate, and after some time to become

sufficiently great to be clearly perceptible.

If a body be placed at rest relatively to the earth and free to

turn about its centre of gravity as a fixed point, it is actually in

rotation about an axis parallel to the axis of the earth. Unless

this axis be a principal axis, the body does not continue to rotate

about it, and thus a change takes place in its state of motion.

By referring to Euler s equations, we see that the change
in the position of the axis of rotation is due to the terms

(A B)^^, (B (7)ft&amp;gt; 2
&&amp;gt;3 , (CA)a&amp;gt;stoi. The body having been

placed apparently at rest, ci)l} o&amp;gt;2 ,
&&amp;gt;3 are small quantities of the

same order as the angular velocity of the earth
;
these terms are,

therefore, of the order of the squares of small quantities. Whether

they are great enough to produce any visible effect or not depends
on their ratio to the frictional forces which could be called into

play. But, since these frictional forces are sufficient to prevent

any relative motion, these terms will in general be just cancelled

by the frictional couples introduced into the right-hand sides of

Euler s equations. The body, therefore, continues at rest relatively
to the earth.

In order that some visible effect may be produced, it is usual

to impress on the body a very great angular velocity about some
axis. If this be the axis of co3 ,

the terms in Euler s equations,
which are due to the centrifugal forces, and which contain o&amp;gt;3 as a

factor, become greater than when &&amp;gt;3 had no such initial value.

The greater this initial angular velocity, the greater these terms
will be, and the more visible we may expect their effects on the

body to be.

If the angular velocity thus communicated to the body be
sufficient to turn it only once in a second, it is still 24 x 60 x 60
times as great as the angular velocity of the earth. In such

problems, therefore, we may regard the angular velocity of the
earth as so small, compared with the existing angular velocities

of the body, that the square of the ratio may be neglected.
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As an example
* of the application of these principles, we have

selected one case of the gyroscope, which admits of an elementary
solution. More general cases are considered further on.

43. Ex. The centre of gravity of a solid of revolution is fixed, while the axis of

figure is constrained to remain in a plane fixed relatively to the earth. The solid

being set in rotation about its axis of figure, it is required to find the motion.

Let us refer the motion to moving axes. Let the centre of gravity be the origin,

the plane of yz the plane fixed relatively to the earth. Let the axis of figure be the

axis of z, and let it make an angle x with the projection of the axis of rotation of the

earth on the plane of yz. Let this projection, for the sake of brevity, be called the

axis of x- Let p be the angular velocity of the earth about its axis, a the angle which

the normal to the plane of yz makes with the axis of the earth. We suppose p to

be reckoned positive when the rotation is in the standard direction usually taken as

positive, so that when viewed from the positive extremity of the axis, the rotation

appears to be in the direction of the hands of a watch. Since the earth turns from

west by south to east, it follows, if the angle a

be measured from the northern extremity P of

the axis, that p is really negative and is repre

sented in Art. 33 by - u. The motion of the

moving axes is given by

62=p sin a sin x,

3=P sin a cos x-

Let w
x , w.2 , w3 be the angular velocities of the

body about the moving axes
; A, A, C the princi

pal moments of inertia at the centre of gravity.

Let R be the reaction by which the axis of figure is constrained to remain in

the fixed plane, then E acts parallel to the axis of x. Let h be the distance of its

point of application from the origin. The angular momenta about the axes are

respectively Ji
1
= Ault h.

2
= Au.2 , hs=Cus .

* M. Quet has published in Liouville s Journal, 1853, a memoir on relative

motion and the application to the pendulum and several forms of the gyroscope.

The problem considered in Art. 43 is one of those solved by him, though in a

different manner.

The application of Lagrange s equations to relative motion has been discussed

by Ed. Bour in a memoir presented to the French Academy in 1856 and afterwards

published in Liouville s Journal, 1863. He forms an expression for the vis viva

similar to that given in Art. 44, equation (1), and applies it to various problems.
The principal object of his memoir is to show by the solution of some problems a

little more complicated than those usually given in treatises on mechanics the

advantages which result by using the canonical forms of Hamilton and Jacobi.

He therefore continually uses the principal function of Hamilton to obtain the

solutions of his problems. Lagrange s equations have also been used by Lottner in

Crelle s Journal, 1857. His processes are somewhat complicated, but they have been

abbreviated by Prof. Gilbert of Louvain, who supplied a &quot;

compte rendu&quot; to the

Association Franchise, in 1878 and another to the Academy in 1882, Tome xciv. In

both of these he continually refers to a memoir published by him, which how
ever the author has not seen.

32
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Substituting in Art. 10, the equations of motion are

2 -0
(It i

Since the axis of z is fixed in the body, we see by Art. 3, that w
l
=

l ,
w2=^2-

The last equation of motion, therefore, shows that w3 is constant. It should however

be remembered that w3 is not the apparent angular velocity of the body as viewed

by a spectator on the earth. If fl
3 be the angular velocity relatively to the moving

axes, we have by Art. 3, 3=w3
-

3 ,
so that

fi3+p sin a cos x= constant.

Thus the body, if so small- a difference could be perceived, would appear to rotate

slower or quicker the nearer its axis approached one extremity or the other of the

projection of the axis of the earth s rotation on the fixed plane.

The first equation of motion, after substitution for &amp;lt;alt w2 , 2 , 3 ,
their values in

terms of x, becomes

d2Y
A

-g|
- Ap2 sin2 a sin x cos x + ^nP sin a sm X 0&amp;gt;

where n has been written for w3
. The second term should be rejected as compared

with the third, since it depends on the square of the small quantity p, Art. 33.

We have, therefore,
& C . .

This is the equation of motion of a pendulum under the action of a force

constant in magnitude, and whose direction is along the axis of
x&amp;gt;

i.e. the projection

of the axis of rotation of the earth on the fixed plane. The body being set in

rotation about its axis of figure, we see that that axis immediately begins to

approach one extremity or the other of the axis of x with a continually increasing

angular velocity. When the axis of figure reaches the axis of %, its angular velocity

begins to decrease, and it comes to rest when it makes an angle on the other side

of the axis of x equal to its initial value. The oscillation will then be repeated

continually.

The axis of figure oscillates about that extremity of the axis of
x&amp;gt; which,

when x is measured from it, makes the coefficient on the right-hand side of the last

equation negative. This extremity is such that, when the axis of figure is passing

through it, the rotation n of the body is in the same direction as the resolved

rotation p of the earth.

If we compare bodies of different form, we see that the time of oscillation depends

only on the ratio of G to A . It is otherwise independent of the structure or form of

the body. The greater this ratio the quicker will the oscillation be. For a solid of

revolution the ratio is greatest when 2?wz 2= 0. In this case the ratio is equal to 2,

and the body is a circular disc or ring.

If we compare the different planes in which the axis may be constrained to

remain, we see that the motion is the same for all planes making the same angle

with the axis of the earth. It is therefore independent of the inclination of the
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plane to the horizon at the place of observation. The time of oscillation is

least, and the motion of the axis most perceptible, when a, = \ir, i.e. when the plane

is parallel to the axis of rotation of the earth. If the plane be perpendicular to the

axis of the earth, the axis of figure does not oscillate, but if the initial value of dxjdt

is zero, it remains at rest in whatever position it may be placed.

44. Application of Lagrange s equations. Let the body
be referred to a system of axes with a fixed origin 0, whose

angular motions about themselves are given by lt #2 , 3 . If

X, fjb,
v are the direction cosines of their instantaneous axis 07,

and 6 the angular velocity about it, then 6 = \0, 2
=

p&, @s vO.

The vis viva of the body is

2T= 2m
{ (x

-
yd.A + zdtf + (?/

- z0
1 + xdtf + (z

- x82 + yOtf]

where accents denote differential coefficients with regard to the

time. Let 2R be the vis viva of the motion relative to the

moving axes, then

We find by expansion
T =R + N0 + %I6* ..................... (1).

where N=\2m (yz
1 -

zy ) + fjCLm (zx
1 - xz

} + v*m (xy
- yx }

+ 2
) + &c. - 2X/,Sra# - &c.

so that N is the angular momentum of the relative motion, and I is

the moment of inertia of the body about the instantaneous axis 01 of
the axes of reference.

We may verify this result for the case of a rigid body turning about the origin as

a fixed point by noticing that its Vis Viva is

A (! + 0X)
2 +B (Oj + &amp;lt;V)

2 + C (03 + 0/)
2

,

where Oj , 2 , Oj are the relative angular velocities of the body. Expanding this we
arrive at equation (1).

If the origin of the moving axes is not fixed, let a,& 7 be its

components of acceleration in space along the axes of reference.

To reduce to rest we apply these with reversed signs to every
point of the system, Art. 33. The resultant of each of these

systems of parallel forces is a single force acting at the centre of

gravity of the body. These may be included in the force function

by adding to U the term

(2),

where x, y, z are the co-ordinates of the centre of gravity, and M
is the mass of the body.

The Lagrangian function is therefore

............... (3),
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and if q be any one of the independent variables on which the

position of the body is made to depend, we have the typical

equation
JL dL_dL_
dt dq dq

In applying these equations to find the motion of a bod
relative to the earth we neglect as explained above the term J
For the reasons given in Art. 42, the centre of gravity of the body
is usually fixed relatively to the earth, so the terms in the force

function due to gravity do not appear. The term represented byK may also be omitted for the same reason. If, then, gravity is

the only acting force the Lagrangian function reduces to

.... (5).

One integral of the equations (4) can be found by the principle of Vis Viva. The

method of treating the equations used in Vol. i. Chap. vm. Art. 407, does not apply
here because T is not a homogeneous function of the velocities. For the sake

of increased generality, let us suppose that L =LQ +L1 + &c. + Ln ,
where Ln is a

homogeneous function of n dimensions of the velocities of the co-ordinates. When
L has the value (3) this expression reduces to the first three terms. Multiplying
each of the equations comprised in the typical form (4) by the corresponding q

and adding the results we have

~ &quot;

(6),

where S implies summation for all the variables. Now

since Ln does not contain t explicitly. It immediately follows by integrating (6)

that

(n-l)Ln+(n-2)Ln_l + &o.+L2 -L ()

= h
&amp;gt;

..................... (7),

where the term Lx is absent and h is an arbitrary constant. When the expression
for L contains only three terms, this reduces to L.2 -~L =h or

R-%ie*-U-K=h ..................................... (8).

In applying this equation to motion relative to the earth when 62 is rejected and
the centre of gravity is fixed we have

R= h .............................................. (9).

Ex. 1. As an example of the use of these equations, let us consider the problem

already solved in Art. 43.

To find R and N we notice that Oz separates from Ox in a fixed plane with

angular velocity % ,
the relative motion may therefore be constructed by the angular

.velocities ^= x ,
ty&amp;gt;

= 0, 3
= where is the angle a plane through Oz fixed in

the body makes with the plane xOz. We therefore have

2R =Ax 2 +
C(j&amp;gt;&quot;

2
, N=Ax cos a +

C&amp;lt;j&amp;gt;

sin a cos x,

2 + G(
t&amp;gt;&quot;~} +P (Ax cos a +

C&amp;lt;j&amp;gt;

sin a cos x),

~
{A (cos

2a + sin -a sin2
x) + C sin2a cos-

x },



ART. 45.] THE GYROSCOPE. 39

where the notation of Art. 43 has been followed. Using this value of T as the

Lagrangian function and taking q to be and % in turn, we have

+p sin a cos x= n
&amp;gt;

AX&quot; +pC&amp;lt;f&amp;gt;
sin a sin % -

p
2 sin2a (A

-
G) sin % cos %= 0.

Eliminating &amp;lt; from the second equation we obtain the same results as in Art. 43.

Ex. 2. If gravity at each point of a body is regarded as the resultant of the

terrestrial attraction and the centrifugal force at that point, prove that the force

function U differs from that due to gravity by -
^ Id

2 - \ Mb-6
2
,
where b is the

distance of the centre of gravity from the axis of the earth. It will be observed

that in forming the Lagrangian function L the terms ^Id
2 in U and T cancel each

other, so that when the centre of gravity of the body is fixed and the force function

due to gravity is treated as a constant the expression L =E + Nd is correct including

the square of B. [Gilbert s Theorem.]

45. Ex. A very general form of the gyroscope is that in which the axis of the

gyrating body is free to move in all directions about the centre of gravity, which

is fixed relatively to the earth. One construction by which this freedom may be

obtained is as follows.

A uniaxal body can turn freely about its axis of figure C OC, which is pivotted
on the inside of a metal ring CY-^G Y-^ so that C OG is a diameter, the point

being the centre of gravity of the body and the centre of the ring. The external

extremities of that diameter Y
1
OY

l
of this ring which is perpendicular to C OC are

pivotted at two points F2 ,
Y2 on the inside of a second ring external to the former,

having F2 OF2 for a diameter, and for its centre. This external ring is free to

move about a diameter Z2 OZ% perpendicular to F2 OF2
. The diameter OZ.2 is fixed

relatively to the earth and will be taken as an axis of z, the plane of xz is also

fixed relatively to the earth and will be taken to contain the straight line OP, drawn

parallel to the northern direction of the axis of rotation of the earth.

In the first diagram the internal and external rings are shown folded into the

plane of F2Z2 . In the second diagram all that portion of the figure is represented

which lies in the positive octant of the axes X2 Y.2Z.2 . The inner ring has been

turned round its axis F2Fa through an au^le 6. The axis O.c which is fixed

relatively to the earth and lies in the plane X.Y.2 has also been sketched.
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Let the angle xOX2 which defines the position in space of the external ring be

i//; let the angle Z2OC defining the position of the internal ring be 6; and let the

angle made by a plane passing through OC and fixed in the uniaxal body with X.^Z2
be

(f&amp;gt;.

These angles are the co-ordinates of the gyroscope, which has therefore three

degrees of freedom. With two rings only we notice that the angles 6, \f/,
are the

Eulerian angular co-ordinates of the uniaxal body.

By increasing the number of rings we could increase the degrees of freedom and

generalize the instrument. On the other hand we can reduce the number of

independent co-ordinates by introducing any restrictions we please. Thus in the

example discussed in Art. 43 where the axis OC is restricted to lie in one plane, we

have ^ equal to a constant.

Let (A, A, C), (A 1 ,
A lt C^), (A 2 ,

A
2 ,

(72) be the principal moments of inertia at

of the uniaxal body, the internal and external rings. We then have

2R =A (0
2 + sin2 0f2

) + C (0 + f cos 0)
2 + A l (0

- + cos2 0^) + C^ 12 sin2 6 +A^ 2
.

The first two terms represent the vis viva of the uniaxal body, the third and fourth

terms represent that of the internal ring. These are obtained from the first two by

putting = 0, interchanging A and C in the coefficients of i//
2

, and adding the

suffixes.

Let X, fi, v be the direction cosines of OP referred to 00 as axis of Z^ 01^F2 as

axis of Fj and an axis OX: perpendicular to both
; let i be the angle zOP. The

angular momentum about OP is then

N= - A sin $f\ + Ae fj.+ C (0 + \J/
cos d) v

- C
l
sin 0i//X + A^ fjL + Aj\f/ cos 6v +A$ cos i.

We also have the geometrical relations

X = - cos i sin 9 + sin i cos 6 cos
\f/,

fjt.=
- sint sin

\j/,

v= cos i cos 6 + sin i sin cos
\j/.

Representing the angular velocity of the earth by p measured positively in the

direction XZY2 ,
and putting

P= A
1 + A 2 + (A

-
AI + CJ sin2 6,

the Lagrangian function becomes, when the square of p is rejected,

L = $(A+Aj) 2 +W2 +
%0(&amp;lt;t&amp;gt;

+ t cos 0)
2

+p cos i \P\ff + C (0 + ^ cos 6) cos 0]

+p sin i [{6y + (C + A l -A-C^ f cos 0} sin cos ^ -
(A + AJ 6 sin ^].

The equation corresponding to vis viva becomes

(A + AJ 2 + P^&quot;

2 + C (0 + f cos 0)
3 = a.

Putting q in equation (4) equal to and
\f/

in turn we have

+ (i// +p cos i) cos +p sin i sin cos
\f/
-

p,

-
|P W+p cos i) + C { + (\f/ H- p cos i) cos

}
cos

0~|

+p sin i [(70 sin sin ^+ (2A 1 + C-CJ cos ^0 +2 (4
-^ - C+ CJ sin2 cos ^0 J

= 0,

where a and
/} are arbitrary constants.

When the fixed axis Oz is parallel to the axis of the earth, i= 0. The last

equation is then a perfect differential, and we thus have a third integral.
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46. Ex. 1. Show that a person furnished with the particular form of the

gyroscope described in Art. 43, could, without any Astronomical observations,

determine the latitude of the place, the direction of the rotation of the earth, and

the length of the sidereal da} . This remark is due to M. Quet.

Ex. 2. If the body be a rod, and its centre of gravity supported without friction,

prove that it could rest in relative equilibrium either parallel or perpendicular to

the projection of the earth s axis on the plane of constraint. If it be placed in any
other position, its motion will be very slow, depending on p

2
,
but it will oscillate

about a mean position perpendicular to the projection of the earth s axis.

Ex. 3. If the axis of figure be acted on by a frictional force producing a

retarding couple, whose moment about the axis of x bears a constant ratio /* to the

moment of the reactional couple about the axis of y, and if the fixed plane be

parallel to the axis of the earth, find the small oscillations about the position of

equilibrium. Show that the position at any time t is given by

X= Le-M cos [( CnpJA - X2
)^ + If],

where 2J\=/x (Cn-2Ap), and L and M are two constants depending on the initial

conditions.

Ex. 4. The centre of gravity of a solid of revolution is fixed, while the axis of

figure is constrained to remain in the surface of a smooth right cone fixed relatively

to the earth. Show that the axis of figure will oscillate about the projection of the

axis of rotation of the earth on the surface of the cone, and that the time of a com

plete small oscillation about the mean position will be 2?r (A sin e/(7p?i sin )*,

where c is the semi-angle of the cone, (3 the inclination of its axis to the axis of the

earth, and the other letters have the same meaning as before. This problem is

discussed both by Quet and Bour.

Ex. 5. The fixed axis OZ2 of the external ring of a two ringed gyroscope is

placed parallel to the axis of revolution of the earth, prove that

-

where ?i, E and F are arbitrary constants. [Lottner s Problem.]

Ex. 6. Two equal heavy rods CA, CB are connected by a hinge at C with a

spring so that they tend to make a known angle with each other. The free ends

A and B are then tied together and the whole is suspended by a string OC attached

to the hinge. The system is left to itself until it is at rest relatively to the earth.

If the string which fastens A and B be now cut, the arms separate from each other.

Show that the system will immediately have an apparent angular velocity round

the vertical equal to p sin X (I
-
!)/! ,

where I, I are the moments of inertia of the

system about the vertical OC respectively before and after the string joining A and

B was cut, p is the angular velocity of the earth about its axis, and X is the latitude

of the place. In which direction will the system turn? This apparatus was

devised by M. Poinsot, who considered that the experiment would be so effective

that the latitude of the place could be deduced from the observed angular velocity.

See Comptes Rendus, 1851, Tome xxxn. page 206.

Ex. 1. If a river is flowing due north, prove that the pressure on the eastern

bank at a depth z is increased by the change of latitude of the running water in
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the ratio gz + bvu sin I : gz, where 6 is the breadth of the stream, v its velocity, I the

latitude and o&amp;gt; the angular velocity of the earth about its axis. [Math. Tripos, 1875.]

Ex. 8. A wave like the Tide-wave travels along a river with its crest at right

angles to the banks. Deduce from Clairaut s rule (Art. 25) that the tide is higher on

one bank than on the other, and shew that the height of the tide decreases in

geometrical progression for equal increments of distance from one bank.

The general line of argument is as follows. Since the motion of the water is

very nearly in a horizontal plane we may (by Art. 40) disregard the rotation of the

earth provided we apply to every particle an acceleration 2u&amp;gt;y sin X perpendicular to

its direction of motion, i.e. perpendicular to the direction of the river. Hence the

river must be so much higher on one side than the other that the pressure due by

gravity to the difference of level is equal to that due to the applied acceleration.

If f be the altitude of the tide above the mean level at a distance y from that side

of the river at which the tide is highest, we have - gdf=2wv sin \dy. But in the

theory of tides as undisturbed by the rotation it is proved that v = \fg/h. By

integration we find f= (7



CHAPTER II.

OSCILLATIONS ABOUT EQUILIBRIUM.

Lagrange s Method with indeterminate multipliers.

47. IN the first volume of this treatise Lagrange s method
of finding the small oscillations of a system about a position of

equilibrium has been explained. It is our object, not to repeat
those explanations, but rather to examine how that theory is

modified by the use of indeterminate multipliers. In a dynamical
problem it generally happens that we want to know how some

particular quantities change with the time. Now it is one of the

chief advantages of Lagrange s method that it gives a large choice

of quantities which may be taken as co-ordinates. The quantities
we most wish to find are therefore usually chosen for the inde

pendent co-ordinates and their variations can then be found from

Lagrange s equations. But sometimes we find that this introduces

a great complication of symbols. Perhaps we lose thereby some

principle of symmetry which would have abbreviated and simplified
the whole process. We now propose to consider what modifications

must be introduced into the equations when those particular

quantities whose values we most require cannot be conveniently
introduced as independent co-ordinates. For this purpose the

method of indeterminate multipliers may be used with great

advantage.

48. Let the system be referred to any co-ordinates 6, &amp;lt;,
&c.

which are so small that we may reject all powers of them except
the lowest which occur. They should therefore be so chosen that

they vanish in the position of equilibrium. Let n be the number
of those co-ordinates. Assuming that the geometrical equations
do not contain the time explicitly, the vis viva 2T will be a quad
ratic function of the velocities, and may therefore be expanded
in a series of the form

2 T= AU&* + ZA^O V + Adp* + &c.
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Here the coefficients An ,
&c. are all functions of 6, $, &c. and we

may suppose them to be expanded in a series of some powers of

these co-ordinates. Since the oscillations are so small that we may
reject all powers of the small quantities except the lowest which

occur, we may reject all except the constant terms of these series.

We shall therefore regard the coefficients An , &c. as constants.

We must now make an expansion for the force function U
in a series of powers of 0, &amp;lt;,

&c. If the co-ordinates 0, &amp;lt;,
&c. were

all independent, the terms containing the first powers would

vanish, because by the principle of virtual velocities dUjdO,
d U/dtf), &c. are zero in the position of equilibrium for all variations

of 6, $, &c. which are consistent with the geometrical conditions.

But as this does not necessarily occur when 0, &amp;lt;,
&c. are connected

by geometrical relations, we take as our expansion

+ &c. + 4 cu e&amp;gt; +c^ + Cvp + &c.,

where U is a constant which is easily seen to be the value of U in

the position of equilibrium. We may notice that the coefficients

Clt 0-2, &c. are not unrestricted. They must be such that the

equations of equilibrium are all satisfied.

Since the co-ordinates 6,
&amp;lt;f&amp;gt;,

&c. are not independent there will

be some geometrical relations which connect them. To simplify
matters, let us suppose that there are but two such relations. Let
these be f(0, &amp;lt;f&amp;gt;,

&c.)
=

0, F (0, c/&amp;gt;, &c.)
= 0. We may also expand

these in powers of the co-ordinates in the following manner :

/= G,0 + G4 + &c. + i n &amp;lt;9

2 + 12
0&amp;lt;f&amp;gt;

+ i
22

&amp;lt;/&amp;gt;*

+ &c .

The constant terms of these series are omitted because the geome
trical equations are to be satisfied when the system is in equili
brium, i.e. when =

0, &amp;lt;

=
0, &c.

We have now to substitute these series in the Lagrangian
equations. Referring to Chap. vin. of Vol. I. these are represented
by the type

ddT _dT_dU df dF
dtdO dd~ d0^d0 +^d0

with similar equations for
&amp;lt;, i/r,

&c. Here X, //,
are indeterminate

multipliers whose values have to be found from the equations thus
written down. The results of these substitutions are obviously

AK& + &c. = C, + CU + &c. + \ (G, + &c.) + /*(#! + &c.),

G2 + G^O + &c. + X (G, + &c.) + ^ (H, + &c.),
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49. Since the system has been disturbed from a position of

equilibrium these equations are all satisfied by 6 = 0, $ = 0, &c.

We thus obtain the equilibrium values of X, //..
Let these be

X
, /* . Then

These are the equations of equilibrium already alluded to. The force

function U being a known function of the co-ordinates, the co

efficients Glt (72 ,
&c. are all known; and thus any two of these

equations will determine X
, /v The remaining equations will

then be identically satisfied, because the quantities Cl} Cz , &c. are

not unrestricted, but are such that the equations of equilibrium
are all satisfied.

Let the dynamical values of X and p be X = X + \, //,
= ^ -f- ft.

Then \ and ft are small quantities whose squares can be rejected.
The equations of oscillation then become

&c. = &c.

We have here as many equations as there are co-ordinates. Besides

these we have as many geometrical equations as indeterminate

multipliers. These are

Thus we have on the whole sufficient equations to find all. the un
known quantities 6,

&amp;lt;f&amp;gt;

... X1} ft.

50. To solve these we proceed exactly as in the corresponding
method described in Yol. I., where the co-ordinates 0,

&amp;lt;/&amp;gt;,

&c. are all

independent, except that we now include \lf ft amongst the

variables to be determined. We take as our typical solution

6 =M sin (pt + a), $ = N sin (pt + a), &c.

\ = D sin (pt -1- a), ft = E sin (pt + a).
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Substituting these in the equations we see that sin (pt 4 a) can be

divided out from every equation. Writing

we thus obtain

(A up* 4 Cn)
M4 (A,.2p* 4 C12)N 4 ... 4 G 1

L 4 H*E =

=

=

Eliminating the ratios M, N, &c. D, E, we have the determinantal

equation
2 i r^i r^ H~ A

19 fJ &quot;T* *^M i v7&quot;i ,
-O ^

=z U.

&c.
,

&c. , &c., &c.

0,0
0,

If there be n co-ordinates, this is an equation of the ?ith degree to

find p
2

. Taking any root positive or negative, the preceding equa
tions determine the corresponding ratios of M, N, &c. Taking all

the roots in turn and adding together these partial solutions we
have a solution complete with its 2?? constants. These constants

have to be determined from the initial values of the co-ordinates

and their velocities.

51. This determinant differs from that used when there are

no indeterminate multipliers in two respects. (1) There is a

change in the quantities (7U ,
(712 ,

&c. represented by the insertion

of the bar over the letters, (2) the determinant is bordered by the
coefficients GI, Hlt &c. of the first powers of the co-ordinates in the

geometrical equations.

We notice that there is a very great simplification of the

process when the force function is such that the coefficients of the

first powers of the co-ordinates in its expansion are all zero. In
this case Clt C y

&c. are zero, hence from the equations of equilibrium
\ = 0, fiQ

= 0. Thus Cu = Cu , 12
= C12 ,

&c. = &c. It immediately
follows that it is unnecessary to calculate the terms of the second

order in the geometrical equations, for these disappear from the
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equations of motion. This of course is an important simplification.

Further, the final determinant only differs from that used when
there are no indeterminate multipliers by being bordered by the

coefficients Glt &c. Hlt &c.

This simplification occurs when the position about which the

system oscillates is a position of equilibrium for all variations of
the co-ordinates, although the constraints compel the system to oscil

late in a given limited manner.

52. Brief Summary. In order to indicate the method of

proceeding in any particular case we shall now sum up the general
line of argument.

Expand the semi vis viva T and the force function U in powers
of the co-ordinates 0,

&amp;lt;/&amp;gt;,

&c. and their differential coefficients

6
, $ , &c., all powers above the second being rejected. Multiply

the geometrical relationsf= 0, F by X = A + Xx and //,
= ^ + //.j

where Xx and ^ are small quantities of the same order as the co

ordinates 6, &amp;lt;,
&c. and expand these products, all powers of the

small quantities above the second being rejected. First, taking
the expression U+ Xf+pF, equate to zero the coefficient of the

first power of each co-ordinate, we thus have equations to find

A
, yu

. Secondly, omitting the accents in the expression for Tand
also the constant terms in U, form the discriminant of

with regard to the co-ordinates and the subsidiary variables \lt film

Equating this determinant to zero, we have an equation to find the

values of p.

53. On Principal Oscillations. The equations which deter

mine the constants M, N, &c. 7), E are shown above. Solving
these we see that their ratios are equal to the ratios of the minors
of the constituents of any row we please in the determinantal

equation. If we represent these minors by 7n (jp
2

),
712 (p

2

),
&c. the

oscillations of the system are represented by

6 = LI 7U (pi*) sin (p +
!&amp;gt;

+ L2 7U (p.f) sin (p2t + a2) + &c.,

&amp;lt;/&amp;gt;

= Zi 712 (p*) sin (pj + i) + L2 712 (_p2
2

) sin (p.2t + a,) 4- &c.,

&c. = &c.,

where Llt L &c. are constants which depend on the initial con

ditions.

When the initial co-ordinates are such that all the constants

Ll} L%, &c. vanish except one, the expressions for 0,
(f&amp;gt;

... X, //, are

reduced to the trigonometrical expressions in some one column.

The co-ordinates 0, $, &c. then bear to each other ratios which are
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constant throughout the motion. It follows also that the values of
the co-ordinates 6,

&amp;lt;f&amp;gt;,

&c. repeat at a constant interval, viz. the

period of the trigonometrical expression in the one column pre
served. Referring to Vol. I. we see that the characteristics of a

principal oscillation are satisfied.

54. The system being referred to any co-ordinates 6,
(/&amp;gt;,

&c. it

may be required to find how it should be disturbed from its position

of equilibrium that it may describe any proposed principal oscilla

tion. We see that the system must be so displaced that its co

ordinates 6,
&amp;lt;f&amp;gt;,

&c. have the ratios of the minors of any row of the

determinantal equation. It is also necessary that the initial

velocities O
t

&amp;lt;/&amp;gt;

,
&c. have the same ratio. These conditions are

necessary and sufficient.

55. Putting this into algebraical language, we say that when a system is per

forming a principal oscillation of the type sin (pit + a-^^ then

We also infer from these equations that throughout the motion 0&quot; = -

56. Principal Co-ordinates. It may be required to find formula of transfonna-

tion by which we may change any co-ordinates 6,
&amp;lt;j&amp;gt;,

&c. into principal co-ordinates.

According to the definitions laid down in Vol. i. a system is referred to principal

co-ordinates , y, &c. when the vis viva 2T and the force function U are expressed

in the forms 2T=f2 + if* +?*+...

Lagrange s equations then take the form &quot;-cn = 0, TJ&quot; -c^t}= 0, &c., so that

the whole motion is given by %=E sin (Pit + aj, y =F sin (pzt + a.2), &c.. where E, F,

&c. are the constants of integration and p^= - cn ,p&amp;lt;?=-
c22 , &c.

When the initial conditions are such that all the constants E, F, &c. are zero

except one the system is said to be performing a principal oscillation. If then we

write x = Bm(p1
t + a

1 ), y = sin (p2* + a
2)&amp;gt;

x w^l ^e a multiple of
, y a multiple of 77,

and so on. The expressions for 0, 0, &c. given in Art. 53, now reduce to

These formulfe will enable us to change any co-ordinates 0,
&amp;lt;/&amp;gt;,

&c. into others

x, y, &c. which make T and U assume the forms

The n constants Llt Z/2 & c&amp;gt;
&amp;gt;

are arbitrary multipliers of x, y, &c., and may, if we

please, be so chosen as to make n , a^, &c. each equal to unity.
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On Lagrange s Determinant.

57. On examining Lagrange s method of finding the oscillations

of a system we see that the whole process depends on the solution

of a certain determinantal equation. Even the stability or in

stability of the equilibrium depends on the nature of its roots. If

this equation can be solved, the character of the motion and the

periods of oscillation (if the motion be oscillatory) are immediately

apparent. If the equation cannot be solved, we may expand the

determinant and discuss its roots by the methods given in the

theory of equations. But without expanding the determinant we

may sometimes accomplish the same purpose by the following
theorem. We shall begin with the determinant in its simplest
form as it is obtained in Vol. I. Chap. IX.

;
we shall then consider

the modifications introduced by bordering it with any quantities.

58. Separation of Roots. Let the determinantal equation
be written in the form*

vP* + OK, -Ajajp
8 + Cfc, &C.

&c. &c.

Let us form from this determinant a minor by erasing the first row
and the first column. We may then form from this minor a second

minor, and so on. Thus we have a series of functions of
p&quot;

whose

degrees regularly diminish from the nth to the first. Let us call

the successive determinants thus formed A, A1? A 2 ,
&c. The de

terminant A is riot altered if we border it with a column of zeros

on the right-hand side and a row of zeros at the bottom, provided
we put unity in the vacant corner. We may therefore consider

that An = 1 .

By a theorem in determinants, if /, /&quot;12 ,
&c. be the minors

of the several constituents of A, we have AA2
= /n/22 /i2

2
,
and

we notice that /u = Aj . Let us suppose p~ to increase gradually
from p-

= oo to p-
= + oo

,
then when p- passes through a value

which makes A a
= we see that A and A 2 must have opposite

signs. The same argument applies to every one of the series

* The proposition that the roots of Lagrange s determinant, when written in

this general form, are all real is due to Sir W. Thomson. It is the extension of a

corresponding theorem for that particular form of the equation which occurs when
the vis viva is expressed as the sum of the squares of the velocities of the co-or

dinates. Several proofs of this latter theorem will be found in Lesson VI. of

Dr Salmon s Higher Algebra. The simplest of these is the one given by Dr Salmon
himself. He also proves that the roots are separated by those of the leading
minors. The proof in the text is an extension of his line of argument to Lagrange s

determinant in its general form. Another line of argument is indicated in the

examples in Art. 71.

R. D. II. 4
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A, An A2 , &c., whenever any one of them vanishes the deter

minants on each side have opposite signs*.

Using these determinants like Sturm s functions we see that

a variation of sign can be lost or gained only at one end of the

series. It can be lost at the end A only when p
2

passes through
a root of the equation A = 0, and it will be regained again as p

2

passes through the next root in order of magnitude, unless a root

of the equation Aj = lies between these two.

If then we can prove that n variations of sign are lost as p
2

passes from p
2 = oo to p

2 = + oo it is clear that the equation
A = must have n real roots and these roots will be separated by
the roots of the equation Aj = 0.

Now the coefficient of the highest power of p
2 in the deter

minant A is the discriminant of T, and is therefore positive. The
coefficient of the highest power of p

2 in Aj is the discriminant of

T after & has been put zero, and this also is positive. Thus the

coefficients of the highest powers of p
2 in every one of the de

terminants A, An Ao, &c. are positive. If then we substitute oo

for p
2
,
these determinants are alternately positive and negative, if

we substitute + oo for p
1 the determinants are all positive. It

follows that n variations of sign are lost as p~ passes from p*
= oo

to p
2 = + oo .

Summing up we see that the roots of each determinant of the

series A, A1? A 2 ,
&amp;lt;$cc. are all real and the roots of each separate or

lie between the roots of the determinant next before it in the series.

59. Resuming our line of argument we see that as p
2 increases

from p~
= oo to p

2 = + oo a variation of sign in the series A, A1? &c.

is lost when p
2

passes through a root of A = 0, and once lost this

* In this reasoning we have for the sake of brevity omitted the case in which

two or more successive determinants in the series A, A1? A2 , &c. vanish for the

same value of p2
. But this omission is of no real importance, for we may change

these determinants into others whose constituents are slightly different from those

of the given determinants but are such that no successive two of the series have a

common root. In the limit, therefore, when these arbitrary changes of the consti

tuents are indefinitely small, the roots of the series of determinants will still be real

and the roots of each will separate, or coincide with, the roots of the next before it

in the series.

To show that these changes are possible, let A, Ax ,
A2 be any three consecutive

members of the series. Let us suppose that A2 does not vanish while the two mem
bers (and perhaps others) just before it are zero. Then from the equation in the

text, we have I
12
= 0. Let us add to each of the constituents of which 7]2 is the

minor the small quantity a. The determinant Ax
is unaltered and remains equal

to zero. The determinant A undergoes a slight alteration, so that in its new form

the equation just quoted becomes AA2
= -a2A2

2
. Thus A is no longer zero. In

this way whenever any two consecutive members of the series of determinants

vanish, one may be rendered finite.
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variation cannot be regained. It immediately follows that as p-

passes from p
2 = a to p

2 =
/3

i/|
K variations of sign are lost there

are exactly K roots of the equation A = betiveen these limits.

60. It will be noticed that in this line of argument no as

sumption has been made about the functions

except that the successive discriminants of the former are all

positive. This may be expressed by saying that T is a one-signed

positive function, i.e. a function which keeps the positive sign for

all values of the variables and never vanishes except when all the

variables are zero. That the vis viva is a one-signed positive
function is of course evident. The necessary and sufficient con

ditions that a quadric function should be a one-signed positive
function are given in Williamson s Differential Calculus. They
may be briefly summed up by saying that the successive discrimi

nants are all positive. A short proof is given in a note at the end
of the volume.

61. Equal Roots. Since the roots of any one of the leading
minors 7U ,

722 ,
&c. separate the roots of Lagrange s determinant,

it follows that when the latter has r roots each equal to plt each

of the former must have r 1 roots each equal to pl . For the

same reason any leading second minor such as A 2 must have r 2

roots each equal to plt

Consider next any other minor of the determinant. By proper

changes of rows and columns we may represent this by 7I2 . Since

AA 2
= /n /oo /12

3
,

it follows that 7ia must also have r 1 roots

equal to p1
.

On the whole we conclude that if Lagrange s determinant have

r equal roots, then every first minor has r 1 roots equal to each of
these. In the same way it follows from this, that every second

minor has r 2 roots equal to each of these, and so on.

62. This theorem will often enable us to detect the presence of equal roots in

Lagrange s determinant. We equate any minor to zero and thus obtain an equation
to find p

2
,
which is sometimes of a very simple form.

Suppose for example the system had two co-ordinates, so that (Art. 60)

If we form Lagrange s determinant, we see that the minors cannot be zero unless

C nMii Cizl-A- 12
=

^22/^22&amp;gt;
each f these ratios being equal to -p2

. Unless there

fore these conditions are satisfied there cannot be two equal roots.

63. The equation used in solid geometry to determine the lengths of the axes

of a conicoid is an equation of Lagrange s form. As a consequence of this theorem,

the usual conditions for a surface of revolution follow at once by equating each of

the minors to zero.

42
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64. The Bordered Determinant. Let us now border Lagrange s determinant

with any arbitrary quantities /, g, h, &c.
,
so that we obtain the determinantal

equation.
A =

/ 9

Regarding this as a function of p*, we see that its degree is one less than that of A.

We shall now consider how the roots of this equation are connected with those of

Lagrange s.

If we remove the zero in the corner of A and write op
2 + c in its place, where a

and c are any quantities however small, we obtain another equation which is of

Lagrange s form but one degree higher than A. The expression for IT from which

this new equation is derived is the same as the former with the addition of the

term ax 2 where x is some new variable. If then a be positive, we may apply the

theorem proved in Art. 58 to this new determinant. Call this new determinant D
,

then the roots of D are all real and are separated by those of the first minor of any
constituent in the leading diagonal. But the determinant A is the minor of the

last constituent in that diagonal. The roots of D are therefore all real and are

separated by those of A. If we put a and c both infinitely small, two roots of

the equation D = are each infinite, and the other roots may be made to ap

proximate as closely as we please to those of A = 0. Hence we infer that ivhatever

the quantities f, g, &amp;lt;&c. may be, the roots of the determinantal equation A = are

real and separate or lie between those of A= 0.

65. The original determinant A has n columns and n rows. The determinant

A has been derived from A by bordering it with n arbitrary quantities forming a

new column and a new row with zero in the corner. In the same way we may
border the determinant A with a new set of n arbitrary quantities/ , g , &c., filling

up the vacant spaces near the corner with zeros. Thus we obtain a new deter

minant with four zeros in the corner, which we may call A&quot;. This determinant is

of one degree less than A and its roots are all real and separate those of A .

66. Lastly let us form the series of w + 1 determinants A, A
,

A&quot; &c. , termi

nating with a constant. Each determinant is derived from the one before by

bordering it with n arbitrary quantities with zeros near the corner, so that the

determinants are all symmetrical. Proceeding as in Art. 64, we may regard this

set of determinants as the limiting cases of other determinants which are all of

Lagrange s form, but of degrees successively higher than A. The last of these,

being in the limit a constant, will have all its roots infinitely great. Prefixing to

this second set of determinants the set formed (as described in Art. 58) by cutting

off rows and columns, we have a complete series of determinants separated into

two sets by the determinant A. They begin with unity and terminate with a

determinant whose roots (in the limit) are all infinitely large. It follows by the

theorem in Art. 58 that in passing fromp2= a to #
2 =

/3
no variation of sign can be

lost in the complete series because no root of the last determinant can lie between

the finite quantities a and
/3.

But if K roots of the determinant A lie between these

limits, K variations of sign must be lost in the first set of determinants. Hence as

many variations of sign are gained in the second set of determinants as are lost in

the first set. Summing up we infer that as p
2
passes from p

2= a to p
2=

/3, if K varia

tions of sign are gained in the series A, A
, A&quot;,

&c. there are exactly K roots of the

equation A~0 between these limits.
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67. Ex. 1. In the theorem of Art. 64 show without putting a = that the

roots of A separate or lie between those of A.

Ex. 2. In the theorem of Art. 66 show that if variations of sign are lost as p2

passes from p*= a to p
2=

fi,
then a is greater than /3.

Ex. 3. If the system be referred to principal co-ordinates, show that the deter-

minantal equations A = 0, A&quot;= may be written in the form

f2
9*

,

68. Invariants of the System. In order to determine the values of p2
it will

often be necessary to expand the determinant. When there are only a few co

ordinates this can be done without difficulty. In other cases we may use Taylor s

theorem. Let A be the discriminant of T and let II represent the operation

Then Lagrange s determinant becomes when expanded

A^
2 + ii (A) p

2&quot;-2 + n2
(A)^-

4

+ . . . = o.
1 . t

If A be the discriminant of U and II represent the operation II when the letters

A and C are interchanged, we may write the equation in the form

A +H (A ) p
2 +.IT2 (A ) + . . . = 0.

When there are only three co-ordinates we may adopt the notation used in the

chapter on Invariants in Dr Salmon s Conies.

69. It is sometimes convenient to change the co-ordinates from 0, &amp;lt;,
&c. to

others .c, y, &c. connected by linear relations. Let these be

&c. =&c.

In whatever manner this is done it is clear that the equation giving the times of

oscillation must be the same. The ratios of the coefficients of the several powers of

})
2 are therefore invariable. Let

JJL
be the determinant of transformation, i.e.

the determinant whose rows are the coefficients of x, y, z, &c. in the equations of

transformation just written down. Then by a known theorem in determinants the

discriminant A is changed into /rA. Hence all the other coefficients are altered in

the same ratio. The coefficients A, II (A), &c. are therefore called the invariants of

the system. The sign of each of these, and the ratio of any two, are unaltered by any

transformation of co-ordinates.

70. Ex. 1. If a system be in equilibrium, show that the equilibrium will be

stable if - n (A), n2
(A),

- n3
(A), &c. be all positive.

We notice (1) that A is necessarily positive, (2) since the roots of Lagrange s

equation are all real, these are the conditions given by Descartes theorem that the

roots should be all positive.

Ex. 2. The same dynamical system can oscillate about the same position of

equilibrium under two different sets of forces. If px , p.2 , &c., o^, &amp;lt;r2 , &amp;lt;tc. be the
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periods of oscillation when the two sets act separately, .Rj , R2 , &c. the periods when

they act together, prove that S -
2
+ S = S

:
,

.

This follows from the fact that II (A) contains Cn ,
&e. only in their first powers,

Ex. 3. Two different systems of bodies when acted on by the same set of forces

oscillate in periods p1} p.2 , &c., &amp;lt;rl9 &amp;lt;r.2 ,
&c. If R

1 , R.-,, &c. be the periods when they

are both acted on by this set of forces, prove that
S/&amp;gt;

2 + S&amp;lt;r

2= SJRJ
.

71. Ex. 1. Let T and U be given in their simplest forms, i.e. referred to

principal co-ordinates, and let these be

It is required to transform these to general co-ordinates by using the formulas of

Art. 69, and thence to construct the general form of Lagrange s determinant. For

the sake of brevity let B
1
= a

1 i&amp;gt;

2 + c
1 ,

B.2 =a2 p
2 + c.2 , &c., let there be K of these.

Also let I(/a ), I( 2), &c. be the minors of llt L2 ,
&e. in the determinant of transforma

tion, called
yu,

in Art. 69. Then show (1) that Lagrauge s determinant is equal to

/j.-BlB2 . . . BK , (2) that the minor of the leading constituent of Lagrange s determi

nant is equal to {/(Zj)}
2^^ E

&amp;lt; + {* (%)}
2
#i#3 ... J3 + ..., (3) that Lagrange s

determinant when bordered with /, g, h, &c. with zero in the vacant corner is

equal to

-1/9 *

I,...

njnsnB ...

Ex. 2. Deduce from the analytical results of the last article that if T and 17

be any expressions which can be derived by a real linear transformation from the

forms 2T= Ojfl
2 + a.2 &amp;lt;f&amp;gt;&quot;

2 +...

where the a s and the c s have any signs, then (1) the roots of Lagrange s determinant

are all real, (2) that they will be separated by those of any leading minor, and (3)

that they will also be separated by those of the bordered determinant.

Energy of an Oscillating System.

72. A system is referred to its principal co-ordinates, it is

required to find its kinetic and potential energies.

Let the co-ordinates be f, ??, &c. so that the vis viva 2T and
force function U are given by^

IT-p+Vt-v {
2 ( U - U )

= -
Pl*? -pfrf -...]

Then by Lagrange s equations Art. 56, we have.

f = Esin (pjt + ttj), V)
= F sin (p^t + 2), &c.

Substituting these in the expressions for T and U just written

down, we find

2T= p 1

sE* cos2

(pj, + aj) +/?./F-
&amp;gt;

cos2 (^ + a,,) + &c.,

2(U,-U} = p*E* sin- (^ + a,) + p.r^- sin 2

(pj + a.) + &c.
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Here T is the kinetic energy of the system, and when the

position of equilibrium is the position of reference, U U is the

potential energy.
From these expressions we infer that the whole energy of a

system oscillating about a position of equilibrium is the sum of the

energies of its principal oscillations.

73. Mean kinetic and Potential energies. The mean
value of E- cos2

(pt + a) with regard to time from t = to t = t is

E2
(*
I cos2

(pt + a) dt, which after integration reduces to ^E2 when t

t J o

is very great. The mean value of E- sin- (pt + a) is of course the

same. We therefore infer that the mean kinetic energy of a system

oscillating about a position of equilibrium is equal to the mean

potential energy, the mean being taken for a long period and the

position of equilibrium being the position of reference. Thus the

energy of the system is on the whole equally distributed into

kinetic and potential energies. Sometimes one has an excess and
sometimes the other, but in any long time their shares are equal.

74. Energy of any system. To find the energy of a system

oscillating about a position of equilibrium referred to any co

ordinates.

Let the general co-ordinates be 6, &amp;lt;,
&c. so that the kinetic

energy T and the potential energy U U are given by

We have just proved that the whole energy is the sum of the

energies of the principal oscillations. Let us therefore find the

whole energy of that principal oscillation whose type (Art. 55) is

where M, = LJU (pS), N, = A/12 (^
2

) &c.

Substituting in the expression for T we find

2T= [A^M* + ZA^M^NI + ...] p? cos2

(pvt + i).

Let us indicate by the symbol Tl the result of substituting for

6
,

(j&amp;gt;

,
&c. in T the coefficients Mly Nlt &c. of the column in Art. 53

which represents the principal oscillation whose type is sin (pj + ai).

Then T2 will indicate the result of substituting M.2 ,
N2 ,

&c. and so

on. We see therefore that the whole kinetic energy of the system is

Ttf* cos2

(pj + cO + T^ cos2

(p.2t + 2) + &c.

If Uly [To, &c. indicate the results of the same substitutions in

U /o, we find that the potential energy of the system is

= Ui sin2

(p$ -f aO U.&amp;gt; sin2

(p.J + 2) &c.
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If we compare the expressions for the kinetic and potential

energies of a principal oscillation obtained in Art. 72, we see that

the coefficients of the trigonometrical terms are equal. We there

fore infer that

Ttf + U, = 0, T#f + Ua
= 0, &c. = 0.

Adding together the two expressions for the kinetic and poten
tial energies we find that the whole energy is represented by

75. We may also deduce the equation
r

l\pf + U^ = from the

equations given in Art. 50 to find M, N, &c. If we multiply these

by M, N, &c. respectively (omitting the two last) and add the

results, we obviously have, since X and
//,

are here absent,

(AUM* + 2A 12MN+ . .

.)/&amp;gt;

3 + (CUM2 + 20iaMN+ ...)
= 0,

which is the result to be proved when written at length.

Effect of changes in the system.

76. Effect of an increase of inertia. Supposing the system to be oscillating

about its position of equilibrium under a given set of forces, it is required to find

the effect of increasing the inertia of any part of the system without altering the

forces.

Let 2T=^0 2 + 2.40+...

where the A s and C&quot;s are all given by the conditions of the question. Suppose we

add on to 2T the quantity

it is required to find the change in the periods of oscillation.

Let us change the co-ordinate 6 by writing d
l
= 6 +

l&amp;gt;&amp;lt;i&amp;gt;

+ &c., then eliminating

we find that T and U take the forms

2(U-U )= C11 1

* + 2C ue
1*+...

where A\.2 &c., C&quot;12 &c. are the coefficients as altered by the change of variables.

The periods are now given by the determinant

|
(Au + /*) tf* + Gu ,

A np* + C&quot;12 ,
&c. I

= 0.

i^ 12^ + C&quot;ia , Ac.

If we put /i
=

0, this equation gives the periods before the increase of inertia.

We write this in the form/(p
2
)=0. Let I be the minor of the leading constituent

in the determinant. Then the equation to find the altered periods is

We notice that I is independent of
/j.

so that
/u. enters into the equation only in the

first power. The coefficients of the highest powers of p2 in / (p*) and I are the first

and second discriminants of T and are therefore both positive, Art. 60.

Let the roots of / (#
2
)
= be pj

2
, p2

2
, &c., and the roots of 1=0 be q^, &amp;lt;j2

2
&amp;gt; &c.,

both series being arranged in descending order of magnitude. The roots of 7=0

separate those of/ (p
2
)
= by Art. 58, hence the terms of the series jj a

2
, q{

2
, p.f, q2

2
, &c.

are arranged in descending order. The case in which some of these quantities are
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equal may be regarded as the limit of the case in which they are all different,

however small those differences may be. Since all the oscillations of the system
are real the values of pj

2
, p.2

2 &c. are positive.

In order to discover how the roots of the equation u=0 have been altered by.the

introduction of /*, we put p2 in succession equal to p^
2

, p2
2 &c - We see that u takes

the sign of I and is therefore alternately positive and negative, beginning with a

positive value. Thus u now vanishes for values of p2
,
the greatest of which lies

between p^ and p/, the next greatest between
p&amp;lt;?

and p3
2 and so on. Thus all the

roots have been decreased *.

But putting p2 in succession equal to q^, q./, &c., we see that u takes the sign of

/ (P
2
) which is independent of yu. These signs are therefore the same as before the

introduction of /*. It appears therefore that no value of /* can so decrease the root

Pi
2 that it becomes less than q^, or so decrease the root p.2

z that it becomes less than

q.2
2 and so on. Thus the roots continue to be separated by the roots 1=0.
Now I is the minor of the leading constituent in Lagrange s determinant, that is

7=0 is the equation which gives the periods when we introduce into the system
the constraint 6

l
= 0. Hence we infer that though all the values of p2 are decreased

by an increase p. to the inertia of any part of the system, yet no increase however great

can so reduce them that any one passes the corresponding value obtained by absolutely

fixing the part whose inertia icas increased.

It immediately follows that if any of the periods of the system are common to

the system before and after fixing the part under consideration, those periods will

not be altered by the addition to the inertia.

77. Ex. 1. If the force function be increased by a positive quantity

prove that all the roots of Lagrange s determinant are decreased but continue to be

separated by the roots of the minor I. The periodic times of such of the oscillations

as are real are therefore all increased.

Ex. 2. Suppose all the periods of oscillation of a system to be known and

let them be indicated as usual by the values of p. Let these be plt p.2 ,
&c. Suppose

all the periods to be also known when some particular mode of motion is

prevented and let the corresponding values of p be qlt q2 ,
&c. When the constraint

is partly loosened, i.e. when the system is allowed to move in the particular manner

formerly restricted but with more inertia than when free, show that the periods are

given by the equation (p--pi*) (p*-p.*) &c. + J/p
2
(p

2 -
gy

2

) (p
2 -

g-2
2
)
&c. =0, where

M is a quantity proportional to the mass added on to increase the inertia.

Ex. 3. Let the system be referred to any co-ordinates 0,
&amp;lt;j&amp;gt;,

&c., and let the inertia

be increased by the addition of /* (ad +
b&amp;lt;f&amp;gt;

+ ...)
2

. Let A be the discriminant of T
before the addition to the inertia, and A the same discriminant when bordered in

the usual symmetrical manner by a, b, &c. with zero in the corner. Prove that the

quantity M in Ex. (2) is given by M= -j

78. Effect of introducing a constraint. Supposing a system to be oscillating

about a position of equilibrium with any number of independent co-ordinates 0, 0, &c.,

* Lord Eayleigh shows in his Theory of Sound, Vol. i., Art. 88, that any indefinitely

small increment of mass is attended by a prolongation of all the natural periods or

at any rate that no period is diminished. Thence by integration a similar theorem

is true for any finite increment.
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it is required to find the effect on the periods of introducing a geometrical relation

between the co-ordinates.

Let this geometrical relation be / (0, 0,...)=0, then since the system is in

equilibrium for displacements represented by any values of 6, 0, &c., the coefficients

of the first powers of 0, 0, &amp;lt;fec. in the expansion of U will be zero. We may therefore

(Art. 51) write this equation in the form/ (0, (f&amp;gt;...)

= a0 +
b&amp;lt;f)+

...=0.

We now use the method of indeterminate multipliers as already explained in

Art. 48. We write down the equations of oscillation as if there were no geometrical

constraint and then add to their right-hand sides \dfjd0 and Xd//d0, &c. In our

case these additions are simply \a and \b, &c. The new determinant found by

eliminating 9, 0, &c. and the additional unknown quantity X will be the same as

Lagrange s determinant bordered by a, b, &G. We thus have

Aup
2+Cn) A

12p
2 + C12

a = 0.

&c. &c. 6

a b

This equation will give the periods after introducing the geometrical relation

between the formerly independent co-ordinates of the system.

The properties of this determinant have been discussed in Art. 64. We see that

the system will have one principal oscillation fewer than it had before, and the

periods of these principal oscillations will lie between or separate the periods of its

former oscillations.

79. Ex. 1. Two independent systems whose principal co-ordinates (Art. 56)

are respectively (0, 0) and (, ??) vibrate in different periods. If they are connected

by introducing a geometrical relation which may be represented by

show that the periods of the connected system are given by

fl
2 b2 a?

)3&quot;

where (p1 , ^3) (KI TTO) are the values of p for the two disconnected systems.

Ex. 2. Two independent systems referred to any co-ordinates (0, 0) (, 77)
are

connected together so that the co-ordinates and are made equal. If the letters

have the meaning given in Art. 48 unaccented letters referring to the first and
accented letters to the second, show that the periods are given by

Composition and Analysis of Oscillations.

80. The position of a system being defined by several co

ordinates a?, y, &c. the oscillations of that system will be generally

given by equations of the form

x =Nl sin (pj + v) + NZ sin (p.2t + i/a) + &c.

with similar expressions for y, z
t &c.

In order to obtain a clear insight into the changes of the motion
indicated by these series it will sometimes be necessary to combine
these separate oscillations or to find some simple geometrical
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methods of representing these terms which may enable us to realize

the nature of the motion.

To obtain a geometrical representation we use a representative

point whose co-ordinates whether Cartesian or polar are made to

depend in some convenient manner on the co-ordinates x
t y, z, &c.

The motion of this representative point will then exhibit to the

eye the motion of the system.

81. Commensurable Periods. Suppose for example we
wish to trace a motion represented by x = N sin pt +N sin 2pt,
the coefficients being equal in magnitude. Choosing Cartesian
co-ordinates we may let the abscissa of a point P represent on any
scale the time elapsed since some epoch, and let the ordinate

represent the value of x. There will be no difficulty in tracing the
two curves xL

=N sin pt and a?2
= N sin %pt. Let these be the two

dotted lines. We obtain the required curve by adding the ordi-

nates corresponding to each abscissa. Let this be the continuous
line.

In the figure the axis of the abscissae is not drawn. It clearly

joins the two extreme points on the right and left-hand sides.

We see from a simple inspection of the figure that the motion

consists of a violent oscillation to each side of the mean position
followed by a very slight one and so on alternately. This figure
resembles that used in Astronomy to trace the changes in the

magnitude of the equation of time throughout the year.

82. Ex. 1. Show that the motion represented by x =N sinpt +N sin 3pt consists

of two large oscillations to one side of the mean position followed by two equally large

ones to the other side, and so on continually.

Ex. 2. Trace the motion represented by x =N sm 2pt + Nsin 3pt, and point out

the difference between the two parts of the large oscillation.

83. When we combine together an infinite number of commensurable oscillations

we obtain some interesting results by the use of Fourier s theorem. Thus, if we
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examine the motion indicated by the series y =N&mpt - %N sin 2pt + ^N sin 3pt
- &c.

we shall prove that the representative point has an oscillatory motion whose period

is the same as that of the first term. This series is shown in treatises on the Integral

Calculus to be the expansion according to Fourier s theorem of %Npt between the

limits pt= -IT to pt-ir. Returning to the motion indicated by the series, we see

that y increases uniformly from - %irN to ^irN during the time 27r/^), and then sud

denly or rapidly changes to -
^irN, to repeat again its gradual increase during the

next oscillation.

As the series is convergent it will usually be sufficient to consider the motion as

represented by a limited number of terms. The expression for y is thus rendered

perfectly continuous.

84. Ex. Examine the motion represented by the series

y =N sin pt + ^N sin Spt + %N sin 5pt + &c. ,

show that the representative point rapidly changes from one side of its mean position

to the other, remaining stationary for half the period of the first term in each of

these extreme positions.

85. Analysis of Oscillations. When the position of a

system is indicated by the sum of a number of oscillatory terms
whose periods are commensurable it is clear that the motion con

tinually repeats itself at a constant interval. This interval is the

least common multiple of the periods of the several oscillatory
terms. Thus this compound oscillation resembles a principal
oscillation at least in one important feature. See Art. 53. Such
a compound oscillation might even be used as a new kind of

simple or principal oscillation by the help of which more compli
cated oscillations of the system might be analysed.

We are thus led to perceive that the single trigonometrical
oscillation is not the only one by which we may analyze a

complicated motion. We may sometimes find it advantageous
to combine many of these oscillations into larger units to obtain a
clear idea of the motion. This may even prove to be a necessity
when the number of coexistent oscillations is infinite.

86. Analysis by Waves. When the surface of still water
is disturbed by throwing a stone into it, or when a piano string
or a drum head is struck at some one point, the parts of the system
remote from the impact do not begin to move at once, but appear
to wait until the effect of the impulse has reached them. In
other words, the motion appears to diverge from the centre of

disturbance in the form of waves. These waves may be taken as

new simple oscillations. The convenience of this new elementary
motion is evident, for if several disturbances are given to different

parts of the medium each will produce a wave and the actual
motion at any point is the resultant of all these waves.

87. The following illustration will put this theory in a clearer light. Let AOB
be a tight string, such as a piano string, whose extremities A and B are fixed and
whose length AB = 2irl, and let this string be vibrating transversely about its mean
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position AB. Since the deviation of each particle from its position of equilibrium

will require a separate co-ordinate to express its value, it is clear that the string has

an infinite number of co-ordinates. Hence, by Lagrange s rule, the deviation of each

particle will be expressed by an infinite number of trigonometrical terms. Let y

represent the deviation from the straight line AB of the particle whose distance

from the middle point is x. Let the part of the string, viz. EOF, bounded by

x= - e and x= +e be plucked aside and arranged so as to form the curve y=f(x),
the rest of the string being undisturbed, and let the whole string start from rest.

By Fourier s theorem we may represent this initial state of the string by an equation

which may sometimes be written in the form

(1).

It will be shown in another chapter that the motion of the string at the time t is

given by y= 2 i^sin^ cospt +N2 sm2j cos2pt + &c. I ................. (2),

where p is a constant which depends on the nature of the string.

Since the particles of the string are oscillating about their positions of equilibrium,

their motions may be resolved into Lagrangian oscillations which of course are re

presented by the several terms of this series. Taking any one periodical term by
itself (say the one containing cos Kpt) we see that all the characteristics of a principal

oscillation are satisfied. Thus the displacement of any one particle (defined by x= x
l )

bears a ratio to the displacement of any other (defined by x= x
2) which is equal to

sin -r1 / sin ^ ,
and is therefore constant throughout the motion, Art. 53. In

other words the phases of the oscillations of all the particles are the same.

But if we recur to the expression (2) and examine how the string appears to

move, we find something very different. If we trace the curve

y= Nj. sin ~ +Na sin y + &c (3),

we find it represented in the accompanying figure. We have y = for all values of x

except those which lie between x = 2il-jre where i is any integer; between these

limits we have y
-
^f(x). Since 2irl is the length of the string, x is practically limited

to lie between OA = -irl and OB irl. This portion is represented by the thick line,

while the dotted line exhibits the form of the curve for all values of x and should of

course he continued to infinity on both the right and left-hand sides.

Comparing equations (1) and (3) we see that the form of the string at the time

t= is represented by the portion of this curve between A and B, the ordinates being

doubled. To discover the motion at the time ,
we write the equation (2) in the form

y = 2NK
sin K ( - +pt

J
+ 2NK

sin K ( - -pt\ .

The first of these series may be derived from (3) by writing x + Ipt for x. This may
be represented by moving the curve towards the left a distance equal to lptt

the

origin being fixed. Thus the disturbance EF travels towards the end A of the

string and passes off, a new disturbance E F entering the string at B. The second

series may be represented by moving an equal and similar curve to the right of O
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through a distance equal to Jpt. The sum of the ordinates of these two curves re

presents the displacement at the time t of that particle of the string whose position

in equilibrium is the foot of the ordinate.

Thus the original single disturbance has separated into two disturbances, one of

which travels to the right and the other to the left. Each travels without change

of form and with uniform velocity. This wave-like motion may be treated as a

simple motion, by means of which we may construct other more complicated wave-

motions. In this new simple oscillation all the particles have the same period, but

they are not all in the same phase. One particle is at the crest of the wave at the

same instant that another is in the hollow.

The case in which the particles of the string have any initial velocities may be

treated in the same way. If the elements bounded by x = - e and x= e have an initial

velocity represented by/(), the rest of the string being undisturbed, we obtain y by

simply writing dyjdt for y in equation (1) and integrating the result. If the elements

be both displaced from their initial position and have initial velocities, we merely

add the two separate values of y.

88. Composition of oscillations of nearly equal periods.
Trace the motion represented by x = N x sin (pt -f i^) + N 2 sin (qt + i/2),

where N x and N2 are both positive and p and q are nearly equal.

In the first place, consider any time at which pt 4-
i&amp;gt;i

and qt + v

differ from each other by an even multiple of TT. At this instant

the two trigonometrical terms have the same sign, and, sincep and q
are nearly equal, they will increase and decrease together for several

oscillations, how many will depend on the nearness of p and q to

each other. The value of x will therefore vary between the limits

(Ni 4-Nz). Next consider any time at which pt + v and qt + v

differ by an odd multiple of TT. The two trigonometrical terms
have opposite signs and will continue to have opposite signs for

several oscillations. The value of x will therefore vary between
the limits + (N: N2).

We see that the motion of that part of

the dynamical system which depends on the co-ordinate x under

goes a periodic change of character. At one time, this part of the

system is oscillating with an arc JV
7

1 + JV2 ,
after an interval equal

to 7r/(p q), the arc of oscillation is -/Vi N2 . If N! and JV
r
2 are

nearly equal, this last may be so small, that the motion is invisible

to the eye. Thus there will be alternate periods of comparative
activity and rest. This alternation is sometimes called beats.

89. Transference of Oscillations. When a system has

two degrees of freedom, two co-ordinates # and y will be necessary
to determine its position in space. Suppose the oscillation of x
to be given by exactly the same expression as before, while that

of y is the same with the opposite sign given to Nz . Let us also

suppose that N^ and N2 are nearly equal. Each of these co

ordinates will have alternate periods of comparative rest and

comparative activity. But the period of rest in one will syn
chronise with the period of activity in the other co-ordinate. If

now the visible motion of one part of the system depend on x



ART. 92.] TRANSFERENCE OF OSCILLATIONS. 63

and the visible motion of another on y, these parts will be in

alternate rest and oscillation. Thus there will appear to be a

transference of energy from one part of the system to another and
back again.

90. This peculiarity of the resultant of two oscillations of nearly equal periods

renders it important to determine when two roots of Lagrange s determinant are

nearly equal. This point however has been practically discussed in Art. 62. It is

there shown that when two roots are equal every first minor must be zero. If two

roots are nearly equal, it follows from the principle of continuity that every minor

is nearly equal to zero. By equating to zero some minor whose roots may be found

as in Art. 62, we obtain some quantities which must be nearly equal to the roots

sought, if any such exist. To settle this last point we substitute these quantities

in turn in Lagrange s determinant and in the other minors. If all these nearly

vanish for any one of these substitutions there will be nearly equal roots in

Lagrange s determinant and these will be nearly equal to the quantity substituted.

91. Composition of Oscillations ofvery unequal periods.
Trace the motion represented by x = Nj sin (pt + zO + N2 sin (qt- + i/2)

where N x and N 2 are both positive and p is small compared with q.

In this case qt + *&amp;gt;2 increases by 2?r, while pt -f- vl alters only by
,
so that the second trigonometrical term goes through all

its changes while the first is only very slightly altered. The

system will therefore appear to oscillate about a mean position
determined by the instantaneous value of the first trigonometrical
term. Thus the oscillations will appear to be simply harmonic
with a period 2?r/q and an extent of oscillation equal to N2 . At
the same time the apparent mean position will travel slowly, first to

one side and then to the other of the real mean, in the comparatively

long period 2?r/p.

92. Resultant Oscillation. We may compound any number of oscillations

represented by the terms of the series

x=N
l sin (pl

t + VI)+NZ sin (p.2t + v2) + &c...................... (1)

in the following manner.

Let n be a quantity to be chosen at our convenience, and letpl
=n+ qi,p2=n + &amp;lt;?2,&c.

Suppose the resultant oscillation to be represented by

x= Rsin (nt + p) .................................... (2),

then we have Rcos p=2,Ncos (qt + v)

whence R and p may be found without difficulty.

This method of compounding oscillations is of great advantage when their

periods are equal. In this case all the p s are equal, and by choosing n=p we have

all the q s equal to zero. We thus replace the series (1) by the simple harmonic

form (2) in which R and p are absolute constants.

If the periods are nearly equal, we can choose n so that all the q s are small. The

values of the elements R and p will now vary, but only slowly. The resultant os

cillation is therefore very nearly a harmonic one. The elements of the resultant

oscillation, being found at any one moment, will be nearly constant for a considerable

time, and their small changes all follow known laws. These laws are determined by
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equation (3). We may thus still obtain a clearer insight into the changes of the

values of x by examining the single term (2) than the series (1).

93. Geometrical Construction. We may represent any oscillation such as

x =Nsin (pt + v) by a simple geometrical construction which is sometimes useful.

From any origin draw a straight line OA whose length shall represent N on any
scale we please, and let v be the inclination of OA to a straight line OL fixed in

space. We may call OL the axis of reference. With centre and radius equal to OA
describe a circle. If a particle P, starting from A, describe this circle with a uniform

angular velocity equal to p it is clear that the distance of P from the axis of reference

is equal to A
&quot;

sin (pt + v}. Thus, by the help of this circle, when the straight line OA
is given, the whole oscillation is determined. We may therefore by a straight line

OA represent any harmonic oscillation.

In this manner we may replace the oscillations to be compounded by a series

of straight lines OA^ , OA 2 , &c. The circles on OA lt OA2 ,
&c. are to be described by

points Plf P2 , &c., and the sum of their distances from the axis of reference is the

quantity to be represented by the resultant oscillation. Let us also for the sake

of simplicity, suppose that the periods are all equal, so that the g s in equations (3)

are all zero.

Let OB represent the resultant of OA lt OA 2 , &c. found by the &quot;parallelogram

law,&quot; i.e. found as if OA^, OA 2 ,
&c. were forces to be compounded as in statics.

Then by interpretation of equations (3) we see that OB will represent the resultant

oscillation.

We may therefore find the resultant of any number of oscillations in the same co

ordinate, if of equal periods, by a geometrical construction. Representing each

oscillation by a straight line, the resultant is found by compounding these straight

lines according to the &quot;parallelogram laiv.&quot;

94. Examples on Transference of Oscillations. Ex. 1. A uniform rod

AB is suspended from a fixed point by a short rod OC which is attached to it at

right angles at its middle point. Equal weights are suspended from A and B by

strings of equal lengths, the whole system forming a somewhat sluggish balance.

If one weight be drawn slightly aside from the vertical and allowed to oscillate, the

system starting from rest, find the subsequent motion *.

* D. Bernoulli in the Nova Commen. Petrop. Vol. xix. p. 281 describes an

experiment which he made on the motion of pendulums. Happening to pull aside

one scale of a rather sluggish balance he noticed that it immediately began to swing
to and fro, but that the opposite scale was not disturbed. Shortly however the

latter scale began to move and to make sensibly greater and greater oscillations

while the first scale gradually lost its oscillatory motion. At length the two

appeared to have interchanged their motions, the scale first disturbed being almost

at rest when the other attained its greatest extent of oscillation. The same
movements were then repeated in the opposite order until the first scale had
resumed its original motion and the second was again at rest.

Euler contributes two papers to the same volume of the Petersburgh memoirs
with the object of explaining theoretically the cause of the motions observed by
Bernoulli. In his first paper he assumes that the point of support of the balance

lies in the straight line joining the points of attachment of the strings and finds

that the motions observed by Bernoulli do not occur. He thus fails to find the

explanation. In his second paper he rejects this limitation and has better success.
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Let CA = C=a, let I be the length of either of the strings AP, BQ. Let G be

the centre of gravity of the beam, OG = c. Let Mk* be the moment of inertia of the

beam about 0, m the mass of either scale treated as a particle. Let OC= b.

Let
&amp;lt;, 77, be the inclinations to the vertical of OC and the strings AP, BQ

respectively ;
raP and mQ the tensions of the strings. Let Ox, Oy be horizontal

and vertical axes, (x, y), (x1 , y-J the coordinates of P and Q. The equations of

motion are then

x= bd&amp;gt; + a + If}] /&amp;lt;
. #i = b(p a + Id

\

V (1) -i r

r/
= 6-a0 + Zj y1

= b +
a(f&amp;gt;

+ l
\

A

Mk2
&amp;lt;j&amp;gt;&quot;

= -
Mcg&amp;lt;j&amp;gt;

- mP (&0 + a) + mPtjb + mQ (
-

b&amp;lt;f&amp;gt;

+ a) + mQdb,

where accents as usual denote differential coefficients with regard to the time.

Eliminating P and Q, the last equation becomes

(5).

To shorten the solution, we write

+ 2mb)g
2~wa2

~
j

mfe^r

The equations (3) and (5) then become

(6).

Eliminating 77 and 9 we obtain an equation to determine
&amp;lt;/&amp;gt;.

To solve this we

put &amp;lt;f)=Ccos fj.t and thence find that ^ must satisfy the quadratic

(7).

In the Cambridge Mathematical Journal, Vol. n. p. 120 there is a paper signed

D. G. S. on the sympathy of pendulums with special reference to Bernoulli s

problem. Owing to numerical errors in all these investigations, the results

obtained do not properly illustrate Bernoulli s problem. For instance Euler

substitutes for the tensions of the strings, in the large as well as in the small

terms, the weights of the scales and this substitution is also made by the writers in

the Cambridge Journal.

B. D. II. 5
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If /ij
2

, yu2
2 are the roots of this quadratic, the values of 0, 77, are easily seen to be

= Cj cos fj^t + C2 cos /j,.2t

1 ^7t
cos u.,t + 2

*&quot;%
cos /tt

- G cos w
w2 -

Ah
2 2 - M

77
= same + same + C cos ?i .

To find the values of the constants C, Cl ,
(72 we have the initial conditions

We therefore find

=
2 n*(tf-tf)

17
= same + e cos w*.

In a pair of ordinary scales, m/lf and therefore q will sometimes be small and

h= bjl will generally be small. Without assuming either of these to be small, we

shall suppose that the product hq is small. We then find from (7)

Substituting and keeping only the principal terms, the values of 0, 6, 77
become

2 = - ~2~7 (
cos^ ~ cos M|

I
/9\

20 = e cos /^t-e cos n*
[

&quot;

2-tj
= e cos ^t + e cos nt

provided ?i
2 and p

2 are not so nearly equal that their difference is of the order hq.

Looking at the expressions for ft and 77
we see by the reasoning in Arts. 88 and 89

that the transference of oscillations from one scale to the other will take place in

the manner described by Bernoulli.

We also notice that the beam will remain stationary if q, i.e. mjM be small

whatever h, i.e. bjl may be. On the other hand the beam will oscillate if h is small

but mjM not small.

Before leaving the discussion of the equation (7) we may remark that it gives

the condition of stability of an ordinary balance, when a balance is disturbed it

should return readily to its horizontal position. The beam oscillates about its posi

tion of equilibrium and the quicker the oscillation the more readily can it be determined

by the eye whether the mean position of the beam is or is not horizontal. The

balance should therefore be so constructed that the two times of oscillation are as

short as possible. These times of oscillation are obviously 2^1^ and 2?r//x2 and

hence ^ and
yu,2 must be as large as possible. This requires that both w2 and p^

should be large, i.e. (1) the time of oscillation of either particle suspended from a

fixed point by its string should be short; (2) the time of oscillation about the

fulcrum of the rigid body formed by attaching the particles to the extremities of

the rods and removing the strings should be short.

Ex. 2. Supposing one scale of the balance described in the last example to be

acted on by a small periodic force equal to fl cos \t in a direction parallel to the

arm AB, prove (1) that if X is nearly equal to n, a large oscillation will be produced

in the scales while the arm will not be much disturbed, (2) that if X is nearly equal

to
/ij

or yw2 there will be large oscillations in all the parts of the system.



ART. 94.] BERNOULLI S PROBLEM. 67

Ex. 3. A rod AB, length 2a, can turn freely round a vertical axis through its

centre of gravity G which bisects AB. At A and B are suspended two equal

particles, each of mass m, by unequal strings of lengths I and V. One of these

strings is now slightly displaced through an angle e in a plane perpendicular to the

vertical plane through the rod. Find the motion.

If z, z + x, z+y be the horizontal displacements at the time t of the extremity A

and of the two particles respectively and if gjl= n2
, gll =n 2

, ma?IMk
2=p2

, prove

that

X2 (7 X 2
C&quot; X2

(7 X 2
C&quot;

z = C cos \t + C cos \ t + C&quot;,

where X2
,
X 2 are the roots of the quadratic

(X
2 - n2

) (X
2 - ?i

2
)
-

(X
2 - n2

)pV2 -
(X

2 - nrz
)yP-n*

= 0.

The conditions that there may be a complete transference of oscillation from one

string to the other are (1) X and X must be nearly equal, (2) the coefficients of

cos Xt and cos X t in the expression for x and y must be nearly equal, Arts. 88 and

89. Show that these conditions require that n and n should be nearly equal and p
small.

If the lengths of the strings are equal prove that

2x = e (cos nt + cos X t), 2y = e (cos nt - cos X t) 2z (1 + 2p
2
)
= -

2p
2
(cos X t - 1),

where X 2= w2
(l + 2p

2
).

Thence show that the conditions for complete transference

are satisfied if p is small.

Ex. 4. The middle points of two equal rods AB, A B
,
are fixed at (7, C ,

about

which they are capable of turning freely in one plane, the rods being without mass

and the length of either rod small compared with CC&quot;. Four particles of equal

mass are placed at A, B, A
,
B

;
and A and B

,
A and B mutually attract each

other, A and A
,
B and B mutually repel each other according to the law of the

inverse square. Prove that the rods will be in stable equilibrium when they lie in

the same straight line, two mutually attracting particles being between C and
C&quot;,

and that if they be slightly disturbed the system will have a double oscillation whose

periods are 2-rr (4c
8
//*)* and 2?r (4c

3
/3 /u)* respectively p. being the absolute force of

any particle and CC = 2c. [Coll. Exam.

Show also that there will be no complete transference of motion from one bar to

the other.

Ex. 5. Determine the small motions (in the magnetic meridian) of two

permanent bar-magnets of equal mass suspended each by its extremities by

parallel strings, all four of equal length, from points in a horizontal line, the

mutual action of the magnets being slight compared with the other forces. The

magnets being at rest, one only is set in motion, show that its whole energy will in

time be communicated to the other. [Math. Tripos, 1875.

52



CHAPTER III.

OSCILLATIONS ABOUT A STATE OF MOTION.

The Energy Test of Stability.

95. IT has been proved in Vol. I. that, when we know one

first integral of the equations of motion of a system disturbed

from a position of equilibrium, such as the equation of energy,
we may sometimes from that one integral determine whether the

position of equilibrium is stable or not. Thus, when the potential

energy is a minimum in the position of equilibrium, it immediately
follows from the equation of vis viva that the position of equili
brium is stable. But when the potential energy is not a minimum,
the equation of vis viva alone is not sufficient to determine
whether the equilibrium is stable or unstable. But by taking
into consideration the other equations of motion this position of

equilibrium is proved to be unstable.

We may apply an
&quot;energy

test&quot; of stability to a given state

of motion as well as to a given position of equilibrium, but with a
similar limitation. When a certain function derived from such of

the first integrals as we may happen to know is an absolute mini
mum or maximum we may be able to prove that the system
cannot depart far from the given state of motion. But when that

function is neither a maximum nor a minimum we only infer that

there is apparently nothing in these equations to restrict the

deviations of the system. To determine this point we must
examine more minutely the equations we already have or we must
discover the remaining equations of motion. This latter part of

the question will therefore be postponed until we discuss the

oscillations about a state of motion. Meantime we shall consider

the &quot;energy test&quot; with a view to determine how far it can be
made to decide the question of stability.

96. Stability of a State of Motion. Let a dynamical
system be in motion in any manner under a conservative system
of forces, and let E be its energy. Then E is a known function
of the co-ordinates 6, &amp;lt;,

&c. and their first differential coefficients
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, $ ,
&c. : this is constant and equal to h for the given motion.

Suppose that either some or all of the other first integrals of the

equations of motion are also known, let these be

For the purposes of this proposition, let us regard and
,

c/&amp;gt;

and

cf&amp;gt;
,
&c. as independent variables, except so far as they are connected

by the equations just written down. Then, if E be an absolute maxi

mum, or an absolute minimum, for all variations of 6, ,
&c. (those

corresponding to the given motion making E constant), the motion is

stable for all disturbances which do not alter the constants Cl}

C2 ,
&c.

Let as many of the letters as is possible be found from tbe first

integrals in terms of the rest, and substituted in the expression
for E. Let

i/r, \//,
&c. be these remaining letters, then we have

//, &C, d, C

Let the system be started in some manner slightly different from

tha.t given, then the constant h is altered into h + Sh. First let E
be a minimum along the given motion, then any change whatever

of the letters ^, ^ ,
&c. increases E, and it follows that the dis

turbed motion cannot deviate so far from the given motion that

the change in E becomes greater than &h. Similarly, if E be an

absolute maximum, the same result follows.

The same argument will apply to any first integral of the

equations of motion, besides the energy integral. If any one of

the functions Fl} F2 , &c., which contains all the letters, be an

absolute maximum or minimum, then the motion is stable for

all displacements which do not alter the constants of the other

integrals used.

97. When the system is disturbed from a position of equilibrium
which is defined, as in Vol. I., by the vanishing of the co-ordinates

0, fy, &c., we have

E = i^M 2 + Ajy$ + &c. - U
where Au ,

Aw ,
&c. are all constants, and U is independent of

6
, $ ,

&c. Here the terms which constitute the kinetic energy,

being necessarily positive and vanishing with 6
, 4&amp;gt; , &c., are evi

dently a minimum for all variations of 6 , $ ,
&c. We see, without

the use of any other integrals, that if U be a minimum for all

variations of 6,
(/&amp;gt;,

&c., E is an absolute minimum, and that

therefore the equilibrium is stable.

In what follows a similar result will be obtained when the

system is disturbed from a state of steady motion. It will be

shown that, when a function represented by F U is a minimum
under certain conditions, this state of steady motion is stable

under the same conditions. The function F of course reduces to

zero when the state of motion reduces to a state of rest.
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98. To find a steady motion. It often happens that the motion whose

stability is in question is a state of steady motion. This generally occurs when

some of the co-ordinates are absent from the Lagrangian function, though present

in the form of velocities. Let us represent by x, y, &c. the co-ordinates which are

absent from the Lagrangian function, and let
, 77, &c. be the remaining co-ordinates.

Thus the Lagrangian function L will be a function of , , 77, 77 , &c., x
, y , &c., but

not of x, y, &c. The Lagrangian equations will therefore take the forms

d dL dL , dL dL
- d*c

&quot; &amp;gt;=&quot; d
= v & -

where u, v, &c. are constants introduced by integration. These equations will

contain
, , &quot;, 77, 77 , 77&quot;, &c., x

, x&quot;, y , y&quot;, &c., and do not contain t explicitly.

They may therefore be satisfied by putting x = a, y = b, &c., =a, 77
=

18, &c., where

a, b, &c., a, /3, &c. are constants to be determined by substituting in the equations.

If e stand for any one of the co-ordinates, it is evident that dT/dd and dTjde will

both be constants after the substitution is made. Omitting the equations which

contain u, v, &c., as they do not assist in finding the constants a, b, &c., a, /3, &c.

we have the equations -^=0, -7-=0, &c. = ................................. (1),
Of drj

where L = T+U. Thus we have as many equations as there are co-ordinates , 77,

&c. directly present (i.e. not merely present as velocities) in the expressions for T
and U. The quantities a, b, &c. are therefore undetermined except by the initial

conditions, while a, /3, &c. may be found in terms of a, b, &c. by these equations.

These equations may be conveniently remembered by the following rule.

In the Lagrangian function, ivhich is the difference betiveen the kinetic and

potential energies, write for all the differential coefficients their assumed constant

values in the steady motion, viz. x = a, y = b, d c., = 0, w = Q, &c. The Lagrangian

function is now a function of the co-ordinates
, 77, &c. only. Differentiating this

result partially with regard to each of these co-ordinates and equating the results to

zero, we obtain the equations of steady motion.

99. Stability of a steady motion. To determine if this motion is stable we

use the method indicated in Art. 96. The equation of energy may be written in the

form E = T-U=h.
Since T is not a function of the co-ordinates x, y, &c. the Lagrangian equations

for these co-ordinates lead as before to the integrals dTldx =u, dTjdy = v, &c.,

where u, v, &c. are constants. By the help of these integrals we shall eliminate

x
, y , &c., and thus obtain E as a function of the other co-ordinates. If E be an

absolute maximum or minimum, this motion is stable for all disturbances which do

not alter the constants u, v, &c. There can be no difficulty in effecting the elimi

nation in any particular case, but we may perform the process once for all. The

process is a repetition of that called Modification in Vol. i.

To effect the elimination, let

T=$(xx)x + (xt)x ? + &G............ . .................. (2),

where the coefficients of the accented letters, viz. the quantities in brackets, are

all known functions of , 77, &c., but not of x, y, &c. The integrals may then be

written in the form

(xx) x + (xy) y +...=u- (x) ? -
(XT]) 77

- &o.
]

(xy)x + (*jy)y +...=v-(y$?-(yT))T, -&c.l ............... (3).

&c.= &c.
j

For the sake of brevity, let us call the right-hand sides of these equations u - X,
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v - Y, &c. Since T is a quadratic function of the accented letters, we may write it

in the form

T= | (8) r2 + (f 1?) *V + &c. +K (u + X) + Jy (t; + F
) + &amp;lt;fec.

If we substitute in the terms after the first &c. the values of x , y given by (3),

we obtain the result

(xx), (xy), &

(xy)&amp;gt; (yy)i &

where A is the discriminant of T, when
, 77 ,

&c. have been put zero. If we change

the signs of
-X&quot;, F, &c., this determinant is unaltered, hence when expanded such

terms as uX, vX, &c. cannot occur. If therefore, we put

F- 1
2A

u v ...i (4),

u (xx) (xy)...

and expand the first determinant, we have as the result of the elimination

where the terms after F express some homogeneous quadratic function of
, i/ &c -

Now T is essentially positive for all values of x
, y ,

&c. and therefore for such

as make u, v, &c. all zero. Hence the quadratic expression #n 2+ &c. is a minimum
when

, 77 ,
Ac. are zero. If then the function F - U is a minimum for all variations

/&amp;gt; ?7&amp;gt;

^c -j the steady motion given by (1) is stable for all disturbances which do not

alter the momenta u, v, &c.

100. When
, 77 , &c. are put zero, the process indicated by the successive

equations (2), (3), (4), (5) is exactly that described in Vol. i. as the Hamiltonian

method of forming the reciprocal function of T for the co-ordinates x, y, &c. We
may therefore enunciate the rule in the following manner.

Suppose a steady motion to be given by = 0, 77
= 0, &amp;lt;&c.

y
x = a, y = b, &amp;lt;&c.

t
so that

the momenta u, v, d c. with regard to x, y, &c. are constants. Form the reciprocal

function of T with regard to x
, y , &c., putting zero for each of the letters

, 77 ,
&c.

LetF be this reciprocal function, and -U or V be the potential energy. Then if

F-U or F +V is a minimumfor all variations o/, 77, &c. this steady motion is stable

for all disturbances which do not alter the momenta u, v, &c.

When the reciprocal function F has been found, we may put the equations (1)

which determine the steady motion into another form. The function F is the

reciprocal of T with regard to x
, y , &c., and

, 77, &c. are merely other letters

present during the process of transformation, hence, as explained in Vol. i., we have

-J-
= -

-77 with similar equations for
77, &c. The equations of steady motion (1)

therefore become *(*-*) =0

(6),

=d(F-U) .= d(F~
du dv

where F - U or F + V is the energy expressed as a function of the momenta u, v, &c.

instead of x , y , &c. ,
the other accented letters

, 77 ,
&c. being put equal to zero either

before or after the differentiation.

101. Special case of Motion. If the energy be a function of one only of the

co-ordinates, though it is a function of the differential coefficients of all of them, we
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may show conversely that the steady motion will not be stable unless F - U is a

minimum.
Let be this single co-ordinate, then, following the same notation as before, we

have by vis viva iB^ +F-U= h.

Differentiating with regard to t, and treating Bu as constant because we shall

neglect the square of
,
we obtain

To find the oscillation, let = a + p, then by (6) we have

*&quot;KT&amp;gt;
where a is to be written for after differentiation in the quantity in square

brackets. The motion is clearly stable or unstable according as the coefficient of p
is positive or negative, i.e. according as F- U is a minimum or maximum.

Further information on this subject will be found in the author s Essay on the

Stability of Steady Motion, 1877.

102. Examples of stability of motion. Ex. 1. Let us consider the simple

case of a particle describing a circular orbit about a centre of attraction whose ac

celeration at a distance r is fj.r
n

. If 6 be the angle the radius vector r makes with

the axis of x, we have here a steady motion in which r = Q and 6 is constant. Also

1

11+1

We notice that 9 is absent from this expression, hence by the rule we eliminate

6 also by the integral r29 = h, where h is the constant called u in Art. 99. We

have then E = ir 2 + A -^

Putting the remaining accented letters equal to zero according to the rule, we

dE h2

have in steady motion = - + jj.r
n= 0,

and, since
-^
= + yu,nr

n~l= p (n + 3) rn~\

this steady motion is stable or unstable according as n + 3 is positive or negative

for all disturbances which do not alter the angular momentum of the particle.

Ex. 2. A top, two of whose principal moments at the vertex are equal, turns

about its vertex under the action of gravity. If OC be the axis of unequal moment,
and 0, 0, \f/

the Eulerian angular co-ordinates of the body referred to a vertical axis

measured upwards, we have (as in the chapter on vis viva, Vol. i.)

2T=A (6
1 2 + sin20i//

2
) + C ($ + $ cos 0)

2

U=- Mgh cos 6 + constant,

where h is the distance of the centre of gravity from 0, and M is the mass of the top.

We have therefore the two integrals &amp;lt;f&amp;gt;

+
if/

cos B= n and Cn cos +A sin2
6\f/

= m,
where n and m are two constants, the former representing the angular velocity of

the top about its axis and the latter the angular momentum about the vertical.

By eliminating &amp;lt;f&amp;gt;

and
if/

and making the energy E a minimum, show (1) that a

state of steady motion, with real values of the constants m and n, is given by = a

provided Czn*-&MghA cos a is positive. Show (2), by examining the sign of
2

, that this motion is stable. Thus the axis of the top will describe a right
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cone of semi-angle a round the vertical through the point of support with an

angular velocity given by the value of
\f/

.

Ex. 3. A solid of revolution moves in steady motion on a smooth horizontal

plane, so that the inclination 6 of its axis to the vertical is constant. Prove that

the angular velocity fj.
of the axis about the vertical is given by

2 _ _Cn_ Mg dz
^ A cos 6

** A sin 6 cos 6 dd

where z is the altitude of the centre of gravity above the horizontal plane, n the

angular velocity of the body about the axis, C, A and A the principal moments

of inertia at the centre of gravity, and M the mass. Find the least value of n which

makes ^ real, and determine if the steady motion is stable.

Examples of Oscillations about Steady Motion.

103. The oscillations of a system about a state of steady
motion may be found by methods analogous to those used in the

oscillations about a position of equilibrium. Let the general equa
tions of motion of the bodies be formed by any of the methods

already described. If any reactions enter into these equations it

will be generally found advantageous to eliminate them. Let

the co-ordinates used in these equations to fix the positions of

the bodies be called 6,
c/&amp;gt;,

&c. Suppose the motion, about

which the oscillation is required, to be determined by 0=f(t\
&amp;lt;

= F(t\ &c. We then substitute 6 =f (t) + x,&amp;lt;l&amp;gt;

= F (t) + y, &c.,

in the equations of motion. The squares of x, y, &c. being neg
lected, we have certain linear equations to find x, y, &c. These

equations can, however, seldom be solved unless we can make t

disappear explicitly from them. When this can be done the

linear equations can be solved by the usual known methods, and
the required oscillations are then found.

In what follows we shall first illustrate the method just de

scribed by forming the equations in a few interesting cases from
the beginning. We shall then generalize the process and obtain

a determinantal equation analogous to that given by Lagrange for

oscillations about a position of equilibrium. This equation will be

adapted to all cases which lead to differential equations with

constant coefficients.

104. Theory of Watt s governor. To find the motion of the balls in Watt s

governor of the steam engine.

The mode in which this works to moderate the fluctuations of the engine is well

known. A somewhat similar apparatus has been used to regulate the motion of

clocks, and in other cases where uniformity of motion is required. If there be any
increase in the driving power of the engine, or any diminution of the load, so that

the engine begins to move too fast, the balls, by their increased centrifugal force,

open outwards, and by means of a lever either cut off the driving power or increase

the load by a quantity proportional to the angle opened out. If on the other hand

the engine goes too slowly, the balls fall inward, and more driving power is called

into action. In the case of the steam engine the lever is attached to the throttle-
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valve, and thus regulates the supply of steam. It is clear that a complete adapta

tion of the driving power to the load cannot take place instantaneously, but the

machine will make a series of small oscillations about a mean state of steady

motion. The problem to be considered may therefore be stated thus :

Two equal rods OA, OA ,
each of length I, are connected with a vertical spindle

by means of a hinge at O which permits free motion in the vertical plane ^40.4 . At

A and A are attached two balls, each of mass m. To represent the inertia of the

other parts of the engine we shall suppose a horizontal fly-wheel attached to the

spindle, whose moment of inertia about the spindle is /. When the machine is in

uniform motion, the rods are inclined at some angle a to the vertical, and turn

round it with uniform angular velocity . If, owing to any disturbance of the

motion, the rods have opened out to an angle with the vertical, a force is called

into play whose moment about the spindle is some function of (0-a). We may
expand this function in powers of (6

-
a) and, as it will be sufficient to retain only

the first power, we shall represent it by - p (d
-

a). It is required to find the

oscillations about the state of steady motion.

Let be the angle which the plane ^40.4 makes with some vertical plane fixed

in space. The equation of angular momentum about the spindle is

2sin2
0) = -/3(0-a) ....................... .(1),

where mk 2 is the moment of inertia of a rod and ball about a perpendicular to the

rod through 0, the balls being regarded as indefinitely small heavy particles. The

semi vis viva of the system is

and the moment of the impressed forces on either rod and ball about a horizontal

through perpendicular to the plane AOA is ^dU/dd= -mghsind, where h is the

distance of the centre of gravity of a rod and ball from 0. Hence, by Lagrange s

d dT dT dU

where a has been written for k^/h. This equation might also have been obtained by

taking the acceleration of either ball, treated as a particle, in a direction perpen
dicular to the rod in the plane in which 6 is measured.

To find the steady motion we put = a, d&amp;lt;j&amp;gt;/dt

= n, the second equation then gives

n^coaa-g/a. To find the oscillations, we put 6 = a + x, dtfe/dt-n + y. The two

equations then become

(1+ 2mk2 sin2 a)
~ + 2mk^n sin 2a

-^
= -

px]

~-nein 2ay = ( w2 cos 2a - - cos a
J
x

To solve these equations, we must write them in the form

(S
2 + n2 sin2

a) x - n sin 2ay =

where the symbol 5 stands for the operation d/dt. Eliminating y by cross multi

plication we have

Vj^rcsi^al^o.7rl + 8in
2mk2
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The real root of this cubic equation is necessarily negative, because the last term

is positive. The other two roots are imaginary because the term 52 has dis

appeared between two terms of like signs. Also, the sum of the three roots being

zero, the real parts of the two imaginary roots must be positive. Let these roots

therefore be -
2p and p =t q &amp;gt;/

- 1. Then

x = He-*** + KeP( sin (qt + L),

where H, K, L are three undetermined constants depending on the nature of the

initial disturbance. Thus it appears that the oscillation is unstable. The balls

will alternately approach and recede from the vertical spindle with increasing
violence.

105. The defect of a governor is therefore that it acts too quickly, and thus

produces considerable oscillation of speed in the engine. If the engine is working
too violently, the governor cuts off the steam, but owing to the inertia of the parts

of the machinery, the engine does not immediately take up the proper speed.

The consequence is that the balls continue to separate after they have reduced

the supply of steam to the proper amount, and thus too much steam is cut off.

Similar remarks apply when the balls are approaching each other, and a con

siderable oscillation is thereby produced. This of course is but an incomplete ex

planation, but that the oscillation thus produced is of considerable magnitude has

been strictly proved in Art. 104. It will be presently shown that this fault may be

very much modified by applying some resistance to the motion of the governor.

In the same way when the motion of clock-work is regulated by centrifugal

balls, it is found as a matter of observation that there is a strong tendency to

irregularity. If the balls once receive in the slightest degree an elliptic motion,

the resistance /3 (6
-

a) by which the motion of the balls is regulated may tend to

render the ellipse more and more elliptical. To correct this some other resistance

must be called into play. This resistance should be of such a character that it

does not affect the circular motion and is only produced by the ellipticity of the

movement.

One method of effecting this has been suggested by Sir G. B. Airy. The elliptic

motion of the balls may be made to cause a slider on the vertical spindle to rise

and fall. If this be connected with a horizontal circular plate in a vertical

cylinder of slightly greater radius, and tilled with water, the slider may be made
to move the plate up and down by its oscillations. Thus the slider may be

subjected to a very great resistance, tending to diminish its oscillations, while its

place of rest, as depending on statical, or slowly altering forces, is totally un

affected. Memoirs of the Astronomical Society of London, Vol. xx., 1851.

The general effect of the water will be to produce a resistance varying as the

velocity, and may therefore be represented by a term -
yddjdt on the right hand of

equation (2). The solution being continued as before, the cubic will now take the

form

If the roots of this cubic are real, they are all negative, and the value of x takes the

form x= Ae-M + Be~ tt +Ce~ t
,

where -X, -
/*, -v are the roots, and A, B, C are three undetermined constants.

If one root only is real, that root is negative, and if the other two bepq V&quot;^
1 tne

value of x takes the form
x = He &quot; + Kev* sin (qt + L),

where //, /f, L as before are undetermined constants.
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In order that the motion may be stable it is necessary that p should be negative.

The analytical condition* for this is

If 7 be sufficiently great this condition may be satisfied. The uniformity of

motion of the rods round the vertical will then be disturbed by an oscillation whose

magnitude is continually decreasing and whose period is 2ir/q. By properly choosing

the magnitude of I when constructing the instrument, the period may sometimes

be so arranged as to produce the least possible ill effect. If the period be made

very long the instrument will work smoothly. If it can be made very short there

will be less deviation from circular motion.

In this investigation no notice has been taken of the frictions at the hinge and

at the mechanical appliances of the governor, which may not be inconsiderable.

These in many cases tend to reduce the oscillation and keep it within bounds.

106. In the case of Watt s governor if any permanent change be made in the

relation between the driving power and the load, the state of uniform motion which

the engine will finally assume is different from that which it had before the change.

Thus, when the engine is driving a given number of looms, let the rods OA, OA of

the governor be inclined to each other at an angle 2ct and be revolving about the

vertical with an angular velocity n. If some large number of the looms is sud

denly disconnected from the engine, the balls will separate from each other, and the

rods will become inclined at some other angle 2ct . In this case, if n be the angular

velocity about the vertical, n 2 cos a = n2 cos a. The rate of the engine is therefore

altered, it works quicker with a less load than with a greater. This is a great

defect of Watt s governor. For this reason it has been suggested that the term

governor is inappropriate, the instrument being in fact only a moderator of the

fluctuations of the engine.

This defect may be considerably decreased by the use of Huyghens parabolic

pendulum. In this instrument the centres of gravity A, A of the balls are made to

move along the arc of a parabola whose axis is the axis of revolution. Let AN be

an ordinate of the parabola, AG the normal, then NG is constant and equal to L,

where 2L is the latus rectum. Regarding the balls as particles, and neglecting the

inertia of the rods which connect them with the throttle valve, we see by the

triangle of forces that the balls will rest in any positions on the parabola, if

tfL = g, where n is the angular velocity of the balls about the vertical through 0.

It is also clear that when the angular velocity is not that given by this formula, the

balls (unless placed at the vertex) must slide along the arc. Let us now consider

how this modification of the governor affects the working of the engine. When the

load is diminished the engine begins to quicken ;
the balls separate and the steam is

cut off. It is clear that equilibrium will not be established until the quantity of

steam admitted is just such as to cause the engine to move at exactly the same rate

as before.

Ex. Show that when the inertia of the rod and balls are taken account of,

the centre of gravity of either ball and rod must be constrained to describe a

*
If the roots of the cubic axs + bx? + cx + d = Q be x = ap&amp;gt;J(- 1) and 7, we

have -b/a= 2a + y, c/a = 2ya + a 2 + (3
2

, -d/a=(a
2 + p*)y, whence we easily deduce

(be
-
ad)/a?= - 2a |(a + 7)

2 + /3
2
} ; hence be - ad and a have always opposite signs.
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parabola whose latus rectum is independent of the radius of the ball, if the

governor is to cause the engine always to move at a given rate.

It should be mentioned that several other methods of avoiding this defect have

been invented besides the parabolic pendulum. But any further description of these

would be here out of place.

107. A speed governor, similar to that invented by Sir G. Airy, but with a

spring instead of a pendulum, was described by Prof. J. A. Ewing in Nature,

Vol. xxin. 1881. He applied it to a clock driving a recording seismograph whose

motion was required to be continuous and fairly uniform.

Another governor was invented by the brothers Siemens which is remarkable

because it does not require the use of Watt s governor. A short description of it is

given in the Life of Sir William Siemens, by William Pole, 1888
;
see also a paper by

Mr Wood, Institution of Civil Engineers, March 10, 1846.

The reader who is interested in the subject of governors may refer to an

article by Sir G. B. Airy, Vol. xi of the Memoirs of the Astronomical Society,

1840, where four different constructions are considered. He may also consult an

article by Mr Siemens in the Phil. Trans, for 1866, and a brief sketch of several

kinds of governors by Prof. Maxwell in the Phil. Mag. for 1868. An account of

some experiments by Mr Ellery, on Huyghens parabolic pendulum, may be found

in the Astronomical Notices for December, 1875.

108. LAPLACE S THREE PARTICLES. It has been shown in Vol. I. Chap. VI.,

that if three particles be placed at the corners of an equilateral triangle and pro

perly projected, they will move under their mutual attractions so as ahvays to

remain at the angular points of an equilateral triangle. These we may call

Laplace s three particles. It is our present object to determine if this motion is

stable or unstable.

We shall begin by assuming that the three particles remain always very nearly

at the corners of an equilateral triangle. We shall then have to determine whether

their oscillations about these corners are real or imaginary. To effect this we might
choose their common centre of gravity as a fixed origin of co-ordinates. But the

triangles formed by joining the particles to their common centre of gravity are not

marked by any simplicity of form. Instead of referring the motion to the centre of

gravity it will be more convenient to reduce one of the particles to rest, and to con

sider the relative motion of the other two. We have thus only one triangle to

examine, and that one nearly equilateral.

Let the mass M of the particle to be reduced to rest be taken as unity, and let

m, m be the masses of the other two. Let r, r
,
R be the distances between the

particles Mm, Mm ,
mm ; and let , 0, \f/

be the angles opposite to these distances.

If 6, 6 be the angles which r, r make with a straight line fixed in space, and if the law

of attraction be the inverse /cth power of the distance, the equations of motion are

d2r /d0\ 2 1 + ra m cos \f/
??i cos

dt*~
r
\dt)

&quot;

&quot;7* r &quot;~R~

1 d ( ,2 d6\ m sin
\//

m sin
-

r dt \ dtj r
, R*

with two similar equations for the motion of m .

Let us now put r= a + x, r a + x + X, and let the angle between these radii

vectores be JTT+ Y, also let 6= nt + y, where x, y, X and Y, are all small quantities

whose squares are to be neglected. It should be noticed that a variation of x, y

alone, X and Y being zero, will represent a variation of steady motion in which the
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particles always keep at the corners of an equilateral triangle, while a variation of

X, Y will represent a change from the equilateral form. The former of these by

hypothesis is a possible motion, hence the equations can be satisfied by some

values of x, y joined to X=0, 70. By this choice of variables we may hope to

discover some roots of the fundamental determinant previous to expansion, and

thus save a great amount of numerical labour. If 5 stand for d/dt, and & = aK+1
&amp;gt;

the four equations will now become

2bn5x + ab&y -
\V3m/ (K + 1)X + fm (K + 1) a7= 0,

^

109. To solve these we put x= Aext
, y = Bext

,
X= GeKt

,
Y=HeKt

. Substituting

and eliminating the ratios of A, B, G and If we obtain a determinantal equation

whose constituents are the coefficients of x, y, X and Y with X written for 5. This

equation will give eight values of X. We see at once that one factor is X. This might

have been expected, because we know that a variation of y, (with x, X and Y all zero,)

is a possible motion. Again, some variation of x and ?/, (with X and Y both zero,) is

also a possible motion, hence some factor of the determinant can be found by ex

amining the first two columns. By subtracting from the first 2n times the second

column we find that this factor is 6X2 -
(K
-

3) (1 + m + m }
= 0.

To find the other factors we divide the determinant by the factors already

found. Then, subtracting the first row from the third and the second from the

fourth, we have three zeros in the first column and two in the second. The

expansion is then easy. We then see that there is another factor X, and also that

& 2X4 + 6X2 (3 - K) (1 + m + m ) + f (1 + /c)
2
(m +m + mm )

= 0.

The two zero roots give x= A
1 + A 2t with similar expressions y, X and F. But

by substitution in the equations of motion we see that x= A lt y =Bl -^(K + ^A^t/a,
X=0 and 7=0. These roots therefore indicate merely a permanent change in the

size of the triangle. On examining the other values of X2
,
we find (1) The motion

cannot be stable unless K is less than 3. (2) The motion is stable whatever the

masses may be, if the law of force be expressed by any positive power of the dis

tance or any negative power less than unity. For other powers the stability

depends on the relation between the masses. (3) The motion is stable to a first

approximation if }
&quot;* m

&amp;gt; 3 (
- -

) ,Mm +Mm + mm \3-Kj

where M, m, m are the masses*. To express the co-ordinates in terms of the time,

we must return to the differential equations of the second order. The results are

rather long, and it may be sufficient to state that when, as in the solar system, two

of the masses are much smaller than the third, the inequalities in their angular

* In a brief note in Jullien s Problems, Voll n. p. 29 it is mentioned that this

question has been discussed by M. Gascheau in a These de Mecanique, the particles

being supposed to attract each other according to the law of nature. The result

arrived at is that the motion is stable when the square of the sum of the masses is

greater than 27 times the sum of the products of the masses taken two and two.

No reference is given to where M. Gascheau s work can be found, and the author is

therefore unable to give a description of the process employed.
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distances, as seen from the large body, have much greater coefficients than the

inequalities in their linear distances from the same body.

The reader will find a more complete discussion of this problem in a paper by

the author published in the sixth volume of the Proceedings of the London Mathema

tical Society, 1875. The co-ordinates x, y, X, Y are expressed in terms of the time

and the possibility of any small term rising into importance is shortly treated.

Theory of oscillations about steady motion.

110. Having illustrated by two important examples the

methods of practically finding the oscillations about a state of

motion, we pass on to the general theory of the subject.

111. The Determinantal Equation of steady motion.
To form the general equations of oscillation of a dynamical system
about a state of steady motion.

Let the system be referred to any co-ordinates 0, &amp;lt;, ty, &c.

If the geometrical equations do not contain the time explicitly
the vis viva 2T may be represented by the expression

2T = Pn &amp;lt;9

/2 + 2P12 ( + P22
c/&amp;gt;

/2 + &c.

where Pn ,
P12 , &c. are known functions of the co-ordinates 6,

fa &c. Let the force function be U. Let the state of motion
about which the system is oscillating be determined by 0=f(t),
= F

(t), &c. To determine these oscillations we put =f(t) + x,

&amp;lt;f&amp;gt;

= F(t)+y, &c. Let the Lagrangian function L = T + U be

expanded in powers of at, y, &c. as follows :

&c. + C& + C2y 4- &c.

^x y + &c.) + J (CuaP + 2Ciaa?y + &c.)

+ G^yx + &c.

It will afterwards be found convenient to write E12
= G 12 6ra ,

EK = Gls
- G31 ,

and so on.

We shall now define a steady motion to be one in which all the

coefficients in this expansion are independent of the time. The

physical characteristic of such a motion is that when referred to

proper co-ordinates the same oscillations follow from the same dis

turbance of the same co-ordinate at whatever instant it may be

applied to the motion. If the coefficients are not constant for the

co-ordinates chosen it may be possible to make them constant by
a change of co-ordinates. There are obviously many systems of

co-ordinates which may be chosen, and a set may generally be
found by a simple examination of the steady motion. If there are

any quantities which are constant during the steady motion, such

as those called f, 77, &c. in Art. 98, these, may serve for some of

the co-ordinates, others may be found by considering what quanti
ties appear only as differential coefficients or velocities, for example
those called x

t y, &c. in the same article. If none of these are
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obvious, we may sometimes obtain them by combining the existing
co-ordinates. Practically these will be the most convenient

methods of discovering the proper co-ordinates.

To obtain the equations of motion we must now substitute

the value of L in the Lagrangian equations

d dL dL A .

Ti T~7
~

J =
0&amp;gt;

&C. =
,

dt dx dx

and reject the squares of small quantities. The steady motion

being given by x, y, &c. all zero, each of these must be satisfied

when we omit the terms containing x, y, &c. We thus obtain the

equations of steady motion, viz.

(71
= 0, Ca

= 0, &c. = 0,

which by Taylor s theorem are the same as the equations (1) of

steady motion given in Art. 98.

Omitting these terms and retaining the first powers of all the

small quantities we obtain the equations of small oscillations.

Representing differentiations with regard to t by the letter 8, we
have

- (713) z + &c. = 0,

Gn)z + &c.= 0,

&c. + &c. + &c. - 0.

112. To solve these we write x Leu
, y = Me, &c. Substi

tuting and eliminating the ratios L, M, &c. we obtain the following
determinantal equation

- Gllt A 12\2 - E12\ - (712 ,
^4 13X2 - E13\ - 13 ,

&c. = 0.

- EK\ - Ca ,
&c.

- Css ,
&c.

&c. &c. &c. &c.

If in this equation we write X for X the rows of the new deter

minant are the same as the columns of the old, so that the deter

minant is unaltered. We therefore infer that the determinantal

equation when expanded contains only even powers of X.

We notice that if we remove from this determinant the terms
which contain the letter E, the remaining determinant is the same
as that which gives the oscillation about a position of equilibrium,
Art. 58. We may therefore say that the terms which depend on
E are due to the centrifugal forces of the steady motion.

113. Conditions of Stability. Regarding this as an equa
tion to find X2

,
we notice that if the roots are all real and negative,

each of the co-ordinates x, y, &c. can be expressed in a series of

trigonometrical terms having different periods; the motion will

therefore be stable. If any one of the roots is imaginary or if
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any one is real and positive, there will be both positive and

negative real exponentials entering into the expressions for x, y, &c.

and therefore the motion will be unstable. The condition of dyna
mical stability is therefore that the roots of this equation must all

be of theform X =
//,J 1, where p is some real quantity.

114. Number of Oscillations. It follows also that when
a system, under the action of forces which have a potential, oscil

lates about a stable state of steady motion, the oscillations of the

co-ordinates are represented by trigonometrical terms of the form

A sin (\t + a) which are not accompanied by any real exponential
factors such as those which occurred in the problem of the Governor.

We see further that there will in general be as many finite

values of X2 and therefore as many trigonometrical terms of

different periods as there are co-ordinates. It often happens, as

explained in Art. Ill, that some of the co-ordinates are absent from

the expression for L, appearing only as differential coefficients.

Suppose for example to be absent; then (7U ,
(712 , &c. are all

zero, and we may divide X both out of the first line and the first

column of the fundamental determinant. We therefore have two
zero values of X, while at the same time the number of finite

values of X&quot; is diminished by unity. Hence the number of trigo
nometrical terms of different periods cannot exceed the number of
co-ordinates which explicitly enter into the Lagrangian function.

Thus, in Ex. 2 of Art. 102, the function T+ U has only the co

ordinate 6 explicitly expressed, the others
&amp;lt;j&amp;gt;

and ^r appearing

only as differential coefficients. It follows that if a top is disturbed

from a state of steady motion, there will be but one period in the

oscillation.

115. The relations between the coefficients L, M, &c. in the

exponential values of x, y, &c. may be obtained without difficulty
if we remember that the several lines of the fundamental deter

minant are really the equations of motion. Taking any one line
;

multiply the first constituent by L, the second by M, &c. and

equate the sum to zero. If n be the number of co-ordinates, we
thus obtain n 1 independent equations to find the ratios of

L : M : &c.
;
so that we have one undetermined constant for each

value of X. On the whole therefore we have, exactly as in

Lagrange s equations, Chap. II., twice as many arbitrary constants

as there are co-ordinates, all the other constants being determined

by the equations just found. The arbitrary constants are deter

mined by the initial values of the co-ordinates and their differential

coefficients.

But, unlike Lagrange s equations, the quantity X occurs in

the first power in each of these equations, so that the ratios of

L, M, &c. thus found may be imaginary. If p^, p&amp;lt;?,

&c. be the

R. D. n. 6
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values of X2
,
the expressions for the co-ordinates when rationalized

may therefore take the form

x = A l sin (pj + a^ + A.2 sin (p2t 4- a2) + . . .

y = Bl sin (pj + ft) + B sin (pj + ft) + . . .

s = &c.

where ^ is not necessarily equal to ft, nor 2 to ft, &c., though
they are connected together.

116. Principal Oscillations. When the initial conditions

are such that every co-ordinate is expressed by a trigonometrical
term of one and the same period, the system is said to be perform

ing a principal or harmonic oscillation. Thus each trigonometrical
term corresponds to a principal oscillation, and any oscillation of

the system is therefore said to be compounded of its principal
oscillations. The physical characteristic of a principal oscillation

is that the motion of every part of the system is repeated at a con

stant interval. If the type of the principal oscillation be \2= pf,
we see that throughout the motion we shall have x&quot; = pfx,

117. Ex. A homogeneous sphere of unit mass and radius a is suspended from

a fixed point by a string of length b and is set in rotation about the vertical dia

meter. When the sphere is slightly disturbed from this state of steady motion, let

bx, by and b be the co-ordinates of the point on the surface to which the string is

attached; bx + aj- t by + ai) and b + a the co-ordinates of the centre, the fixed point

being the origin and the axis of z vertical and downwards. Also let % = +
\f/
where

and
\J/
have the meanings usually given to them in Euler s geometrical equations,

see Vol. i. Chap. v. Thus before disturbance x = w - Prove that the Lagrangian

function is

If the motion of the centre of gravity be represented by a series of terms of the

form M cos (pt + a), prove that the values of p are given by

Show that, whatever sign n may have, this equation has two positive and two

negative roots which are separated by the roots of either of the factors on the left-

hand side.

118. Impulsive Forces. If we regard an impulse as the limit of a force acting

for a very short time, we may deduce from Art. Ill the equations of motion of a

system moving in steady motion and suddenly disturbed by an impulse. Integrating

the equations of motion given in Art. Ill with regard to the time during the limits

of the impulse, the integrals of all the terms except those of the form Ad2x will be

zero. This follows from the definition of an impulse given in Chapter 11. of

Vol. i. or from the argument given in adjusting Lagrange s equations to impulses

in Chapter vm. of Vol. i.

The equations of motion for impulses are therefore
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(fyl
~ 5?/o) + ...... = 7

&C. = &C.

Here 5.^
- 5# , &c. are the changes in the velocities of the co-ordinates produced by

the jerks. The quantities X, Y, &c. are the integrals of the disturbing forces and

therefore measure the jerks. If U be the force function of the impulses as explained

in Vol. i. Chap. vm. we have X=dUjdx, Y=dUjdy, &c.

119. Analysis of the roots of the determinantal equation. If the determi

nants! equation of Art. 112 is not very complicated we may expand it in powers of

X. We thus have an equation with only even powers of X. The important point to

settle is the number of real negative values of X2 which satisfy the equation. To

determine this, we may use Sturm s theorem. Since the equation has only alternate

powers of X, we may use the short rule which will be given in the chapter on the

Conditions of Stability to find the successive remainders.

But if it be inconvenient to follow this process, we may use some of the following

theorems.

120. We shall first show that the quadratic expression

is a one-signed positive function. To prove this we notice that the coefficients An ,
&c.

are what the coefficients Pn , &c. of the vis viva become when we write for the

co-ordinates 6, &amp;lt;,
&c. their values in the steady motion. If then, by any linear re

lation between the variables, we could make A equal to zero, we could by introducing

a constraint into the motion represented by a similar relation between 6 ,
&amp;lt;f&amp;gt;

, &amp;lt;fec.

cause the vis viva to be zero. But since the vis viva is essentially positive, this is

impossible.

When a given quadratic function is a one-signed positive function, it is known

(Art. 60) that its discriminant is positive. It follows immediately that every dis

criminant formed after putting any of the variables x
, y ,

&e, equal to zero must

also be positive.

121. Theorem I. It frequently happens that there are but two independent

co-ordinates, so that the determinant is reduced to two rows. If we write

D= A 11A SZ
- AK\ D = CnCn -

&amp;lt;712
2

,
Q= A llC^ + A 22Cll

- 2^ 12C12 ,

the determinantal equation when expanded reduces to DX4 +( - + .E12
2
)
X2

-f D = 0.

The conditions of stability are therefore (1) D is positive, (2) #12
2 - 6 is positive and

greater than 2^/DD . See Art. 113.

122. Theorem II. Whatever be the number of co-ordinates the steady motion

cannot be stable unless all the values of X2
given by the determinantal equation are

real and negative. The coefficient of the highest power of X2
(Art. 120) is positive,

hence the term independent of X2 must also be positive. We therefore infer that the

steady motion cannot be stable unless the discriminant of the quadratic expression

20= -Cnx^-2C^xy-C^yz + ......

is positive.

123. Theorem III. Let there be n co-ordinates and let A be the determinant

given in Art. 112. Beginning with this determinant we may form a series of deter

minants each being obtained from the preceding by erasing the first line and the

first column. Let us represent these by A1? A2 ,
&c. The determinant A is not

62
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altered if we border it with a column of zeros on the right-hand side and a row of

zeros at the bottom, provided we put unity in the corner. We may therefore con

sider An =l. Thus we have a series of determinantal functions of X2
analogous to

those used in connection with Lagrange s determinant. See Art. 58.

Let us substitute in this series of determinants any negative value of X2 and

count the number of variations of sign. If as X2
passes from X2= - a to X2 = -/3,

K variations of sign are lost, then the number of real roots between - a and -
/3 is

either exactly equal to K or exceeds K by an even number.

To prove this, we let In ,
I
12 ,

&c. be the minors of the several constituents of the

determinant A. We notice that J12 is changed into 721 by changing the sign of X.

Hence if I12= &amp;lt;t&amp;gt; (X
2
) + X^ (X

2
) ,

then I21= 0(X
2
)-X^(X

2
).

Thus the product I1212i is necessarily positive for all negative values of X2
. It also

follows that if I12 vanishes for any negative value of X2
,
then I21 vanishes for the

same value of X2
.

Starting with the equation AA2
= In l22 -I12 l2i the rest of the Proof is so Dearly

the same as that for the corresponding theorem in Lagrange s determinant (Art. 58)

that it seems unnecessary to reproduce it here. Passing over therefore this proof

we notice the following applications.

124. Theorem IV. The coefficients of the highest powers of X2 in the series of

determinants A, A
a , &c. are the discriminants of the quadric A (Art. 120), and

are therefore necessarily positive. The signs of the series of determinants when

X2= -oo are therefore alternatively positive and negative. If the discriminants of

the quadric 2C= - Cn rr
2 - 2C12xy - C^ y

2 - &c .

be also all positive, the signs of the series of determinants when X2 are all

positive. Thus the full number, viz. n, of variations of signs have been lost in

the passage from X2= - oo to X2=0. It immediately follows from the theorem just

stated that when the quadric C is a one-signed positive function all the roots of the

determinantal equation are real and negative.

We may also express this by saying that when the quadric function C is a

minimum for all displacements from the steady motion, that steady motion is stable.

125. When this occurs the roots of each of the series of determinants A, Alt

A2 , &c. are all real and negative, and the roots of each separate or lie between the

roots of the determinant next above it.

This follows from the mode of proof adopted in discussing Lagrange s deter

minant.

126. Theorem V. Equal roots. The existence of equal roots usually indicates

that there are terms in the solution with t as a factor, but it will be shown in

another chapter that this is not the case when the minors of the determinant A
are also zero.

Suppose, as in the last proposition, that the full number of variations of sign

have been lost in the passage from X2= - GO to X2= 0. Then it may be shown, as

in the corresponding proposition in Lagrange s determinant, that if the funda
mental determinant have r equal roots, then every first minor has r - 1 roots equal to

each of these, and every second minor has r - 2 roots equal to each of these, and so on.

We therefore infer that the existence of equal roots merely indicates a cor

responding indeterminateness in the coefficients of the principal oscillation which

is derived from these equal roots.
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Thus in Art. 115 we have n - 1 independent equations to find the ratios of the

coefficients L, M, &c. of any exponential. But when there are r equal roots we

have only n - r independent equations leaving r of the coefficients independent.

127. Theorem VI. If we remove the terms which contain the centrifugal forces

the remaining determinant has the same form as Lagrange s determinant. Thus we

have two determinantal equations each of which, for its own use, may be regarded

as an equation to find X2
. From each of these we may derive a series of deter

minants formed by the rule given in Art. 58. If we count the number of variations

of sign when X2= - oo and when X2= 0, it is evident that each of the two series

exhibit the same loss. It therefore follows that the equation with the centrifugal

forces has at least as many negative roots as the corresponding Lagrange s equation,

and if it have more, the excess is an even number. If therefore all the roots of the

corresponding Lagrange s determinants are negative, then all the roots of the

equation with the centrifugal forces are also real and negative. Thus the general

effect of these centrifugal forces is to increase the stability.

The substance of this section may be found partly in a paper by the author

published by the London Mathematical Society, 1875, and partly in the author s

Essay on the Stability of Motion, 1877.

128. The Representative Point. When a dynamical system has not more

than three co-ordinates, we may obtain a geometrical representation of the oscilla

tion. Let these independent co-ordinates be x, y, z. If we regard these as the

Cartesian co-ordinates of some point P, it is clear that the positions of P as it

moves about will exhibit to the eye the motion of the system. We may call this

point the representative point. The importance of this point has been already

shown by the use made of it in Art. 80.

129. Oscillation about equilibrium. Let us first suppose the system to be

oscillating about a position of equilibrium, and let it be performing any principal

oscillation. Then throughout the motion the co-ordinates x, y, z bear a constant

ratio to each other (Art. 53). We therefore infer that the path of the representative

particle is a straight line passing through the origin. If the oscillation be defined

by the type sin (pt + a) we have also (by Art. 55) x&quot;= -p*x, y&quot;= -p 2

y, &c. Hence
the representative point oscillates in a straight line with an acceleration tending to the

origin and varying as the distance therefrom.

130. To find the position of this straight line let the vis viva 2T and the force

function U be represented by

2(U-U )
= Cux* + 2Clzxy + &G. /

(1)&amp;gt;

Then by Lagrange s equations, since x&quot;= -p-x t &c., we have

l
lzy + &c.) = Cux + Clzy + &c.)

-p2
(A l2x + At2y + &c.) =

&quot; &quot; --*-* ( &amp;gt;

Ac. =&c.

Omitting the accents in T and the constant term t/
, let us put

2A =Anx* + 2Al2xy + &c.) ,

- 2C= GV2 + 2Crfcy + &c. \

&quot;

We also construct the two quadrics A = a, C= y where a and 7 are any constants.

These quadrics have their centre at the origin and have a common set of conjugate
diameters which may be found by the following process. Let x, y, z be the Cartesian
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co-ordinates of any point on one of the three conjugates. Then, since the diametral

planes of this point in the two quadrics are parallel, we have

dA
L _dO dA_dC d_A_dC

**dx~dx **dy
~

dy
M
dz

~
dz

Comparing these with the equations (2) we see that when the system is performing
a principal oscillation the representative point P oscillates in one of the common

conjugate diameters of the quadrics.

131. By Euler s theorem on homogeneous functions we have pA = C. Applying

the same reasoning to equations (2) we have p2 A = C. Hence /* p1
. Let the

diameter described by the representative point cut the quadrics A = a and C= y
in the points D and D and let be the origin. Then putting P at D we have

A= a, and since C is a homogeneous function we have C=(ODjOD )

2
y.

Hence pz= (ODlOD y
2
yla. The value of 2irjp gives the period of oscillation corre

sponding to any common conjugate diameter ODD .

132. The quadric C=y possesses the property that if x, y, z be the co-ordinates

referred to any axes of a point P on its surface the work done by such a displacement

from the position of equilibrium is constant and equal to -
7.

133. As an example of this geometrical analogy let us consider the following

problem. A rigid body, free to move about a fixed point 0, is under the action of

any forces and makes small oscillations about a position of equilibrium ; find the

principal oscillations.

Let OA, OB, OC be the positions of the principal axes in the position of

equilibrium, OA ,
OB

,
OC their positions at the time t. The position of the body

may be denned by the angles between (1) the planes AOC, AOC
, (2) the planes

BOC, BOG
, (3) the planes COA, COA . Let these be called 0,

&amp;lt;t&amp;gt;, $ respectively.

Then 0, 0, ^ are angular displacements of the body about OA, OB, OC. Taking
these as the axes of co-ordinates in the geometrical analogy ;

a small displacement
of P from the origin to a point x= 0, y = &amp;lt;f&amp;gt;,

z =
\f/ represents a rotation of the body

about the straight line described by P and whose magnitude is measured by the

distance traversed by P.

If Jj, J2 ,
J., be the principal moments of inertia at 0, the vis viva of the body is

clearly 2T=I
16

2 + I2
2 + 1

3^
2

.

Writing x, y, z for
, , ^ as before, the quadric T= a or A = a is evidently the

momental ellipsoid at the fixed point.

Let the work of the forces as the co-ordinates change from zero to 0, 0, ^, or

x, y, z be given by 2V Cux~ + 2C12o;?/ + &c.

Then, following the analogy, as P moves along a radius vector OD of the quadric

U= -7 or 0=7, the work is - (OP/OD )

2
y. Hence this quadric possesses the

property that the work done by the forces when the body is twisted through a given

angle round any radius vector varies inversely as the square of that radius vector.

If the equilibrium is stable, the work due to a rotation about every diameter must

be negative, the quadric must therefore be an ellipsoid.

It now follows from the general theorem that the body will perform a principal

oscillation if it is set in rotation about any one of the three conjugate diameters of

the momental ellipsoid and the ellipsoid U=~7, and will therefore continue to

oscillate as if that diameter ivere fixed in space.

The quadric U has been called the ellipsoid of the potential. This name was

given to it by Prof. Ball, who arrived at the theorem just proved by a different

course of reasoning. See his Theory of Screw*, Art. 126.
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134. Oscillation about steady motion. To determine the motion of the

representative point we must have recourse to the equations of motion written

down in Art. 111. Since we must follow the same line of argument as in Art. 131,

it is unnecessary to do more than state the result. The symbols A and G having
the same meaning as before the path of the representative point is given by
the equations Ap*-C=p.

[(AnE^ - A IZ
E13 + A IS

E
12)

x + &c.] p* + [(CnE23
- C12E13 + C13

E
IZ)

x + &c.]= 0.

The path of the representative point is therefore a plane section of a quadric.

We infer that when a system is performing a principal oscillation about a state

of steady motion the representative point describes an ellipse. The ellipse is

described with an acceleration tending to the centre and varying as the distance

therefrom. The periodic time in the ellipse is by definition the same as that in

which the system performs its principal oscillation.

135. Ex. Show that the three planes of these harmonic ellipses are diametral

planes of the same straight line with regard to the three quadrics represented by

Ap
z - C= (3, where p- has any one of the three values given by the determinant of

motion. The direction cosines of this straight line are proportional to JE23 ,
- jE

13 , .E
12

and it may be called the axis of the centrifugal forces.

136. The introduction of the representative point to exhibit the motion of the

system may appear somewhat artificial. But there is a closer connection than has

yet been mentioned. Suppose for example that a system is oscillating about a

position of equilibrium. Let us transform the co-ordinates x, y, z into others

+ &c. = 2 + V2 + f2
-

The equations of motion take a simplified form and become those of a single

particle of unit mass acted on by forces with a known force function U. Thus

when the co-ordinates are properly chosen some kinds of motion may be completely
found by replacing the system by its representative particle. In other kinds of

motion constraints have to be placed on the particle that it may represent the

motion. The single particle used by Fresnel in his theory of double refraction is

practically the representative particle, and it is necessary to impose imaginary
constraints that its motion may represent that of the medium.

A more complete account of the theory of the representative point is given in

the essay on Stability of motion already referred to.



CHAPTER IV.

MOTION OF A BODY UNDER THE ACTION OF NO FORCES.

Solution of Euler s Equations.

137. To determine the motion of a body about a fixed point,
in the case in which there are no impressed forces.

Euler s equations of motion are

C~*-(A -5)0)^ = 0!

multiplying these respectively by o&amp;gt;l5 o&amp;gt;.2 ,
o&amp;gt;3 ; adding and inte

grating, we get
Aw^ + Bco./ + Ca)3

2=T..................... (1),

where T is an arbitrary constant.

Again, multiplying the equations respectively by Aco^ Bw.2 , Cco3 ,

we get, similarly,

4W+ 2
ft&amp;gt;2

2+GX2 ==#2
..................... (2),

where G is an arbitrary constant.

To find a third integral, let

a&amp;gt;

2
........................(3);

dws dco

then multiplying the original equations respectively by wJA, w.JB,
0)3/0, and adding, we get

da&amp;gt; B-G C- A A-B

(B-C)(C-A)(A -B)
ABC
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But solving the equations (1), (2), (3), we get

BC
(A-G)(A-B)

CA
(5),

where X! = -
,
with similar expressions for X2 and Xa .

Substituting in equation (4), we have

dco

The integration of equation (6)* can be reduced without diffi

culty to depend on an elliptic integral. The integration can be

effected in finite terms in two cases
;
when A = B, and when

G2 = TB, where B is neither the greatest nor the least of the three

quantities A, B, C. Both these cases will be discussed further on.

138. It will generally be supposed that A, B, C are in order of magnitude, so

that A is greater than B, and B than C. The axis of B will be called the axis of

mean moment. If we eliminate o^ from the equations (1) and (2), we have

AT - G2= B (A
- B) o&amp;gt;2

2 +C(A-C) o&amp;gt;3
2

,

which is essentially positive. In the same way we can show that CT-G2 is

negative. Thus the quantity G2
/T may have any value lying between the greatest

and least moments of inertia. .

The three quantities Xlt X2 ,
X
3
in Art. 137 are all positive quantities ;

for since

B + C -A is positive, and G2
/T&amp;lt;^,

it follows that \ is positive. The numerators

of X2 and X3 are each greater than that of Xlf and are therefore positive, the

denominators are also positive ; hence X2 and X
3 are both positive. Also we have

ABC (\-\2)
= (TC-G2

)(A- B), with similar expressions for X2 -X3 and \3 -\.
It easily follows that X2

is the greatest of the three, and X
x
or X3 is the least according

as G*/r is greater or less than B.

It follows from equations (5) that throughout the motion w2 must lie between X.,

and the greater of the quantities Xj and X3 .

139. Kirchhoff s solution. The solution in terms of elliptic integrals has

been effected in the following manner by Kirchhoff. If we put

then k is called the modulus of F, and must be less than unity if F is to be real for

all values of 0. The upper limit is called the amplitude of the elliptic integral F

* Euler s solution of these equations is given in the ninth volume of the Quarterly

Journal, p. 361, by Prof. Cayley. Kirchhoffs and Jacobi s integrations by elliptic

functions are given in an improved form by Prof. Greenhill in the fourteenth

volume, pages 182 and 265. 1876.
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and is usually written am F. In the same way sin
&amp;lt;f&amp;gt;,

cos
&amp;lt;/&amp;gt;,

and A (0) are written

sin am F, cos am F, and A am F.

We have by differentiation

............... (1).

2sin
dF A(0)

These equations may be made identical with Euler s equations if we put

F=\(t-r) and. w1
= aAam\(-T) \

w2
= &sinam\(-T) I ................................. (2),

w3=ccosainX(-T) ]

A-B _ _c\ A-&amp;lt;3 _ _ b\ B-C_ _ 2
oX

~C~ ~^6 ~B~ ~ra ~J~~
:

6c
&quot;

We have introduced here six new constants, viz. a, &, c, X, /c and r. With these

we may satisiy the three last equations and also any initial values of w
1 , o&amp;gt;2 , w3 .

The solution if real will also be complete.

When t= r we have from (2) ^-a, o&amp;gt;2
= 0, and w3

= c. Hence by Art. 137

Aa2 + Cc~ = T, A~a? + C2
c&quot;
= G2

;

.
G*-CT

2_ AT-G2

~ ~

A(A-C) ~C(A-C)

Dividing the second of equations (3) by the first, we have

bl - A ~ G C
.

Multiplying the first and second of equations (3), we obtain

(A-B)(G*-CT)
ABC

The ratios of the right-hand sides of (3) are as c2 : b2 : k2a2
,
and these have just

been found. Hence if the signs of o, &, c, X be chosen to satisfy any one of the

three equalities, the signs of all will be satisfied.

Dividing the last of equations (3) by either of the other two, we find

1̂ =^I^ AI^ G\ -i - A - GG2 - BT
A-B GZ -CT A-B G*-CT

If G2
&amp;gt;BT and A, B, C are in descending order of magnitude, the values of

a2
,

62
,
c2 and X2 are all positive. Also k2 is positive and less than unity. The

solution is therefore real and complete.

If GZ
&amp;lt;BT we must suppose A, B, C to be in ascending order of magnitude to

obtain a real solution. If we may anticipate a phrase used by Poinsot, and which

will be explained a little further on, we may say that the expression for o^ in this

solution is to be taken for the angular velocity about that principal axis which is

enclosed by the polhode.

If GZ-BT we have k2= 1 and

/&amp;gt; &amp;lt;Z0- ,
. 1 + sin , eF-*-p

*=/ = ilog- r -.: .: smamF=---s- i&amp;lt;

-

eF+e~ f

Substituting in equations (2) the elliptic functions become exponential.
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If B = G we have fc
2=0 and in this case F=0, so that amF=F. If we again

substitute in equations (2) the elliptic functions become trigonometrical.

The geometrical meaning of this solution will be given a little further on.

Poinsot s and MacGullaglis constructions for the motion.

140. The fundamental equations of motion of a body about a

fixed point are

+ &amp;lt;7-a&amp;gt;3
- = 6r

2

(1),

+ Ca&amp;gt;/
= T (2).

These have been already obtained by integrating Euler s

equations, but they also follow very easily from the principles of

Angular Momentum, and Vis Viva.

Let the body be set in motion by an impulsive couple whose
moment is G. Then we know by Vol. i. Chap, vi., that throughout
the whole of the subsequent motion, the moment of the momentum
about every straight line which is fixed in space, and passes through
the fixed point 0, is constant, and is equal to the moment of the

couple G about that line. Now by Art. 10, the moments of the

momentum about the principal axes at any instant are A^, Ba).2 ,

(7o)3 . Let a, j3, 7 be the direction angles of the normal to the

plane of the couple G referred to these principal axes as co

ordinate axes. Then we have

AQ)J =G cos a }

B&amp;lt;*,
=
Gcos0\ (3),

(7a&amp;gt;3
= G cos 7 J

adding the squares of these we get equation (1).

Throughout the subsequent motion the whole momentum of

the body is equivalent to the couple G. It is therefore clear

that if at any instant the body were acted on by an impulsive
couple equal and opposite to the couple G, the body would be
reduced to rest.

141. It follows from the definition given in Vol. I. Chap. vi.

that the plane of this couple is the Invariable plane and the

normal to it the Invariable line. This line is absolutely fixed in

space, and the equations (3) give the direction cosines of this line

referred to axes moving in the body.
It appears from these equations, that if the body be set in

rotation about an axis whose direction cosines are (I, m, n) when
referred to the principal axes at the fixed point, then the direction

cosines of the invariable line are proportional to Al, Bm, Cn. If

the axes of reference are not the principal axes of the body at the

fixed point, the direction cosines of the invariable line will, by
Art. 10, be proportional to Al Fm En, Bm Dn Fl, and
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Cn El- Dm, where A, F &c. are the moments and products of

inertia*.

142. Since the body moves under the action of no impressed
forces, we know that the Vis Viva will be constant throughout the

motion. We have therefore

where T^ is a constant to be determined from the initial values

of
&&amp;gt;!,

ft&amp;gt; 2 ,
O)3 .

The equations (1), (2), (3) will suffice to determine the path in

space described by every particle of the body, but not the position
at any given time.

143. Poinsot s construction. To explain Poinsot s repre
sentation of the motion by means of the momental ellipsoid.

Let the momental ellipsoid at the fixed point be constructed,
and let its equation be

Ax- + By- + Cz1 = J/e4
.

Let r be the radius vector of this ellipsoid coinciding with the

instantaneous axis, and p the perpendicular from the centre on
the tangent plane at the extremity of r. Also let co be the an

gular velocity about the instantaneous axis.

*/* ?/ 2
The equations to the instantaneous axis are = =

,
and

ft&amp;gt;!
ft&amp;gt;2 ft&amp;gt;3

if (x, y, z) be the co-ordinates of the extremity of the length r,

each of these fractions is equal to r/co. Substituting in the equa
tion to the ellipsoid, we have

(AaS + BcoS + Cov) -, = Me*
;

. \ to =
or V Jfe

2
e

The equation to the tangent plane at the point (a?, y, z) is

substituting again for (x, y, z) we see that the equations to the

perpendicular from the origin are --- = --- = ~ :

Bco2 Ceo./

That the straight line whose equations referred to the moving principal axes are

1
=

ylB(jj2= zlCu.A iB absolutely fixed in space may be also proved thus, if we assume

the truth of equation (1) in the text. Let x, y, z be the co-ordinates of any point
P in the straight line at a given distance r from the origin, then each of the equali

ties in the equation to the straight line is equal to ?-/G and is therefore constant.

The actual velocity of P in space resolved parallel to the instantaneous position of

the axis of # is
=-^-

- yu3 + zw2
= ~ \A -~ -

(B
-
C) u2u3 i . But this is zero, by

Euler s equation. Similarly the velocities parallel to the other axes are zero.

t It should be observed that in this Chapter T represents the whole vis viva of

the body. In treating of Lagrange s equations in Chapter n. it was convenient to

let T represent half the vis viva of the system.
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but these are the equations to the invariable line. Hence this

perpendicular is fixed in space.

The expression for the length of the perpendicular on the

x
. . ,1 AW +BY + Co

tangent plane at (x, y, z) is known to be = -
~~jnur~

~
&amp;gt;

substituting as before, we get

From these equations we infer

(1) The angular velocity about the radius vector round which
the body is turning varies as that radius vector.

(2) The resolved part of the angular velocity about the per
pendicular on the tangent plane at the extremity of the instan

taneous axis is constant. This theorem is due to Lagrange.
For the cosine of the angle between the perpendicular and

the radius vector p/r. Hence the resolved angular velocity
is = a) p/r = T/G, which is constant.

(3) The perpendicular on the tangent plane at the extremity

of the instantaneous axis is fixed in direction, viz. normal to the

invariable plane, and constant in length.

The motion of the momental ellipsoid is therefore such that,
its centre being fixed, it always touches a fixed plane, and the

point of contact, being in the instantaneous axis, has no velocity.
Hence the motion may be represented by supposing the momental

ellipsoid to roll on the fixed plane with its centre fixed.

144. Ex. 1. If the body while in motion be acted on by any impulsive couple

whose plane is perpendicular to the invariable line, show that the momental ellipsoid

will continue to roll on the same plane as before, but the rate of motion will be

altered.

Ex. 2. If a plane be drawn through the fixed point parallel to the invariable

plane, prove that the area of the section of the momental ellipsoid cut off by this

plane is constant throughout the motion.

Ex. 3. The sum of the squares of the distances of the extremities of the princi

pal diameters of the momental ellipsoid from the invariable line is constant through
out the motion. This result is due to Poinsot.

Ex. 4. A body moves about a fixed point O under the action of no forces. Show
that if the surface Ax- + By2 + Cz*=M (x

2 + y
2 + z-)

2 be traced in the body, the princi

pal axes at O being the axes of co-ordinates, this surface throughout the motion

will roll on a fixed sphere.

145. These theorems have been proved on the supposition that the quantities

T and G are constant, but when the body is acted on by forces and both T and G

vary, the theorems do not altogether lose their significance. It is still true that at
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each instant during the motion the axis of the resultant couple of angular

momentum, i.e. the invariable line, is coincident in direction with the perpendicular

on the tangent plane to the momental ellipsoid at its point of intersection with the

instantaneous axis
;
also the angular velocity about the invariable line is always

equal to T/G though this ratio may not be constant. At any instant the values of

the vis viva T and the couple G are given by the equations

/ uy a-- iK
(r) -T=

K f
where K has been written for Me

4
.

Conversely, we may enquire what conditions must hold amongst the impressed
forces that any one of Poinsot s theorems may hold throughout the motion. Let us

suppose the body to be acted on by a couple Q whose components about the axes

are L, M, N.

146. (1) If we examine the proof in Art. 137 by which T is proved constant

when no forces act on the body, we see that

1 dT
- =LWl + JJ/w2 + Nus

= Qu cos Q 01,

where QOI is the angle between the axis OQ of the couple Q and the instantaneous

axis 01. It immediately follows that T is constant when the moment of the

impressed forces about the instantaneous axis is always zero. When this is the

case w is proportional to r throughout the motion.

147. (2) Keferring again to Art. 137 we see in the same way that

JSV 1

^ 2 3
= Q cos QOL,

where QOL is the angle between the axis OQ of the couple and the invariable line

OL. It follows that G is constant when the impressed forces have no moment
about the invariable line. When this happens, u varies as the product pr through
out the motion.

148. (3) The plane containing the invariable line OL and the instantaneous

axis 01 may be called the plane of the centrifugal forces for the reasons given in

Vol. i. Chap. v. Art. 260.

We see that both T and G are constant when the plane of the impressed couple
coincides with the plane of the centrifugal forces. When this is the case, w varies as

r, and p is constant throughout the motion.

Ex. 1. Show that - ^ = ^ .

^
sin IOL . sin QOL . cos ILQ,

where ILQ is the angle between the planes IOL and QOL. It immediately follows

that p and therefore G-jT is constant when the projection of the axis of the

impressed couple on the plane of the centrifugal couple is the invariable line.

Ex. 2. Show also that if the instantaneous axis is near a principal axis, the

angular displacement of p is not made small by the presence of the small factor

IOL. It is also necessary that one of the other factors should be small.

149. The Polhode. To assist our conception of the motion
of the body, let us suppose it so placed, that the plane of the

couple G, which would set it in motion, is horizontal. Let a

tangent plane to the momental ellipsoid be drawn parallel to the
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plane of the couple G, and let this plane be fixed in space. Let

the ellipsoid roll on this fixed plane, its centre remaining fixed,

with an angular velocity which varies as the radius vector to

the point of contact, and let it carry the given body with it. We
shall then have constructed the motion which the body would have

assumed if it had been left to itself after the initial action of the

impulsive couple G*. See Fig. (1).

The point of contact of the ellipsoid with the plane on which

it rolls traces out two curves, one on the surface of the ellipsoid,

and one on the plane. The first of these is fixed in the body and
is called the polhode, the second is fixed in space and is called the

herpolhode. The equations to any polhode referred to the prin

cipal axes of the body may be found from the consideration that

the length of the perpendicular on the tangent plane to the ellip

soid at any point of the polhode is constant. Taking the expres
sions for this perpendicular given in Art. 143 we see that the

equations of the polhode are

Eliminating y, we have

A (A - B) tf + C (G- B) z&amp;gt;
= ~ -

Hence if B be the axis of greatest or least moment of inertia,

the signs of the coefficients of a? and z* will be the same, and the

projection of the polhode will be an ellipse. But if B be the
axis of mean moment of inertia, the projection is a hyperbola.

A polhode is therefore a closed curve drawn round the axis of

greatest or least moment, and the concavity is turned towards the
axis of greatest or least moment according as G2

/T is greater or

less than the mean moment of inertia. The boundary line which

separates the two sets of polhodes is that polhode whose projection
on the plane perpendicular to the axis of mean moment is a

hyperbola whose concavity is turned neither to the axis of greatest,
nor to the axis of least moment. In this case G2 = BT, and the

projection consists of two straight lines whose equation is

A A-
* Prof. Sylvester has pointed out a dynamical relation between the free rotating

body and the ellipsoidal top, as he calls Poinsot s central ellipsoid. If a material

ellipsoidal top be constructed of uniform density, similar to Poinsot s central ellip

soid, and if with its centre fixed it be set rolling on a perfectly rough horizontal

plane, it will represent the motion of the free rotating body, not in space only, but

also in time : the body and the top may be conceived as continually moving round

the same axis, and at the same rate, at each moment of time. The reader is referred

to the memoir in the Philosophical Transaction* for 1866.



96 MOTION UNDER NO FORCES. [CHAP. iv.

This polhode consists of two ellipses passing through the axis

of mean moment, and corresponds to the case in which the per

pendicular on the tangent plane is equal to the mean axis of

the ellipsoid. This polhode is called the separating polhode.

Since the projection of the polhode on one of the principal

planes is always an ellipse, the polhode must be a re-entering
curve.

Supposing the principal moments A, J3, C to be in descending
order and the axis of C placed in a vertical position, figure (2) is a

rough sketch of that half of the polhodes which is viewed by an

eye placed in the positive octant not far from the axis of B. The
arcs ABA ,

CBC
,
ACA represent the principal sections, B being

the positive end of the mean axis. The remaining arcs represent
the two sets of polhodes separated from each other by the separa

ting polhodes 88 9
TT .

C

Fig. 1. Fig. 2.

The terms polhode and herpolhode are due to Poinsot, Theorie nouveUe tie la

rotation des corps 1834 and 1852.

150. To find the motion of the extremity of the instantaneous axis along the

polhode which it describes we have merely to substitute from the equations

Wj _ w2 _ w
3 _ w _ JT 1

~x
~

~y

~
7

~~
r
~ V M 72

in any of the equations of Art. 137. For example we thus obtain

B-Cyz BCdx /T
Tt
=
\/M , Ac., Ac.

,2 / A C&amp;lt;\ I A T)\ v

e \A. \j) (A 13)

Since dxjdt, dy/dt, dzjdt cannot vanish simultaneously it is evident from these

equations that the instantaneous axis moves continuously along its polhode without

any halting or change in the direction of its motion. This is, of course, also

obvious from Fig. (1) for as the angular velocity about the instantaneous axis 01
cannot change sign without vanishing and therefore contradicting the equation
of vis viva (Art. 137, (2)), the point I must continuously describe both its polhode
and herpolhode.

Again since the sign of dzjdt for every polhode is positive or negative according
as the product xy is positive or negative we see that for that portion of the
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polhodes represented in the figure the extremity of the instantaneous axis moves

upwards or downwards according as it is on the right or the left hand side of the arc

CC . These directions are indicated by the arrows. Thus the positive extremity of

the instantaneous axis moves in the positive direction round the axis of greatest

moment and in the negative direction round the axis of least moment of inertia.

Ex. 1. A point P moves along a polhode traced on an ellipsoid, show that the

length of the normal between P and any one of the principal planes at the centre

is constant. Show also that the normal traces out on a principal plane a conic

similar to the focal conic in that plane. Also the measure of curvature of an

ellipsoid along any polhode is constant.

Ex. 2. Show that the straight line OJ whose direction cosines are proportional

to dw^dt, dw2ldt, dw^dt lies in the diametral plane of the invariable line and is

at right angles to the invariable line. Show also that the sum of the squares

of these quantities is

4= - + (22]pa
- G2

^) a,
2
/^3

- {p*T*
-

(Plp2 +pz) G*T+pzG*}lp3\

where plt pz , pa are the sum of the products of the quantities A, B, C taken

respectively one, two and three together.

Ex. 3. Show that the resolved pressures P, Q, E on the fixed point in the

directions of the principal axes at are given by

P=-
&amp;lt;*!&amp;lt;*$ (A

-
B)IC + WjW^ (C A)IB + u

1 (w2y + w32)
-

(w2
2 + w3

2
)
x

with similar expressions for Q and R, where #, y, z are the co-ordinates of the

centre of gravity G, and A, B, C are the principal moments of inertia at 0,

Thence show that the pressure on is equivalent to two forces (1) a force

ft
2

. GK which acts perpendicular to the plane OGK, where GK is the perpendicular

drawn from G on the straight line OJ described in the last example, (2) a force

w2
. GH acting parallel to GH where GH is a perpendicular from G on the instan

taneous axis.

151. The Herpolhode. Since the herpolhode is traced out

by the points of contact of an ellipsoid rolling about its centre on a

fixed plane, it is clear that the herpolhode must always lie between
two circles which it alternately touches. The common centre of

these circles will be the foot of the perpendicular
from the fixed

centre on the fixed plane. To find the radii let OL be this

R. D. II.
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perpendicular, and I be the point of contact. Let LI = p. Then
Me

4
/ T2

\
we have by Art. 143, p^

= r^-p2 =
-^-

( &&amp;gt;

2 -
^ 1 .

The radii will therefore be found by substituting for &&amp;gt;

2 its

greatest and least values. But by Art. 138, these limits are X2 ,

and the greater of the two quantities \lj X8 .

The herpolhode is not in general a re-entering curve
;
but if

the angular distance of the two points in which it successively
touches the same circle be commensurable with 2?r, it will be

re-entering, i.e. the same path will be traced out repeatedly on the

fixed plane by the point of contact.

152. MacCullagh s Construction. To explain MacCul-

lagJis representation of the motion by means of the ellipsoid of

gyration.

This ellipsoid is the reciprocal of the momental ellipsoid with

regard to a sphere of radius 6, and the motion of the one ellipsoid

may be deduced from that of the other by reciprocating the

properties proved in the preceding Articles. We find,

(1) The equation to the ellipsoid referred to its principal

axes is

(2) This ellipsoid moves so that its superficies always passes

through a point fixed in space. The point lies in the invariable

line at a distance Gj\JMT from the fixed point. By Art. 138 we
know that this distance is less than the greatest, and greater than

the least semi-diameter of the ellipsoid.

(3) The perpendicular on the tangent plane at the fixed point
is the instantaneous axis of rotation, and the angular velocity of
the body varies inversely as the length of this perpendicular. If p

be the length of this perpendicular, then o&amp;gt;

=- .

/-^ .

(4) The angular velocity about the invariable line is constant

and = TIG.
The corresponding curve to a polhode is the path described on

the moving surface of the ellipsoid by the point fixed in space.
This curve is clearly a sphero-conic. The equations to the sphero-
conic described under any given initial conditions are easily seen

6r
2 #2

?/
2 z2 1

tobe tf + * = ___
These sphero-conics may be shown to be closed curves round

the axes of greatest and least moment. But in one case, viz.

when G*/T=B, where B is neither the greatest nor the least

moment of inertia, the sphero-conic becomes the two central

circular sections of the ellipsoid of gyration.

The motion of the body may thus be constructed by means of
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cither of these ellipsoids. The momental ellipsoid resembles the

general shape of the body more nearly than the ellipsoid of gy
ration. It is protuberant where the body is protuberant, and

compressed where the body is compressed. The exact reverse of

this is the case in the ellipsoid of gyration. See Vol. I. Art. 27.

153. MacCullagh s geometrical interpretation. MacCullagh has used the

ellipsoid of gyration to obtain a geometrical interpretation of the solution of Euler s

equations in terms of elliptic integrals.

The ellipsoid of gyration moves so as always to touch a point L fixed in space.

Let us now project the point L on a plane passing through the axis of mean
moment and making an angle a with the axis of greatest moment. This projection

may be effected by drawing a straight line parallel to either the axis of greatest

moment or least moment. We thus obtain two projections which we will call

P and Q. These points will be in a plane PQL which is always perpendicular to

the axis of mean moment. As the body moves about the point L describes on

the surface of the ellipsoid of gyration a sphero-conic KK ,
and the points P, Q

describe two curves pp , qq on the plane of projection OBD. If the sphero-conic,

as in the figure, enclose the extremity A of the axis of greatest moment, the curve

inside the ellipsoid is formed by the projection parallel to the axis of greatest

moment, but if the sphero-conic enclose the axis of least moment, the inner curve

is formed by the projection parallel to that axis. The point P which describes the

inner curve will obviously travel round its projection, while the point Q which

describes the outer curve will oscillate between two limits obtained by drawing

tangents to the inner projection at the points where it cuts the axis of mean
moment.

Since the direction-cosines of OL are proportional to Aw1 , Bw2 ,
Cw3 it is easy to

see that, if x, ?/, z are the co-ordinates of I/,

x y __ z__^_ 1~ &quot;~ ~~ ~~
(1).

Let OP= p, -p j and let the angles these radii vectores make with the plane

72
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containing the axes of greatest and least moment be and measured in the

direction BD so that DOP= -
0, DOQ= -

: we then have

-l\

-$)

-%\ .

-p sin0 =y= Bw^(MT)-\\
..........

It is proved in treatises on solid geometry that, if the plane on which the

projection is made is one of the circular sections of the ellipsoid, the projections

will be circles. This result may be verified by finding p or p from these equations.

Remembering that p and p are constants, let us substitute in Euler s equation

from (2) and the first of equations (3). We have

dd&amp;gt; A- C
p
-~ = r.^ *JMT pp sin a cos a cos .

at AL&amp;gt;

Since p cos is the ordinate of Q, we see that the velocity of P varies as the

ordinate of Q, and in the same way the velocity of Q varies as the ordinate of P.

To find the constants p, p we notice that p is the value of y obtained from

the equations to the sphero-conic when z = 0. We thus have

s_(AT-G
2)B ,2_(G

2 -CT)
p ~MT(A -BY P ~

MT (B -~C)

the latter being obtained from the former by interchanging the letters A and C.

Hence

/velocity\ = JI^B /^^y /ordinate\

] 54. Since p sin = p sin 0, we have by substitution

where X2 has the same value as in Art. 139. Let us suppose expressed in terms

of t by the elliptic integral

so that = am X (t-r). Substituting this value of in equations (2) or (3), we

obtain the values of Wj, w2 ,
w3 expressed in terms of the time.

155. Stability of Rotation. If a body be set in rotation

about any principal axis at a fixed point, it will continue to rotate

about that axis as a permanent axis. But the three principal
axes at the fixed point do not possess equal degrees of stability.
If any small disturbing cause act on the body, the axis of rotation

will be moved into a neighbouring polhode. If this polhode be a

small nearly circular curve enclosing the original axis of rotation,

the instantaneous axis will never deviate far in the body from the

principal axis which was its original position. The herpolhode also
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will be a curve of small dimensions, so that the principal axis will

never deviate far from a straight line fixed in space. In this case

the rotation is said to be stable. But if the neighbouring polhode
be not nearly circular, the instantaneous axis will deviate far from
its original position in the body. In this case a very small dis

turbance may produce a very great change in the subsequent
motion, and the rotation is said to be unstable.

If the initial axis of rotation be the axis OB of mean mo
ment, all the neighbouring polhodes have their convexities turned
towards B. Unless, therefore, the cause of disturbance be such
that the axis of rotation is displaced along the separating polhode,
the rotation must be unstable. If the displacement be along the

separating polhode, the axis may have a tendency to return to its

original position. This case will be considered a little further on,
and for this particular displacement the rotation may be said to

be stable.

If the initial axis of rotation be the axis of greatest or least

moment, the neighbouring polhodes are ellipses of greater or less

eccentricity. If they be nearly circular, the rotation will certainly
be stable

;
if very elliptical, the axis will recede far from its initial

position, and the rotation may be called unstable. If OG be the

axis of initial rotation, the ratio of the squares of the axes of the
A / A /Tv

neighbouring polhode is ultimately
&quot;zr/lTI77t(

It *s therefore

necessary for the stability of the rotation that this ratio should not

differ much from unity.

156. It is well known that the steadiness or stability ofa moving
body is much increased by a rapid rotation about a principal axis.

The reason of this is evident from what precedes. If the body
be set rotating about an axis very near the principal axis of

greatest or least moment, both the polhode and herpolhode will

generally be very small curves, and the direction of that principal
axis of the body will be very nearly fixed in space. If now a
small impulsef act on the body, the effect will be to alter slightly
the position of the instantaneous axis. It will be moved from one

polhode to another very near the former, and thus the angular
position of the axis in space will not be much affected. Let ft

be the angular velocity of the body, a) that generated by the im

pulse, then, by the parallelogram of angular velocities, the change
in the position of the instantaneous axis cannot be greater than
sin&quot;

1

(0/Q), If therefore ft be great, a) must also be great, to produce
any considerable change in the axis of rotation. But if the body
have no initial rotation ft, the impulse may generate an angular
velocity w about an axis not nearly coincident with a principal
axis. Both the polhode and the herpolhode may then be large
curves, and the instantaneous axis of rotation will move about



102 MOTION UNDER NO FORCES. [CHAP. IV.

both in the body and in space. The motion will then appear
very unsteady. In this manner, for example, we may explain

why in the game of cup and ball, spinning the ball about a ver

tical axis makes it more easy to catch on the spike. Any motion
caused by a wrong pull of the string or by gravity will not produce
so great a change of motion as it would have done if the ball had
been initially at rest. The fixed direction of the earth s axis in

space is also due to its rotation about its axis of figure. In rifles,

a rapid rotation is communicated to the bullet about an axis in

the direction in which the bullet is moving. It follows, from
what precedes, that the axis of rotation will be nearly unchanged
throughout the motion. One consequence is that the resistance

of the air acts in a known manner on the bullet, the amount of

which may therefore be calculated and allowed for.

On the Cones described by the Invariable and Instantaneous Axes
treated by Spherical Trigonometry.

157. There are various ways in which we may study the

motion of a body about a fixed point. We may have recourse to

the properties of an ellipsoid as Poinsot and MacCullagh have
done. But we may also use a sphere whose centre is at the fixed

point and which is either fixed in the body or fixed in space at our

pleasure. This method is particularly useful when we wish to find

the angular motion of any line in space or in the body. By
referring these angles to arcs drawn on the surface of the sphere
we are enabled to shorten our processes by using such formulas of

spherical trigonometry as may suit our purpose.

The cones described by the invariable line and the instanta

neous axis intersect this sphere in sphero- conies. The properties
of such cones are not usually given with sufficient fulness in our

treatises on solid geometry. For this reason we have added a list

of several properties likely to be useful. In order not to interrupt
the general line of the argument this list has been placed at the

end of the chapter.

158. It is clear from what precedes that there are two im

portant straight lines whose motions we should consider. These
are the invariable line and the instantaneous axis. The first of

these is fixed in space, but as the body moves the invariable line

describes a cone in the body, which by Art. 152 intersects the

ellipsoid of gyration in a sphero-conic. This cone is usually called

the Invariable Cone. The instantaneous axis describes both a

cone in the body and a cone in space. By Art. 143, the cone de

scribed in the body intersects the momenta! ellipsoid in a polhode,
and the cone described in space intersects the fixed plane on

which the momental ellipsoid rolls in a herpolhode. These two
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cones may be called respectively the instantaneous cone and the

cone of the herpolhode.

159. The Cones. Let the principal axes at the fixed point
be taken as the axes of co-ordinates. The axes of reference are

therefore fixed in the body but moving in space. By Art. 140,
the direction-cosines of the invariable line are AcoJG, BwJG,
Cws/G ,

and the direction-cosines of the instantaneous axis are

WI/GJ, ft&amp;gt;2
/&&amp;gt;,

ft&amp;gt;3 /o&amp;gt;.

From the equations (1) and (2) of Art. 140, we

easily find

If we take the co-ordinates #, y, z to be proportional to the

direction-cosines of either of these straight lines and eliminate tolt

o)2 ,
ft&amp;gt;3 by the help of this equation, we obtain the equation to the

corresponding cone described by that straight line. In this way
we find that the cones described in the body by the invariable

line and the instantaneous axis are respectively

These cones become two planes when the initial conditions are

such that G2 = BT.

Ex. 1. Show that the circular sections of the invariable cone are parallel to

those of the ellipsoid of gyration and perpendicular to the asymptotes of the focal

conic of the momental ellipsoid.

160. There is a third straight line whose motion it is sometimes convenient to

consider, though it is not nearly so important as either the invariable line or the

instantaneous axis. If x, y, z be the co-ordinates of the extremity of a radius vector

of an ellipsoid referred to its principal diameters as axes and if a, &, c be the semi-

axes, the straight line whose direction-cosines are xja, yjb, zfc is called the eccentric

line of that radius vector. Taking this definition, it is easy to see that the direc

tion-cosines of the eccentric line of the instantaneous axis with regard to the

momental ellipsoid are w
1 iJAjT, w2 \l^l J-\ &amp;lt;*&amp;gt;3 fJCJT. These are also the direction-

cosines of the eccentric line of the invariable line with regard to the ellipsoid of

gyration. This straight line may therefore be called simply the eccentric line and

the cone described by it in the body may be called the eccentric cone.

Ex. 1. The equation to the eccentric cone referred to the principal axes at the

fixed point is (AT - G2
)
a2 + (BT - G2

) y
2 + (CT - G

2
)
z2= 0.

This cone has the same circular sections as the momental ellipsoid and cuts that

ellipsoid in a sphero-conic.

Ex. 2. The polar plane of the instantaneous axis with regard to the eccentric

cone touches the invariable cone along the corresponding position of the invariable

line. Thus the invariable and instantaneous cones are reciprocals of each other

with regard to the eccentric cone.

161. The sphero-conics. Let a sphere of radius unity be

described with its centre at the fixed point about which the
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body is free to turn. Let this sphere be fixed in the body, and
therefore move with it in space. Let the invariable line, the

instantaneous axis, and the eccentric line cut this sphere in the

points Z, 7, and E respectively. Also let the principal axes cut

the sphere in A, B, C. It is clear that the intersections of the

invariable, instantaneous, and eccentric cones with this sphere will

be three sphero-conics which are represented in the figure by the

lines KK ,
JJ

,
DD

, respectively. The eye is supposed to be
situated on the axis OA, viewing the sphere from a considerable
distance. All great circles on the sphere are represented by
straight lines. Since the cones are co-axial with the momental

ellipsoid, these sphero-conics are symmetrical about the principal

planes of the body. The intersections of these principal planes
with the sphere will be three arcs of great circles, and the portions
of these arcs cut off by any sphero-conic are called axes of that

sphero-conic. If we put z = in the equations to any one of the
three cones, the value of

yjx
is the tangent of that semi-axis of the

sphero-conic which lies in the plane of xy. Similarly, putting
y = Q,we find the axis in the plane of xz. If (a, b), (of, V), (a, ft)
be the semi-axes of the invariable, instantaneous, and eccentric

sphero-conics respectively, we thus find

tana tana tana \/AT-G2
I

B
tana

TB
tan 6 _ tan b _ tan j3 _ \/AT- G2 1

7*~
~

ALy JLL

The first of these two sets gives the axes in the plane AOB,
the second those in the plane AOG. The former will be imagi
nary if G2

&amp;lt; BT. In this case the sphero-conics do not cut the

plane AOB. The sphero-conics will therefore have their con-
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cavities turned towards the extremities of the axes OA or 00, i.e.

towards the extremities of the axes of greatest or least moment

according as G2
is &amp;gt; or &amp;lt; BT. Since tan 6/tan b = 0/A it is clear

that the invariable cone and the axis of greatest moment of

inertia always lie on the same side of the instantaneous cone.

162. Ex. 1. If we put 1 - e2= sin2
6/sin

2 a we may define e to be the eccentricity

of the sphero-conic whose semi-axes are a and 6. If e and e be the eccentricities of

the invariable and eccentric sphero-conics respectively, prove that

e*=A (B - C)/B (A
-
C) and e 2= (B

-
C)I(A

-
C)

so that both these eccentricities are independent of the initial conditions.

Ex. 2. If the radius of the sphere had been taken equal to (G
2
/7I/T)* instead of

unity, show that it would have intersected the ellipsoid of gyration along the invari

able cone, and if the radius had been (fl/Te
4
/G

2
)*, it would have intersected the

momental ellipsoid along the eccentric cone.

Ex. 3. A body is set rotating with an initial angular velocity n about an axis

which very nearly coincides with a principal axis 0(7 at a fixed point 0. The

motion of the instantaneous axis in the body may be found by the following

formula. Let a sphere be described whose centre is 0, and let I be the extremity

of the radius vector which is the instantaneous axis at the time t. If (x, y) be the

co-ordinates of the projection of I on the plane AOB referred to the principal axes

OA, OB, then x- B (B - C) L sin (pnt + M),

y= JA (A
- C) L cos ( pnt+ M),

where p2= (B -
C) (A

-
C)jAB, and L, M are two arbitrary constants depending on

the initial values of #, y.

Ex. 4. If in the last question L be the point in which the sphere cuts the

invariable line, if (p, 0) be the spherical polar co-ordinates of G with regard to

L as origin, and a the radius of the sphere, then

163. To find tlie motion of the invariable line and of the

instantaneous axis in the body.

Since the invariable line OL is fixed in space and the body
is turning about 01 as instantaneous axis, it is evident that the

direction of motion of OL in the body is perpendicular to the

plane IOL. Hence on a sphere whose centre is at the arc IL
is normal to the sphero-conic described by the invariable line. This

simple relation will serve to connect the motions of the invariable

line and the instantaneous axis along their respective sphero-
conics.

Supposing Wj ,
w2 ,

w3 to be all positive the axis OI lies in the positive octant,

and the body is turning round 01 in the direction ABC (Fig. Art. 161). Since OL
is fixed in space, it appears to move in the body in the direction opposite to rotation.

If then L and A lie on the same side of the sphero-conic JJf

(as is the case

when A, B, C are in descending order of magnitude), L moves in the body along its

sphero-conic in the direction KK . On the other hand, if L and A lie on opposite

sides of the sphero-conic JJ ,
L moves in the opposite direction. See also Art. 150.
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164. Let v be the velocity of the invariable line along its

sphero-conic, then since the body is turning about 01 with angular

velocity co, and OL is unity, we have v = w sin LOT. But by Art.

143 T/Q = ft) cos LOI. Eliminating &&amp;gt; we have

v = (T/G) tan 7,07.

165. Produce the arc IL to cut the axis AK in N, so that

LN is a normal to the sphero-conic described by the invariable

line. Taking the principal axes at the fixed point as axes of

reference, the direction-cosines of OL and 01 are respectively

proportional to Aco^, Ba&amp;gt;2 ,
(7a&amp;gt;3 ,

and &amp;lt;Dlt &&amp;gt;2 ,
&&amp;gt;3 . The equation to

the plane LOI is

(B C) ft&amp;gt;2 &&amp;gt;3# + (0 A) ft)3
ft&amp;gt;i2/

+ (A B) ft^ft)^ = 0.

This plane intersects the plane of xy in the straight line ON,
hence putting

= 0, we find the direction-cosines of ON to be

proportional to (A - C) &&amp;gt;!, (B - G) ft&amp;gt;2 ,
and 0. Hence

- cow
The numerator of this expression is easily seen to be 6r

2 GT.

Expanding the quantity under the root we have

AW + 2
ft)2

2 - 2(7 (Aw* + Bco.2
2

) + G 2

(ft)/
2 + ft)2

2

),

which is clearly the same as

G2 - C2
ft)3

2 -2C(T- Ceo/) + O2

(ft)

2 -
o&amp;gt;3

2

).

Substituting we find

^2 _ nrr
cosLON = -=

But

, . . , JZ-

TON
=

C77
an IS ^erefore constant throughout

the motion.

Combining this result with that given in the last Article, we
see that the

velocity of L) G&quot;
- GT

n . . . &amp;gt;

=
-. tan n.

along its conic] G6r

where n is the angle LON. If we adopt the conventions of

spherical trigonometry, n is also the length of the arc normal to

the sphero-conic intercepted between the curve and the principal

plane AB of the body.

166. Ex. 1. If the focal lines of the invariable cone cut the sphere in S and 8
,

these points are called the foci of the sphero-conic. Prove that the velocity
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of L resolved perpendicular to the arc SL is constant throughout the motion and

equal to {(G*-BT) (AT- G2
)/ABG

2
}?. If LM be an arc of a great circle perpen

dicular to the axis containing the foci, and p be the arc SL, prove also that

(A -
C) (B -

C))
*

. _ _.

--TB \
8mLM-

Ex. 2. Prove that the velocity of L resolved perpendicularly to the central radius

AT G2

vector AL is cot AL.
A(JT

Ex. 3. If r, r
,

r&quot; be the lengths of the arcs joining the extremity A of a princi

pal axis to the extremities L, I, E of the invariable line, instantaneous axis, and

eccentric line respectively; 0, 6
,

6&quot; the angles these arcs make with any principal

plane AOB, prove that

cosr cos r cos r&quot; tan 9 tan 6 tan?&quot;

where f= arc I/I. This theorem will enable us to discover in what manner the

motions of the three points L, I, E are related to each other.

Ex. 4. Show that the velocity of the instantaneous axis along its sphero-conic

G G2 - CT
is 7! Tff tan n&amp;gt; cos

&amp;gt;

where n is the length of the normal to the instantaneous
1 AB

sphero-conic intercepted between the curve and the arc AB, and f=arc LI.

Comparing this result with the corresponding formula for the motion of L given

in Art. 165, we see that for every theorem relating to the motion of L in its sphero-

conic there is a corresponding theorem for the motion of I. For example, if S be a

focus of the instantaneous sphero-conic, we see by Ex. 1 that the velocity of I

resolved perpendicular to the focal radius vector S l bears a constant ratio to cos LI.

This constant ratio is equal to that given in Ex. 1 multiplied by GPC/TAB.

Ex. 5. Show that the velocity of the eccentric line along its sphero-conic is

{(GP
-
CT)I *JABGT] tan

TO&quot;,
where n&quot; is the length of the arc normal to the sphero-

conic intercepted between the curve and the principal arc AB.

Ex. 6. Prove that (velocity of E)
2 -

(velocity of -L)
2= constant. Show also that

this constant= (AT - G2
) (BT-G2

) (CT- G 2
)/ABCG

2T.

Ex. 7. The motion of L along its sphero-conic is the same as that of a particle

acted on by two forces whose directions are the tangents at L to the arcs LS, LS

joining L to the foci of the sphero-conic and whose magnitudes are respectively

proportional to sin LS cos LS and sin LS cos LS.

Solutions of these examples and proofs of other theorems in this section may
be found in a paper contributed by the author to the Proceedings of the Royal

Society, 1873.

167. The instantaneous axis describes a cone in space, which
has been called the cone of the herpolhode. The equation of

this cone cannot generally be found, but when it can be determined

we have another geometrical representation of the motion. For

suppose the two cones described by the instantaneous axis in

space and in the body to be constructed. Since each of these

cones will contain two consecutive positions of their common

generator, they will touch each other along the instantaneous

axis. Then, the points of contact having no velocity, the motion
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will be represented by making the cone fixed in the body roll on

the cone fixed in space.

168. Poinsot s theorem. To find the motion of the instan

taneous axis in space.

Since the invariable line OL is fixed in space, it will be con

venient to refer the motion to OL as one axis of co-ordinates.

Let the angle the instantaneous axis 01 makes with OL be called

f, and let
c/&amp;gt;

be the angle the plane IOL makes with any plane

passing through OL and fixed in space.

During the motion the cone described by 01 in the body rolls

on the cone described by 01 in space. It is therefore clear that

the angular velocity of the instantaneous axis in space is the

same as its angular velocity in the body. Describe a sphere
whose centre is at and radius unity, and let this sphere be

fixed in the body. Let L, I be the intersections of the invariable

line and instantaneous axis with the sphere at the time t, L ,
I

their intersections at the time t + dt. Then IL, IL are con

secutive normals to the sphero-conic KK traced out by the

invariable line and therefore intersect each other in some point P

which may be regarded as a centre of curvature of the sphero-
conic. Let p

= PL. Then clearly

velocity of / resolved) _ /velocityN sin (p + )

perpendicularly to IL) \ of L J sin p

Therefore by Art. 164 we have
Ji rri

sin - = ~ tan f(cos f + cot p sin f) ;

L- /, where n is the

dt G V tan/3/

But in any sphero-conic tan p = tan3
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length of the normal intercepted between the curve and that axis

which contains the foci, and 21 is the length of the ordinate

through either focus, and is usually called the latus rectum.

Substituting for tan p, and remembering that

tan? G*-CT , .
,

1&amp;lt;JK

, tan 2 6

, by Art. 165, and tan I =
,
we get

CT an

If we substitute for tan a and tan b their values, we get

d$_T (AT- fl
3

) (BT- 2

) (GT- 2

)

^~ + ABCGT

C

s,

169. A simple geometrical construction for this result has

been given by Dr Ferrers, Master of Caius College, in a Smith s

Prize paper (1882). If OH be the projection of the instanta

neous axis 01 011 the invariable plane drawn through the fixed

point 0, and if OH intersect the momental ellipsoid in H, then

dt~ TABCOH*

170. Since the resolved angular velocity about the invariable

line is constant, we easily find &&amp;gt;
= sec f T/G. Substituting this

value of &amp;lt;w in equation (6) of Art. 137, we find a relation between

f and d/dt, which however is too complicated to be of much use.

The values of dfyjdt and d/dt in terms of f have now both been
found

;
from these the motion of the instantaneous axis in space

can be deduced.

&amp;gt;171.

Ex. 1. Show that the angular velocity i/ of the instantaneous axis in

/r&amp;gt;2 / G2\ XXX
space or in the body is given by wV2=

[
A+B + C ~2 -=\ - 1 2 3

,
where la is

AJjLi \ J. J It)&quot;

the resultant angular velocity of the body and X
x ,

X2 , X3 have the meanings given

to them in Art. 137. This result is due to Poinsot.

Ex. 2. The length of the spiral between two of its successive apsides, described

in absolute space, on the surface of a fixed concentric sphere, by the instantaneous

axis of rotation, is equal to a quadrant of the spherical ellipse described by the same

axis on an equal sphere moving with the body. This is Booth s Theorem.

Ex. 3. If the eccentric line intersect in the point E the unit sphere which is

fixed in the body and has its centre at the fixed point, prove that

_
of E

-
G dt

tS

where the letters have the meanings given to them in Art. 168.

172. The Rolling and Sliding Cone. Let be the fixed

point, 01 the instantaneous axis. Let the angular velocity CD

about 01 be resolved into two, viz. a uniform angular velocity T/G
about the invariable line OL, and an angular velocity &&amp;gt; sin IOL
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about a line OH lying in a plane fixed in space perpendicular to

the invariable line, and passing through the fixed point 0. Let

this fixed plane be called the invariable plane at 0. As the body
moves, OH will describe a cone in the body which will always touch

this fixed plane. The velocity of any point of the body lying for a

moment in OH is unaffected by the rotation about OH, and the

point has therefore only the motion due to the uniform angular

velocity about OL. We have thus a new representation of the

motion of the body. Let the cone described by OH in the body
be constructed, and let it roll on the invariable plane at with the

proper angular velocity, while at the same time this plane turns

round the invariable line with a uniform angular velocity T/G.
The cone described by OH in the body has been called by Poinsot

the Rolling and Sliding Cone.

To find a construction for the sliding cone. Its generator
Oil is at right angles to OL, and lies in the plane IOL. Now
OL is fixed in space ;

let OL be the line in the body which, after

an interval of time dt, will come into the position OL. Since the

body is turning about 01, the plane LOL is perpendicular to the

plane LOI, and hence OH is perpendicular to both OL and OL.
That is, OH is perpendicular to the tangent plane to the cone

described by OL in the body. The cone described by OH in the

body is therefore the reciprocal cone of that described by OL.
The equation to the cone described by OL has been found in Art.

159. Turning therefore its coefficients upside down, we see that

the equation to the cone described by OH is

A B
2

A rri /nro T)ffi fy% j f^fn /&amp;gt;&amp;gt;

jciJL Cr _o_t Cr \j-L Cr&quot;

The focal lines of the cone described by OH are perpendicular
to the circular sections of the reciprocal cone, that is the cone

described by OL. And these circular sections are the same as

the circular sections of the ellipsoid of gyration. Hence the focal

lines lie in the plane containing the axes of greatest and least

moment, and are independent of the initial conditions.

This cone becomes a straight line in the case in which the

cone described by OL becomes a plane, viz. when the initial

conditions are such that 6r
2

173. To find the motion of OH in space and in the body.

Since OL, OH and 01 are always in the same plane the

motion of OH in space round the fixed straight line OL is the

same as that of 01, and is given by the expression for
d&amp;lt;f&amp;gt;/dt

in

Art. 168.

To find the motion of OH in the body it will be convenient

to refer to the figure of Art. 168. Produce the arcs PL, PL
to H and II so that LH and L ll are each quadrants. Then
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H and H are the points in which the axis OH intersects the

unit sphere at the times t and t + dt. We have therefore

velocity\ /velocity\ sin (p 4- ITT) T
.,

r TT }

=
( t T I

-^- = n tan ? cot P-
, of H J \ of L ) sin p G

Substituting for tan p as before we may express the result in

terms of f or &&amp;gt; at our pleasure.

Since the cone described by OH in the body rolls on a plane
which also turns round a normal to itself at 0, it is clear that the

angular velocity of OH in the body is less than the angular

velocity of OH in space by the angular velocity of the plane, i.e.

/velocity\ _d$_T
\ of H )~ dt~ G

Ex. If I, in, n be the direction-cosines of OH referred to the principal axes of

the body, prove
pyrgifo

=
(BT^o,,

=
(CT -G*) &amp;lt;*3

= Gv/GV^

The conjugate Ellipsoid and the conjugate line.

174. Let the momental ellipsoid at the fixed point be

Ax* + Bf + Cz* = K........................ (1),

where K = Me4
. We also have

A &* + B &&amp;gt;2
2 + ft&amp;gt;3

2 = T ) /
2

.

AW + J3W + CV = G2

}

These give

(\A - A*) &amp;lt; + (\B - B2

) ov + (\C - O2

) 8
2 - \T-

G*\

(jAA -A*) a)!
2 + (u.B

- B^)
ft&amp;gt;2

2 + (jj,C
- (7

2

) o&amp;gt;3
2 = fj,T- G*}

If we now choose three quantities A t
Bf

,
Gf

,
such that

B = (\B - B*) i, B * =
(fiB

-
B*)j ......... (4),

C = (\C - O2

) t,
/2 = (pC - C*)j, }

we may construct in the body another conicoid, viz.

A tf + Bf + CraP^K ..................... (5),

which will afterwards be shewn to be an ellipsoid. We shall

,
i

also have A , D/0 ../^ ^,2 V
............. ......(6),A

*a&amp;gt;i + B -ft)2
2 + C -ft&amp;gt;3

2 = (7
2

J

where T and G are two new constants.

This second ellipsoid will possess some properties analogous to

those of the momental ellipsoid. Thus :

(1) The angular velocity about the radius vector round
which the body is turning varies as that radius vector.
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(2) The length of the perpendicular on the tangent plane at

the extremity of the instantaneous axis is constant.

(3) The resolved angular velocity of the body about this

perpendicular on the tangent plane is constant, and = T /G .

It is not generally true that the position in space of this

perpendicular is fixed.

3. To determine if this transformation is possible we must
examine the constants X and

//,. Solving (4) we find

X = i
(A + B + C),

We have therefore the following results :

T = i(\T-Q*\ #&quot;
=

Since A, B, C are moments of inertia, they are all positive, and
the sum of any two is greater than the third. We infer (1) that

A, B
,
G are also all positive, (2) that X and

//,
are positive and

greater than the greatest of the three A, B, C, (3) that T and G 2

are real and positive.

175. Since this analysis gives only one value each to X and
//,,

it follows that if we perform the same operations on the second

ellipsoid we shall obtain the first ellipsoid and no other. Hence
the two ellipsoids are conjugate to each other. Thus we have

A =
Jt A (B + (?- A\ &c., &c.,

and by substitution i /i
= ABC/A B C .

Either of the two bodies whose moments of inertia arc A, B, C
and A

,
B

,
G may be called the conjugate of the other. When we

consider only the motion of one body, we suppose that body to

carry with it the two ellipsoids as if rigidly connected to it. The

perpendicular on the tangent plane to the momental ellipsoid of

the body at its intersection with the instantaneous axis is the

invariable line, while the corresponding perpendicular on the

tangent plane to the conjugate ellipsoid at its intersection with
the instantaneous axis is called the conjugate line. The direction

cosines of the conjugate line are therefore A coJG ,
B a)2/G ,

See a paper by the author in the Quarterly Journal, 1888.

with similar equations for the other letters.

Show also that if A, B, G are in descending order of magnitude, A
,

Z&amp;gt;

,
C are in

ascending order.

Ex. 2. Show that the motion in space of any point situated in the conjugate
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line is in the same direction as if that point fixed (for the moment) on the body, but

its velocity is twice as great. See Art. 5, (1), and Art. 140, note.

Ex. 3. Many of the theorems which govern the motion of the conjugate line

OL are similar to those which govern the motion of the invariable line OL.

The following are examples :

(1) The straight lines OL, 01, OL describe quadric cones in the body in the

same direction, the cone described by the instantaneous axis 01 being between the

cones described by the invariable line OL and the conjugate line OL .

(2) The normal planes to the cones described by OL, OL intersect each other

along the instantaneous axis OL

(3) The velocity of OL along its cone varies as the tangent of the inclination

to 01, and the ratio is equal to T /G . It also varies as the tangent of the angle

OL makes with the intersection of the plane L OI with any principal section of

the conjugate ellipsoid. See Art. 165.

(4) The cosines of the angles IOL, IOL are always in a constant ratio.

Ex. 4. If 6, \}s
be the angular co-ordinates of the conjugate line OL referred to

the invariable line OL as the axis of z, show that

where ABCH = T(BC + CA+AB}-G* (A+B + C)

(C S ~
a) (C S ff

~

where aGG li
= TBC+ G2

(A
-

A), &c., &c.

It should be noticed that a, /3, 7 are real,

Ex. 5. Two bodies each turning about a fixed point have angular velocities

Wj , w2 , w3 and o^ , w2 ,
o&amp;gt;3 about their principal axes and their principal moments

are A, B, C and A
,
B

,
C . If these bodies move so that w^w/, w2

= w2 ,
w
3
= w3

prove from Euler s equations that A IA=B IB = C IC. If they move so that

w
1=-w1 ,

a72=-w2 ,
o&amp;gt;3 =:-w3 , prove that the bodies are conjugate.

Prove also that if the relations given between the angular velocities hold initially

it will always hold and that the cones described by the instantaneous axes are equal

and similar.

Motion of the Principal Axes.

176. To find the angular motions in space of the principal
axes.

Since the invariable line OL is fixed in space it will be con

venient to refer the motion to this straight line as axis of z. Let

OA, OB, 00 be the principal axes at the fixed point 0, and let, as

before, a, /3, 7 be their inclinations to the axis OL or OZ. Let

X, /m, v be the angles the planes LOA, LOB, LOG make with

some fixed plane LOX passing through OL. Our object is to

find da/at and d\/dt with similar expressions for the other

axes. We might here refer to Euler s geometrical equations given
in Vol. I. chap. 5 and by writing a, \ for 6, ty respectively obtain

R. D. n. 8
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the required expressions, but it will be found advantageous to

make a slight variation in the argument.
Describe a sphere whose centre is at the fixed point, and whose

radius is unity. Let the invariable line, the instantaneous axis

and the principal axes cut this sphere in the points L, I, A, B, C
respectively. The velocity of A resolved perpendicular to LA will

then be sin a d\/dt. But since the body is turning round 01 as

instantaneous axis, the point A is moving perpendicularly to the

arc IA, and its velocity is co sin IA. Resolving this perpendicularly
to the arc LA

}
we have

d\ -AT TAT cos LI cos LA cos IA
sin a -7-

- = G) sin Al cos LAI =
a&amp;gt; ^ ^i -

,

dt sin LA

by a fundamental formula in spherical trigonometry. But co cos LI
is the resolved part of the angular velocity about QL

y
which is

equal to T/G, and co cos IA is the resolved part of the angular

velocity about OA, which is o^. We have therefore

.

,
d\ T

sin2 a -r- = -~
&&amp;gt;!

cos a,
at (JT

a result which follows immediately from Art. 19. Since G cos a Acol}

7-v
fJJ /~y ^

we have s^ a di=G A~ (1)

This result may also be written in the form

d\ T AT-G*
Tt

=
G +-^- coi* a

&amp;lt;

2
&amp;gt;

177. To find
-j-

we may proceed in the following manner.

By Art. 140, we have cos a = AcoJG, cos ft
= Bco2/G, cos 7 = Cco3/G.

Substituting in Euler s equation
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we have sin a = ~ # cos /3 cos 7 ............ (3).

But by Art. 137 cos a, cos /3, cos 7 are connected by the equations

cos2 a cos2
/3 cos2

7 _ T \

~A~ ~B~ ~0~ ~G*\ ............... (4).

cos2 a + cos2
{3 + cos2

7 = 1
J

If we solve these equations so as to express cos $, cos 7 in

terms of cos a, we easily find

Yda\
2 G2 /G2 -CT A-G

,
\/G2-T A-B

&quot; -*&quot; -

178. Since the left-hand side of equation (5) is necessarily real, we see that the

values of cos2 a are restricted to lie between certain limits. If the axis whose

motion we are considering is the axis of greatest or least moment let B be the

axis of mean moment. In this case cos2 a must lie between the two limits

G2 CT A G^ BT A
2 -^ and - if both be positive. By Art. 138 the former of

these two is positive and less than unity; this is easily shown by dividing the

numerator and the denominator by ACG2
. If the latter is positive the spiral

described by the principal axis on the surface of a sphere whose centre is at the

fixed point lies between two concentric circles which it alternately touches. If the

latter limit is negative cos a has no inferior limit. In this case the spiral always

lies between two small circles on the sphere, one of which is exactly opposite the

other.

If the axis considered is the axis of mean moment, cos 2 a must lie outside the

same two limits as before. Both these are positive, but one is greater and the

other less than unity. The spiral therefore lies between two small circles opposite

each other.

In order that d\jdt may vanish we must have G2 cos2 a= ^T, but this by substitu

tion makes dajdt imaginary. Thus dXjdt always keeps one sign. It is easy to see

that if the initial conditions are such that G2
/T is less than the moment of inertia

about the axis which describes the spiral we are considering, the angular velocity

will be greatest when the axis is nearest the invariable line and least when the axis

is furthest. The reverse is the case if G2
/T is greater than the moment of inertia.

179. Ex. 1. Let OM be any straight line fixed in the body and passing

through and let it cut the ellipsoid of gyration at O in the point M. Let OM - be

the perpendicular from on the tangent plane at M. If OM=r, OM =p, and if

i, i be the angles OM, OM make with the invariable line OL, prove that

, . dj T G
sm2 i -f-

= -- cos i cos i
,

dt G mpr

where j is the angle the plane LOM makes with some plane fixed in space passing

through OL and m is the mass of the body. This follows from Art. 19.

Ex. 2. If KLK be the conic traced out by the invariable line in the manner

described in Art. 161, show that \ = (T/G) t + (angle LAK) -
(vectorial area LAK),

where X is the angle described by the plane containing the invariable line and the

principal axis OA.

Ex. 3. If we draw three straight lines OA, 07?, OC along the principal axes at

82
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the fixed point of equal lengths, the sum of the areas conserved by these lines on

the invariable plane is proportional to the time. [Poinsot. ]

Ex. 4. If the lengths OA, OB, OC be proportional to the radii of gyration

about the axes respectively, the sum of the areas conserved by these lines on the

invariable plane will also be proportional to the time. [Poinsot.]

Motion of the body when two principal axes are equal.

180. Let the body be rotating with an angular velocity G&amp;gt;

about an instantaneous axis 01. Let OL be the perpendicular
on the invariable plane. The momental ellipsoid is in this case a

spheroid, the axis of which is the axis of unequal moment in the

body. Let the equal moments of inertia be A and B. From the

symmetry of the figure it is evident that as the spheroid rolls on

the invariable plane, the angles LOG, LOT are constant, and the

three axes 01, OL, OC are always in one plane. Let the angles

y, IOG=i.

Following the same notation as in Art. 137, we have

ft)3
= a) cos i, a)!

2 + ft)2
2 = ft)

2 sin2
i,

G2 = (A
2 sin2

i + C2 cos2
i) co

2
,

T = (A sin2i+C cos2

i) w
2
.

We therefore have
Ccos cos i

cos 7 = ~ =
.

This result may also be obtained as follows. In any conic if i

and 7 be the angles a central radius vector and the perpendicular
on the tangent at its extremity make with the minor axis, and if

a, b be the semi-axes, then tan 7 = tan i . 62

/a
2

. Applying this to

the momental spheroid, we have

A
tan y = - tan i.

L&amp;gt;

The angle i being known from the initial conditions, the angle 7
can be found from either of these expressions. The peculiarities of

the motion will then be as follows.

The invariable line describes a right cone in the body whose
axis is the axis of unequal moment, and whose semi-angle is 7.

The instantaneous axis describes a right cone in the body
whose axis is the axis of unequal moment, and whose semi-angle
is i.

The instantaneous axis describes a right cone in space, whose
axis is the invariable line, and whose semi-angle is i 7.

The axis of unequal moment describes a right cone in space
whose axis is the invariable line, and whose semi-angle is 7.

The angular velocity of the body about the instantaneous
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axis varies as the radius vector of the spheroid, and is therefore

constant.

181. To find the common angular velocity in space of the in

stantaneous axis and the axis ofunequal moment round the invariable

line.

Let G be the extremity of the axis of figure of the momental

ellipsoid, and let H be the rate at which the plane LOG is turning
round OL. Let CM, CN be perpendiculars on OL and 01.

Then since the body is turning round 01, the velocity of G is

GN . o&amp;gt;. But this is also CM . H. Since CM = OG sin 7,

CN=OGsiui, we have at once fl sin 7 = CD sin i, whence fl can

be found.

182. To find the common angular velocity in the body of the

invariable line and the instantaneous axis round the axis of unequal
moment.

Let 1 be the rate at which the plane LOG is turning round

OG in the body. Let LM, LN be perpendiculars from any point
L in the invariable line on OG and 01. Then since OL is fixed

in space and the body is turning round 01, the velocity of L in

the body is LN . w. But this is also LM . 1 . Since LM OL sin 7,

LN = OL sin (i 7), we have at once 1 sin 7 = w sin (i 7), whence
fl can be found.

183. Ex. 1. If a right circular cone, whose altitude a is double the radius of

its base, turn about its centre of gravity as a fixed point, and be originally set in

motion about an axis inclined at an angle a to the axis of figure, the vertex of the

cone will describe a circle whose radius is f a sin a. [Coll. Exam.]

Ex. 2. A circular plate revolves about its centre of gravity as a fixed point. If

an angular velocity o&amp;gt; were originally impressed on it about an axis making an angle

a with its plane, a normal to the plane of the disc will make a revolution in space in

a time r given by 27r/T=w x/l + 3 sin2
a. [Coll. Exam.]

Ex. 3. A body which can turn freely about a fixed point at which two of the

principal moments are equal and less than the third, is set in rotation about any
axis. Owing to the resistance of the air and other causes, it is continually acted

on by a retarding couple whose axis is the instantaneous axis of rotation and whose

magnitude is proportional to the angular velocity. Show that the axis of rotation

will continually tend to become coincident with the axis of unequal moment. In

the case of the earth therefore, a near coincidence of the axis of rotation and axis

of figure is not a proof that such coincidence has always held. [Astronomical

Notices, March 8, 1867.]

Ex. 4. When A=B, show that the conjugate ellipsoid is a spheroid the axis of

which is the axis OC of unequal moment in the body.

Show also that the conjugate line OL lies in the plane which contains OC, 01
and OL; and if 7 be the angle COL ,

tan y =A tani/(24
-
C) so that

cot 7 + cot y 2 cot i.
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Motion when G2 = BT.

184. The peculiarities of this case have been already alluded

to in Art. 137. W7hen the initial conditions are such that this

relation holds between the Vis Viva and the Momentum of the

body the whole discussion of the motion becomes more simple*.

The fundamental equations of motion are

_ T \

- a).

Solving these, we have

_B-_G (P-
^i

2

A nA-L,

But

_

A-C BG
C-A

__ /
dt

= + V
&quot;

AG
da&amp;gt;2 __ (A-B)(B-C)

2 -

When the initial values of ^ and &&amp;gt;3 have like signs, (C-A) w^
is negative and therefore dw.Jdt must be negative, hence in this

expression the upper or lower sign is to be used according as the

initial values of o)lf o&amp;gt;3 have like or unlike signs.

*
2-#W dt

~ V AG
If we put + n for the right-hand side and integrate we have

- 2G

G + Bco, t
.

Bco2 E.e**
nt -I

.- = & . e is
,

. .
= -

2^
*&quot;

&amp;gt;

G-Ba&amp;gt; 2 E.e^nt + l

where E is some undetermined constant. As t increases indefi

nitely, o&amp;gt;2 approaches + G/B as its limit and therefore by (2) o^ and

a)3 approach zero.

The conclusion is that the instantaneous axis ultimately ap

proaches to coincidence with the mean axis of principal moment,
but never actually coincides with it. It approaches the positive
or negative end of the mean axis according as the initial value of

(G A) a&amp;gt;i&amp;lt;w3 is positive or negative.

185. To find what the cones traced out in the body by the

invariable line and instantaneous axis become when G2 = BT.

* This case appears to have been considered by nearly every writer on this

subject. As examples of different methods of treatment the reader may consult

Legendre, Traite des Fonctions Elliptiques, 1825, Vol. i. page 382, and Poinsot,

Tlieorie Nouvelle de la Rotation des corps, 1852, page 104.
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Eliminating &&amp;gt;

2
from the fundamental equations of the last

Article we have A (A - B) a&amp;gt;* =G(B-G) &&amp;gt;3
2

.

Taking the principal axes at the fixed point as axes of refer

ence, the equations of the invariable line are xjAta-^
=

y/Bco 2
=

z/Ca)s .

Eliminating o^ and o)3 the locus of the invariable line is one of the
A-B /B-G

ZT*
The equations of the instantaneous axes are

xjco-^
=

y/co2
=

z/a&amp;gt;3
.

Eliminating wl and &amp;lt;w3 the locus of the instantaneous axis is one of

the two planes.

jA(A-B)x= *J(B-C)z.
In these equations since zjx follows the sign of o&amp;gt;3/i the upper

or lower sign is to be taken according as the initial values of

G&amp;gt;!,
co3 have like or unlike signs. These planes pass through the

mean axis, and are independent of the initial conditions except so

far that G2 = BT.

The rolling and sliding cone is the reciprocal of that described

by the invariable plane Art. 172, and is therefore the straight line

perpendicular to that plane which is traced out by the invariable

line.

Ex. 1. Show that the planes described by the invariable line coincide with the

central circular sections of the ellipsoid of gyration and are perpendicular to the

asymptotes of that focal conic of the momental ellipsoid which lies in the plane of

the greatest and least moments.

Ex. 2. The planes described by the instantaneous axis are perpendicular to the

umbilical diameters of the ellipsoid of gyration and are the diametral planes of

the asymptotes of the focal conic in the momental ellipsoid.

186. The relations to each other of the several planes fixed

in the body may be exhibited by the following figure. Let

A, B, G be the points in which the principal axes of the body
cut a sphere whose centre is 0, and radius unity. Let BLK

y

BIJ be the planes traced out by the invariable line and the

instantaneous axis respectively. Then by the last Article

IA B-G

Hence we find

This is the quantity which has been called n in Art. 184

Exactly as in Art. 163 the direction of motion of L is perpen
dicular to IL and hence the angle ILB is a right angle. Thus
the spherical triangle ILB has one angle right, and another

constant and independent of all initial conditions.

Exactly as in Art. 163, the velocity of L along LB is equal to
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&&amp;gt; sin IL which, by Art. 143, is equal to tan IL . T/G. But from
the spherical triangle ILB we have n sin BL = tan IL. If then we

put, as before, ft = BL, we have

d T .

If the initial values of o^, cos have the same sign, the body
is turning round / from Kr

to B. Hence, since L is fixed in

space, BL is increasing and therefore the upper sign must be
used in this figure. See also Art. 184.

We may also find an expression for ft in terms of the time.

Since cos ft
= Bw^G we have, by Art 184,

G .

1 - cos ft 2

Ex. 1. When the body moves so that G2= BT, prove that the conjugate body

(Art. 174) also moves so that G 2=B T . Thence shew that the conjugate line OL
describes a great circle BQ passing through B such that BQ and BK make equal

angles on opposite sides with BJ .

Show also that the spherical triangle IL B has one angle (viz. IL B} right and
another (viz. IBL )

constant and equal to tan&quot;
1
n, where n has the meaning above

given.

Ex. 2. Show that the eccentric line describes a great circle passing through B
and cutting AC in some point D where tan2 CD . tan CJ tan CK . If E be the

intersection of the eccentric line with the sphere, show that the arcs BE and BL
are always equal.

187. To find the motion of the body in space.

We have already seen that the motion is such that a plane
fixed in the body, viz. the plane BK

,
contains a straight line

fixed in space, viz. the invariable line OL. Since the body is

brought from any position into the next by an angular velocity
&) cos IOL = T/G about OL, and an angular velocity co sin 10L
about a perpendicular to OL, viz. OH, it follows that the plane
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fixed in the body turns round the line fixed in space with a

uniform angular velocity T/G or G/B. At the same time the

plane moves so that the line fixed in space appears to describe the

plane with a variable velocity CD sin IOL. If /3 be the angle BL,
this has been proved in the last Article to be n sin ftT/G.

188. The cone described by OH in the body is the reciprocal
cone of that described by OL, and from it we may deduce re

ciprocal theorems. The motion is therefore such that a straight
line fixed in the body, viz. OH, describes a plane fixed in space,
viz. the plane perpendicular to OL. The straight line moves

along this plane with a uniform angular velocity equal to T/G or

G/B, while the angular velocity of the body about this straight
line is + n sin ftG/B.

189. The motion of the principal axes may be deduced from
the general results given in Art. 176. But we may also proceed
thus. Since the body is turning about 01, the point B on the

sphere is moving perpendicularly to the arc IB. Hence the

tangent to the path of B makes with LB an angle which is the

complement of the constant angle IBL. The path traced out

by the axis of mean moment on a sphere whose centre is at is

a rhumb line which cuts all the great circles through L at an

angle whose cotangent is + n.

190. To find the motion of the instantaneous axis in space.

This problem is the same as that considered in Art. 168. We
may however deduce the result at once from Art. 187. The angle
ILB is always a right angle, it therefore follows that the angular

velocity of / round L is the same as that of the arc BL round L.

But the angular velocity of the latter is constant and equal to T/G.
If then be the angle the plane LOI, containing the instantaneous

axis and the invariable line, makes with some fixed plane passing

through the invariable line, we have j? = ?&amp;gt;

191. To find the equation of the cone described by the

instantaneous axis in space, we require a relation between f and
&amp;lt;f&amp;gt;,

where f is the arc IL on the sphere. From the right-angled

triangle ILB we have n sin ft
= tan f, and by Art. 186,

Eliminating ft, we shall have an expression for f in terms of t.

We find
2n = cot + tan =

&amp;gt;JEfl nt + ^e**** .

tan 22 \JE

By the last Article
&amp;lt;/&amp;gt;

= (T/G)t + F, where F is some constant.
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Let us substitute for t in terms of
&amp;lt;,

and let us choose the plane
from which &amp;lt; is measured so that *jEe*

nF= 1.

The equation to the cone traced out in space by the instan

taneous axis is

When
(f)
=

0, we have tan = n. Therefore the plane fixed in

space from which &amp;lt; is measured is the plane containing the axes

of greatest and least moment at the instant when that plane
contains the invariable line.

On tracing this cone, we see that it cuts a sphere whose centre

is at the fixed point in a spiral curve. The branches determined

by positive and negative values of &amp;lt; are perfectly equal. As
&amp;lt;f&amp;gt;

increases positively the radial arc f continually decreases, the

spiral therefore makes an infinite number of turns round the

point L, the last turn being infinitely small.

Ex. In the herpolhode = e
m9 + e~ md

,
if the locus of the extremity of the

polar subtangent of this curve be found and another curve be similarly generated
from this locus, the curve thus obtained will be similar to the herpolhode. [Math.

Tripos, 1863.]

On Correlated and Contrarelated Bodies.

192. To compare the motions of different bodies acted on by
initial couples whose planes are parallel.

Let a, /3, 7 be the angles the principal axes OA, OB, 00 of

a body at the fixed point make with the invariable line OL.
Then by Art. 140, Euler s equations may be put into the form

&quot;

with two similar equations. Let X, //,,
v be the angles the planes

LOA, LOB, LOO make with any plane fixed in space, and passing

through OL. Then
. d\ T cos2 a _

Sm
^dt

=
G-~A~- ..................

W&amp;gt;

with similar equations for p and v.

If accented letters denote similar quantities for some other

body, the corresponding equations will be

d cos OL _,. / 1 1 \

(3),

.

2 ,d\ Tsma
dt

= v-
If then the bodies are such that
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the equations (1) to find a, /9, 7 are the same as the equations (3)
to find a

, /3 , 7 . Therefore if these two bodies be initially placed
with their principal axes parallel and be set in motion by impulsive

couples whose magnitudes are G and G, and whose planes are

parallel, then after the lapse of any time t the principal axes of

the two bodies will still be equally inclined to the common axis of

the couples.

The equations (5) may be put into the form

_ = ___
A A E E G C

&quot;

Since by Art. 142 the vis viva is given by
27

_cos
2 a cos2

/3 cos2

7 ,,_

~&
=
~~T ~B~ ~G~

we see that each of the expressions in (6) is equal to T/G T /G .

It immediately follows by subtracting equations (2) and (4)
and dividing by sin 2 a that

d_M_T_r
dt dt G G

&quot;

with similar equations for
//,
and v. Thus the two bodies being

started as before with their principal axes parallel each to each,
the parallelism of the principal axes may be restored by turning
the body whose principal axes are A

,
B

,
G about the com

mon axis of the impulsive couples through an angle (T/G T /G )
t

in the direction in which positive impulsive couples act.

193. When the couples G and G are equal the condition (6)
, i i i i i i T-r
becomes -------^--_=__ ............ (9) ,

the bodies are then said to be correlated. If momental ellipsoids
of the two bodies be taken so that the moment of inertia in each
bears the same ratio to the square of the reciprocal of the radius

vector these ellipsoids are clearly confocal.

When the couples G and G are equal and opposite, the

equation (6) becomes

ao)A A E E OC ~

G*

and the bodies are said to be contrarelated.

194. To compare the angular velocities of the two bodies at

any instant.

Let G) be the angular velocity of one body at any instant, then

following the usual notation we have

cos2

or =
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If the same letters accented denote similar quantities for the

other body a/2 = G *

(^^ +
C

p/2
+ -^r)

But remembering the condition (6) these give

By referring to (7) the quantity in square brackets is easily
seen to be T/G + T /Q ,

195. Ex. 1. If two bodies be so related that their ellipsoids of gyration are

confocal, and be initially so placed that the angles (a, ^3, 7) (a , ft , y )
their prin

cipal axes make with the invariable line of each are connected by the equations

cos a _ cos a cos /3 _ cos ft cos 7 _ cos 7

~JI ~~^JA ^/B~~ &quot;JW* ~JC
~

1JC
r

and if these bodies be set in motion by two impulsive couples G, G respectively

proportional to *JABC and *JA B C
,
then the above relations will always hold be

tween the angles (a, /3, 7) (a , /3 , 7 ).
If p and p be the reciprocals of d\jdt and

clX /dt, then Gp - Gp will be constant throughout the motion, where X, X
, &c., are

the angles the planes LOA, L O A make at the time t with their positions at the

time t= 0.

Ex. 2. In order that the angles which the principal axes make with the axis of

the couple may be the same in each body, it is necessary that the invariable cones

and therefore also their reciprocals, i.e. Poinsot s rolling and sliding cones, should

be the same in each body. Thus in the two bodies the rolling motions of these

cones are equal, but the sliding motions may be different. Thence deduce equations

(8) and (11). This mode of proof is partly due to Cayley.

196. Sylvester s measure of the time. When a body
turns about a fixed point its motion in space is represented by
making its momenta) ellipsoid roll on a fixed plane. This gives
no representation of the time occupied by the body in passing from

any position to any other. The preceding Articles will enable us

to supply this defect.

To give distinctness to our ideas let us suppose the momental

ellipsoid to be rolling on a horizontal plane underneath the fixed

point 0, and that the instantaneous axis 01 is describing a polhode
about the axis of A. Let us now remove that half of the ellipsoid
which is bounded by the plane of BC, and which does not touch

the fixed plane. Let us replace this half by the half of another

smaller ellipsoid which is confocal with the first. Let a plane
be drawn parallel to the invariable plane to touch this ellipsoid
in 1 and suppose this plane also to be fixed in space. These two

semi-ellipsoids may be considered as the momental ellipsoids of

two correlated bodies. If they were not attached to each other

and were free to move without interference, each would roll, the
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one on the fixed plane which touches at /, and the other on that

which touches at I . By Arts. 192 and 193 the upper ellipsoid

(being the smallest) may be brought into parallelism with the

lower by a rotation Gt(l/A I/A ) about the invariable line. If

then the upper plane on which the upper ellipsoid rolls be made
to turn round the invariable line as a fixed axis with an angular

velocity G(l/A - \/A \ the two ellipsoids will always be in a state

of parallelism, and may be supposed to be rigidly attached to each

other.

Suppose then the upper tangent plane to be perfectly rough
and capable of turning in a horizontal plane about a vertical axis

which passes through the fixed point. As the nucleus is made
to roll with the under part of its surface on the fixed plane below,
the friction between the upper surface and the plane will cause

the latter* to rotate about its axis. Then the time elapsed will

be in a constant ratio to this motion of rotation, which may be
measured off on an absolutely fixed dial face immediately over the

rotating plane.

197. The preceding theory, so far as it relates to correlated

and contrarelated bodies, is taken from a memoir by Prof. Sylvester
in the Philosophical Transactions for 1866. He proceeds to in

vestigate in what cases the upper ellipsoid may be reduced to a

disc. It appears that there are always two such discs and no

more, except in the case of two of the principal moments being
equal, when the solution becomes unique. Of these two discs

one is correlated and the other contrarelated to the given body,
and they will be respectively perpendicular to the axes of greatest
and least moments of inertia.

198. Poinsot s measure of the time. Poinsot has shown
that the motion of the body may be constructed by a cone fixed

in the body rolling on a plane which turns uniformly round the

invariable line. If, as in the preceding theory, we suppose the

plane rough, and to be turned by the cone as it rolls on the plane,
the angle turned through by the plane will measure the time

elapsed.

The Sphero-Conic or Spherical Ellipse.

199. The following properties of a sphero-conic will be found useful in con

nexion with the theorems of Art. 157. They appear to be new. The curve is

* As the ellipsoid rolls on the lower plane, a certain geometrical condition must

be satisfied that the nucleus may not quit the upper plane or tend to force it

upwards. This condition is that the plane containing OI, 01
,
must contain

the invariable line, for then and then only the rotation about 01 can be resolved

into a component about 01 and a component about the invariable line. That this

condition must be satisfied is clear from the reasoning in the text. But it is also

clear from the known properties of confocal ellipsoids.
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represented by the line DED E . As before, the eye is supposed to be situated in

the radius through A, viewing the sphere from a considerable distance. The three

principal planes of the cone intersect the sphere in the three quadrants AB, BC, CA,
and any one of the three points A, B, C might be called the centre. The arcs AD
and AE are represented by a and b.

The letters are not always the same as those used in the dynamical applications
of the curve, but have been chosen to agree as far as possible with those usually

employed in plane conies. In this way the analogy between the plane and the

spherical ellipse will be made more apparent.

G

1. Equation to the conic. Draw the arc PN perpendicular to AD and let

PN=y, AN=x. Let NP produced cut the small circle described on DD as diame

ter in P
, let NP be called the eccentric ordinate and be represented by y . We

then have
tan ?/ tan b

-. = constant = , cos a= cos y cos x.
tan y tan a

2. The projection of the normal PG on the focal radius vector SP, i.e. PL, is

constant and equal to half the latus rectum. Also -: ^r= constant.smPN
tan2 b

If 21 be the latus rectum, then tan 1= .

tana

3. If QAF be an arc cutting PG at right angles, QA may be called the semi-

conjugate of A P. Then tan PG . tan P.F=:tan2 6.

4. The length PK cut off the focal radius vector by the conjugate diameter is

constant and equal to a. This follows from (2) and (3).

5. If 1 -i2= .
2 ,

e may be called the eccentricity of the sphero-conic. Then

G. Also S being a focus SE =HE = a, and tan SA=e tan a

tan3 n

7. Polar equations to the conic

TTn =1 5~T COS PSA .

tan SP cos2 b

sin 2 b

8. If p be the radius of curvature at P, then tan p .
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9. Eegarding AP, AQ as conjugate semi-diameters, defined as above,

= rin . + rin n
_ tan P^D . tan

sin AQ . sin PF= sm a . sm 6
)

sm2 a

10. If p be the perpendicular from the centre A on the tangent at P,

tan2 a tan2 b . ~= tan2 a + tan- b - tan2 ^P.

11. Also tan2 PG - tan2 1= --
7
sin2 Ptf. -

.

-
ry,
=

cos4 & sm SP . sin .HP sin2 a

e 2
. _ _ AT

&amp;gt; &quot;r=&amp;gt;

COB. tan2 PG= 2
.

2 (cos
2AP - cos2 a cos2 &) .

If sin AM= sinAM =
,
the planes of the arcs BM and BM are parallel to

sin a

the circular sections of the cone. Some of the properties of these arcs resemble

those of asymptotes when B is regarded as the centre of the conic. The properties

which connect the sphero-conic with the arcs BM and BM will be found in

Dr Salmon s Solid Geometry.

Many other properties of sphero-conics will also be found in Dr Frost s Solid

Geometry.

EXAMPLES*.

1. A right cone the base of which is an ellipse is supported at G the centre of

gravity, and has a motion communicated to it about an axis through G perpendicu
lar to the line joining G, and the extremity B of the axis minor of the base, and in

the plane through B and the axis of the cone. Determine the position of the in

variable plane.

Eesult. The normal to the invariable plane lies in the plane passing through
the axis of the cone and the axis of instantaneous rotation, and makes an angle

whose tangent is h
(fc

2 + 4a2
)/16& (a

2 + &a
).

2. A spheroid has a particle of mass m fastened at each extremity of the axis of

revolution, and the centre of gravity is fixed. If the body be set rotating about any
axis, show that the spheroid will roll on a fixed plane during the motion provided

m/M=^ (1
- a2/c

2
), where M is the mass of the spheroid, a and c are the axes of the

generating ellipse, c being the axis of figure.

3. A lamina of any form rotating with an angular velocity a about an axis

through its centre of gravity perpendicular to its plane has an angular velocity

a (B + C)$I(B
-

&amp;lt;7)i impressed upon it about its principal axis of least moment,

A, B, G being arranged in descending order of magnitude : show that at any time t

the angular velocities about the principal axes are respectively

2a /B + G eat -e~ at
. /B + C 2a

, and y;
and that it will ultimately revolve about the axis of mean moment.

4. A rigid body, not acted on by any forces, is in motion about its centre of

gravity : prove that if the instantaneous axis be at any moment situated in the

plane of contact of either of the right circular cylinders described about the central

ellipsoid, it will be so throughout the motion.

* These examples are taken from the Examination Papers which have been set

in the University and in the Colleges.
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If a, b, c be the semi-axes of the central ellipsoid, arranged in descending order

of magnitude, e
1 ,

e2 ,
e3 the eccentricities of its principal sections, Olt fi2 , fi3 the

initial component angular velocities of the body about its principal axes, prove that

the condition that the instantaneous axis should be situated in the plane above

described is fy/^ = (ab/c
2
) (O3/e3).

5. A rigid lamina not acted on by any forces has one point fixed about which

it can turn freely. It is started about a line in the plane of the lamina the moment
of inertia about which is Q. Show that the ratio of the greatest to the least angular

velocity is *fZ+B : *JB + Q, where A, B are the principal moments of inertia about

axes in the plane of the lamina.

6. If the earth were a rigid body acted on by no forces rotating about a diameter

which is not a principal axis, show that the latitudes of places would vary and that

the values would recur whenever JA - B*jA - C/^dt is a multiple of 2?rN/.B&amp;lt;7.

If a man were to lie down when his latitude is a minimum and to rise when it be

comes a maximum, show that he would increase the vis viva, and so cause the pole of

the earth to travel from the axis of greatest moment of inertia towards that of least

moment of inertia.

7. If dd be the angle between two consecutive positions of the instantaneous

/d0\ 2 /dwA 2 /dw2\
2

/dw,\
2

approve that ^J =(^) +
(-J)

+
(y)

-

8. If n be the angular velocity of the plane through the invariable line and

the instantaneous axis about the invariable line and X the component angular

velocity of the body about the invariable line, prove that

9. If a body move in any manner, and all the forces pass through the centre of

gravity, prove that -^ + 2 (log c^)
-

(log w2)
-

(log o&amp;gt;3)
= 0, where ult w2 ,

w3

are the angular velocities about the principal axes at the centre of gravity, and w

is the resultant angular velocity.



CHAPTER V.

MOTION OF A BODY UNDER ANY FORCES.

200. IN this Chapter it is proposed to discuss some cases

of the motion of a rigid body in three dimensions as examples
of the processes explained in Chapter I. The reader will find

it an instructive exercise to attempt their solution by other

methods; for example, the equations of Lagrange might be

applied with advantage in some cases.

In each section of the Chapter the general method of proceed

ing will first be explained and a number of examples will then be

considered. These have been chosen as being apparently the most

interesting cases of the motion of a body which occur. But of

course all the results obtained are not equally valuable. Besides

this, some of the processes are only slight variations of those

which have been already explained. Accordingly it has not been

thought necessary in every case to give the whole of the alge
braical work. The plan of the solution is sketched more or less

fully and the results are stated. It is believed that the reader

will be able to supply the omitted steps for himself. The student

will find his interest in the subject greatly increased if, after

reading the first few articles in each section, he will attack the

problems which follow in his own way. He may then profitably

compare his results with the solutions here sketched out.

Motion of a Top.

201. A body two of whose principal moments at the centre

of gravity are equal moves about some fixed point in the axis

of unequal moment under the action of gravity. Determine the

motion*.

To give distinctness to our ideas we may consider the body
to be a top spinning on a perfectly rough horizontal plane.

* A partial solution of this problem by Lagrange s equations is given in Vol. i.,

Chap. vin.

R. D. II. 9
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Let the axis OZ be vertical. Let the axis of unequal moment
at the centre of gravity be the axis OC and let this be called

the axis of the body. Let h be the distance of the centre of

gravity G of the body from the fixed point and let the mass

of the body be taken as unity. Let OA be that principal axis

at which lies in the plane ZOC, OB the principal axis perpen
dicular to this plane.

If we take moments about the axis OC we have by Euler s

equations (Vol. I. Chap. V.),

N.

But in our case A = B, and since the centre of gravity lies

in the axis OC, we have N=0. Hence o&amp;gt;3 is constant and equal
to its initial value. Let this be called n.

Let us measure along the axis OC in the direction OG a

length OP = A/h. Then, by Vol. I. Chap, ill., P is the centre*
of oscillation of the body. This length we shall call I. Let 6
be the inclination of the axis OC to the vertical, -^ the angle
the plane ZOC makes with some plane fixed in space passing
through OZ. Then by the same reasoning as that used in Euler s

geometrical equations (Vol. I. Chap. V.) we find that the velocities

of P resolved

perpendicular to plane ZOC = 1^ = 1 sin ddtyjdfa

parallel to plane ZOG = Iw 2
=

IdO/dt J -

It is clear that the moment of the momentum about OZ
will be constant throughout the motion. Since the direction-

cosines of OZ referred to OA, OB, OC are -sin#, and cos 0,

this principle gives
- A ftjj sin + Cn cos 6 = E (2),

where E is some constant depending on the initial conditions,

* To avoid confusion in the figure, the body, which is represented by a top,

is drawn smaller than it should be.
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whose value may be found fro

initial values of o^, and 6.

The equation of Vis Viva gives

and whose value may be found from this equation by substituting
the initial values of o^, and 6.

(3),

where F is some constant, whose value may be found by substi

tuting in this equation the initial values of tou &&amp;gt;2 ,
and 0*.

202. Motion of the centre of Oscillation. Let us measure along the vertical

OZ, in the direction opposite to gravity as the positive direction, two lengths

OU=EllCn, OV=l (F-Cn2
)l2gh. These lengths we shall write briefly OU=a,

and OV=b. Draw through U and V two horizontal planes, and let the vertical

through P intersect these planes in M and N. Then the equations (2) and (3) give

by (1), transverse velocity of P= (Cnjh) tanPUM ........................ (4).

(velocity of P)
2= 2gPN....................................... (5).

Thus the resultant velocity of P is that due to the depth of P below the horizontal

vlane through V, and the velocity of P resolved perpendicular to the plane ZOP
is proportional to the tangent of the angle PU makes with a horizontal plane.

It appears from this last result that when P is below the horizontal plane

through C7, the plane POV turns round the vertical in the same direction as the

body turns round its axis, i.e. according to the usual rule, V and OP are the

positive directions of the axes of rotation. When P passes above the horizontal

plane through U, the plane POV turns round the vertical in the opposite direction.

If P be below both the horizontal planes through and U these results are still

true, but if a top is viewed from above, the axis will appear to turn round the

vertical in the direction opposite to the rotation of the top. In all the cases

in which P is below the plane UM the lowest point of the rim of the top moves

round the vertical in the same direction as the axis of the top.

If we substitute for wlf wa ,
E and F in (2) and (3) their values, we easily obtain

hi sin9 6 f+Cncosd=Cn-,
dt l

(6).

These equations give in a convenient analytical form the whole motion. We
see from the last equation, what is indeed obvious otherwise, that b-lcos6 is

always positive. The horizontal plane through V is therefore above the initial

position of P and remains above P throughout the whole motion.

* If we eliminate wl5 w2
from equations (1), (2), (3) we have two equations from

which 6 and
\f/ may be found by quadratures. These were first obtained by

Lagrange in his Mecanique Analytique, and were afterwards given by Poisson in

his Traite de Mecanique. The former passes them over with but slight notice,

and proceeds to discuss the small oscillations of a body of any form suspended
under the action of gravity from a fixed point. The latter limits the equations to

the case in which the body has an initial angular velocity only about its axis, and

applies them to determine directly the small oscillations of a top (1) when its axis

is nearly vertical, and (2) when its axis makes a nearly constant angle with the

vertical. His results are necessarily more limited than those given in this

treatise.

92
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Ex. 1. If u be the resultant angular velocity of the body and v the velocity of P
show that w2=w2

+(v/Z)
2

.

Ex. 2. Show that the cosine of the inclination of the instantaneous axis to the

vertical is
{
E + (A

-
C) n cos 6} /

Aw.

203. Rise and Fall of a Top. As the axis of the body

goes round the vertical its inclination to the vertical is continually

changing. These changes may be found by eliminating d^rjdt
between the equations (6). We thus obtain

It appears from this equation that can never vanish unless

a = I, for in any other case the right-hand side of this equation
would become infinite. This may be proved otherwise. Since

a/I is equal to the ratio of the angular momentum about the

vertical to that about the axis of the body, it is clear that the axis

could not become vertical unless the ratio is unity.

Suppose the body to be set in motion in any way with its

axis at an inclination i to the vertical. The axis will begin to

approach or to fall away from the vertical according as the initial

value of dd/dt or o&amp;gt;

2
is negative or positive. The axis will then

oscillate between two limiting angles given by the equation

= 2#/^
2

(b
- I cos 0) (1

- cos2

0)
- CV (a

- I cos 0)
2

(8).

This is a cubic equation to determine cos 0. It will be neces

sary to examine its roots. When cos 6 = 1 the right-hand side

is negative ; when cos 6 = cos i, since the initial value of (dd/dt)
2
is

essentially positive, the right-hand side is either zero or positive ;

hence the equation has one real root between cos 6 = 1 and
cos = cos i. Again, the right-hand side is negative when cos =+ 1

and positive when cos 6 = oo. Hence there is another real root

between cos 6 = cos i, and cos 9 = 1, and a third root greater than

unity. This last root is inadmissible.

204. These limits may be conveniently expressed geometrically. The equation

(7) may evidently be written in the form

PM\ 2

Describe a parabola with its vertex at U, its axis vertically downwards and its

latus rectum equal to C2w2
/2#7t

2
. Let the vertical PMN cut this parabola in R, we

then have

(Idejdi)*
- 2gMN

= PM + PR ^
The point P oscillates between the two positions in which the harmonic mean

of PM and PR is equal to - 2 . MN. In the figure V is drawn above U, and in

this case one of the limits of P is above UM, and the other below the parabola. If

we take U as origin and UO as the axis of x, we have PMx, UM=y. Let 2pl be
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the latus rectum of the parabola, and UV=c, then the axis of the body oscillates

between the two positions in which P lies on the cubic curve

y*(x + c) = 2plx* (11).

When c is positive, i.e. when V is above U, the form of the curve is indicated

in the figure by the dotted line. The tangents at U cut each other at a finite

angle and the tangent of the angle either makes with the vertical is (2pZ/c) . When
c is negative the curve has two branches, one on each side of the vertical, with a

conjugate point at the origin. It is clear from what precedes that the upper

branch will lie above, and the lower branch below, the initial position of P,

and that P must always lie between the two branches.

205. In the case of a top, the initial motion is generally given

by a rotation n about the axis. We have initially w^ = 0, o)2
= 0,

and therefore by (2) and (3) E=Cn cosi, and F Cri2 = 2gh cosi.

This gives a
= b = lcos i. Putting C

2n2

/2gh?= 2pl, as before, the roots

of equation (8) are cos = cos i
t
and cos 6 p J\ 2p cos i +p2

.

The value cos 0=p + Jl 2p cos i + p* is always greater than

unity, for it is clearly decreased by putting unity for cos i, and
its value is then not less than unity. The axis of the body will

therefore oscillate between the values of 6 just found.

Since a= b, the horizontal planes through U and V coincide, and c= 0. The

cubic curve which determines the limits of oscillation, becomes the parabola UR
and the straight line UM. The axis of the body will then oscillate between the two

positions in which P lies on the horizontal through U and on the parabola, begin

ning at the former.

Generally the angular velocity n about the axis of figure is

very great. In this case p is very great, and if we reject the

squares of l/p we see that cos will vary between the limits cosi

and cos i sin2
i . /2p.

If the initial value of i is zero, we see that the two limits of

cos i are the same. The axis of the body will therefore remain
vertical.

EXAMPLES. Ex. 1. When the limiting angles between which 6 varies are

equal to each other, so that 6 is constant throughout the motion and equal to a,

show that tan2 - tan tan a + tan2 a cos a/4p = 0, where
&amp;lt;/&amp;gt;

is the angle PUM.

Ex. 2. A top is set in motion on a smooth horizontal plane with an initial

resultant angular velocity about its axis of figure. Show that the path traced out

by the apex on the horizontal plane lies beween two circles, one of which it touches

and the other it cuts at right angles. [M. Finck, Nouvelles Annales de Mathemati-

ques, Tom. ix. 1850.]

Ex. 3. Show that the vertical pressure of a top on the ground is greater than

its weight by h ( sin
(

J
. Hence by equation (7) of Art. 203 show that R

is a quadratic function of cos 6 with constant coefficients.

206. If we compare the equations (6) of Art. 202 with those

giving the motion of the conjugate line in Art. 175, Ex. 4. we see

that they are analogous. It follows that the motion of the axis of
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a top can be represented by the motion of the conjugate line of a

body moving about a fixed point under no forces, with the proper
initial conditions. It may be shown that the comparison leads to

real values of the constants of the body moving under no forces.

See a paper by the author in the Quarterly Journal, 1888. On a theorem of

Jacobi in dynamics.

207. Precession and Nutation of a top. A body, two of whose principal

moments at the centre of gravity G are equal, turns about a fixed point in the axis

of unequal moment under the action of gravity. The axis OG being inclined to the

vertical at an angle a, and revolving about it with a uniform angular velocity , find

the condition that the motion may be steady, and the time ofa small oscillation.

The equations (2) and (3) of Art. 201 contain the solution of this problem. But

if we use the equation of Vis Viva in the form (3) we shall have to take into account

the squares of small quantities. It will be found more convenient to replace it by

one of the equations of the second order from which it has been derived. The

simplest method of obtaining this equation is to use Lagrange s Rule as given in

Vol. i. Chap. vni. We thus obtain

Ad&quot;- A cos0sin0i/
2
+&amp;lt;7wsm0i//=:#/isin0 .................. (12),

where accents denote differentiations with regard to the time.

This equation might also have been obtained by differentiating both (2) and (3)

and eliminating d^/dt*
2

.

When the motion is steady both 6 and d\f//dt are constants. Let 6= a, d\f/ldt
=

/j.,

then the equation (2) only determines the constant E and (12) becomes

sin a
(
- A cos a/A

2 + Cn/j.
-
gh] = Q ........................... (13).

This indicates two possible states of steady motion, one in which a= or TT, and

the other in which

Cn J~CPn*-ghA cos a /i A\
u.= -- ........................... (

L
*l&amp;gt;

2A cos a

a relation which does not necessarily hold when a or TT.

In the former of these two motions the axis of the body will oscillate about

the vertical and d\l/jdt will not be small or nearly constant. It will therefore be

more convenient to discuss the oscillations about this state of steady motion with

other co-ordinates than 6 and
\f/.

In the latter of these two motions, if the centre of gravity of the body be above

the horizontal plane through the fixed point 0, h cos a will be positive. In this case

the angular velocity n of the top round its axis of figure Tnust be sufficiently great

to make the quantity under the radical positive. We must therefore have n2 not

less than kghA cos a/C
2

.

When a and n are given we can make the body move with either of these

two values of p. by giving the proper initial angular velocities to the body. By
equations (1) we see that the conditions of steady motion are wj -/isin a, w2 0.

When a top is set in motion by unwinding a string from the axis, the value of n

is very great while the initial values of Wj and u&amp;gt;2 are zero. The steady motion

about which the top makes small oscillations will therefore have
/j.

small. Hence

the radical in (14) will have the negative sign. We have therefore very nearly

208. To find the small oscillation. Let 6 = a + x, and d\f/ldt
= n -\-dyjdt, where x

and dy/dt are small quantities whose squares are to be neglected. Let a and p be



ART. 208.] OSCILLATIONS OF A TOP. 135

such that they contain the whole of the constant parts of 9 and d\l/jdt, so that x and

dyjdt contain only trigonometrical terms. Then when we substitute these values

in equations (2) and (12), the constant parts must vanish of themselves. The equa
tions thus obtained determine E and p, and shew that their values are the same as

those determined when the motion is steady. The variable parts of the two equa
tions become, after writing for Cn its value obtained from (13),

Afj. sin ay - (gh- A/jfcosa) x=

AfjLx&quot; + sin a (gh
- Ay? cos a) y + y?A sin2 ax=Q.

To solve these we put x=F siii(pt+f), and y = Gcos (pt+f). Substituting,

we have
-
Afi sin a . pG = (gh

-
A\J? cos a) F |

(A/j.p*
-

fj?A sin2 a) F= -
(gh

- Ay? cos a) sin a . Gp\

Multiplying these equations together, we have

AV - 2ghA cos a/x
2 + g*h

2

r ~~

~Z^T~
and the required time is 2ir[p. It is evident that p

2 is always positive, and there

fore both the values of p given by (14) correspond to stable motions. This expres

sion was given by Dr Ferrers, now Master of Grouville and Caius College, as

the result of a problem proposed by him for solution in the Mathematical

Tripos, 1859.

We notice that in these results the precession of the axis in the steady motion is

less the greater is the angular velocity of the top and is nearly given by fj.
= ghlCn

when n is very large. On the same supposition we have p gh/Afj, nearly, or which

is the same thing p=CnlA. It follows that the nutation or oscillation of the axis

about the steady motion is very rapid, its period 2?r/p being very short.

It is to be observed that this investigation does not apply if a be very small, for

in that case some of the terms rejected are of the same order of magnitude as those

retained. A different mode of investigation is therefore required, this case will be

considered in Art. 212.

Ex. 1. The angular velocity n of a top is communicated to it by unwinding

rapidly a string from the axis when at an inclination i to the vertical. Prove that

the inclination of the axis at any time t is given by

= i + rsini(l-cos^) and \p
= /mt-r sinpt,

where rgh= Afj?. Thence show that the axis describes very nearly a right cone

round its position in the steady motion, in the same direction as the top rotates.

Find also the friction and pressure at the apex.

Ex. 2. A top two of whose principal moments at are equal is set in

rotation about its axis of figure, viz. OC, with an angular velocity ?t, the point

being fixed. If 00 be horizontal, and if the proper initial angular velocity be

communicated to the top about the vertical through 0, prove that the top will not

fall down, but that the axis of figure will revolve round the vertical, in steady

motion, with an angular velocity ^ ghjCn, where h is the distance of the centre of

gravity of the top from 0, and C is the moment of inertia about the axis of figure.

Show also that if the top be initially placed with OC nearly horizontal and if a very

great angular velocity be communicated to it about OC without any initial angular

velocity about OA or OB, then OC will revolve round the vertical, remaining very

nearly in a horizontal plane, with an angular velocity /u given by the same formula

as before, and the time of the vertical oscillations of OC about its mean position
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Ex. 3. The gyroscope in one form consists of a hemispherical shell with an

external axis through the vertex upon which a weight may be moved up and down
so as to raise or lower the centre of gravity. The weight being in a certain position

and the gyroscope being supported with the vertex on a pivot, a rapid rotation is

imparted to it by unwinding a string from the axis, and the motion of the axis

about the vertical is found to be precessional. Examine whether the weight must

be moved up or down to reverse the direction of the motion. Is the motion of the

axis of a top precessional or the reverse ? [Math. Tripos.

Ex. 4. A gyrostat symmetrical about its axis of rotation is suspended from a

fixed point by a string whose length is a. The string being fastened to a point on

the axis of rotation, prove that when the gyrostat is moving steadily with its axis

of rotation horizontal the circular measure of the angle which the string makes with

the vertical is given by the equation C2n2 tan a (h + a sin a) glr where n is the

angular velocity of the gyrostat, h the distance from the point of attachment of the

string to the centre of gravity of the gyrostat, and MC its moment of inertia about

its axis of rotation, M being the mass of the gyrostat. [Math Tripos, 1888, Part n.

Ex. 5. A symmetrical top is set in motion on a rough horizontal plane with an

angular velocity n about its axis of figure, the axis itself being inclined at an angle

a to the vertical. Prove that between the greatest approach to and recess from

the vertical, the centre of gravity describes an arc hp, where (p- cos a) tan /3= sin a,

and p = CWfigh AM. [Math. Tripos, 1880.

209. General considerations on the motion of a top.
We see from the example of the top in Art. 203 how greatly the

effect of forces acting on a body is modified by an existing rotation

in the body. If the top were initially at rest with its apex
fixed, gravity would cause it to turn round OB and fall downwards.
When the top is in rapid rotation about its axis 00 the effect of

gravity is, not to alter sensibly the inclination of the axis to the

vertical, but to make that axis describe a right cone round the

vertical. In order the better to understand the cause of this

difference, it will be useful to consider the motion from a different

point of view. Assuming, then, Poinsot s construction for the

motion of a body under no forces we shall endeavour to trace how
that construction is modified by the action of gravity.

Let a body be in rotation about an axis 01 nearly coincident

with the axis of figure, then the invariable line OL is also nearly
coincident with the axis of figure and would describe a small

polhode round it, if the top were left to itself. We know by Art.

148, Ex. 1, that the polhode is only slightly altered by an impressed

couple Q if either the angular velocity of the top is very great or

the projection of the axis of the couple on the plane LOI is close

to OL. When either of these conditions is satisfied the invariable

line OL, the instantaneous axis 01 and the axis of figure OC
closely accompany each other in their motion through space.

Let us next consider how the invariable line is moved in space

by the action of the impressed couple Q. The existing angular
momentum of the top is equivalent to some couple G whose axis is
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the invariable line. The angular momentum generated about the

axis of the impressed couple in the time dt is Qdt. Compounding
these couples, we see that the positive extremity of the invariable

line is always moving towards the positive extremity of the axis of
the impressed couple.

Ex. 1. To determine the steady motion of a swiftly rotating top with its apex

fixed.

Let the figure represent the upper half of the momental spheroid at 0. Then
when the motion is steady the straight lines OL, 01,

OC lie in a vertical plane which revolves round OZ
with a uniform angular velocity /*. The force of

gravity is continually generating an angular momen
tum about the horizontal diameter OB, so that OL,

closely accompanied by OC, moves towards OB.

This again causes OB to revolve round the vertical OZ.

If these two motions are properly adjusted to each

other the axis of the top will steadily revolve round

the vertical in the same direction that the top rotates

about its axis of figure.

The angular displacement of OC in the time dt

is ftsinadt where a is the angle ZOC, but since the

body is turning round 01 with an angular velocity w, the same displacement is also

wsinJOC. Equating these we have, as in Art. 181,

w sin IOC=
fj,
sin a

(1).

In the time dt, gravity generates an angular momentum equal to gh sin adt

about the axis OB
;
the existing angular momentum being G, the displacement of

the invariable line OL towards OB is gh sin adtjG. But since OL moves round OZ
with an angular velocity /j.,

this is also equal to /m sin ZOL dt. We therefore have

p. GsinZOL = ghsina (2).

Now G sin ZOL is the angular momentum of the top about a horizontal line in

the plane ZOC. Let n be the resolved part of w about 0(7, then since the angular
momenta about OC and OA are respectively Cn and - Aw sin IOC, we have by a

simple resolution,
G sin ZOL= Cn sin a-^4wsin IOC . cos a (3).

Substituting from (1) and (3) in (2) we have, after division by sin a,

ghlfj,= Cn Afj, cos a,

which is the same expression as in Art. 207.

It will be noticed that in this general explanation we have only shown that a

steady motion is possible, that this steady motion is also stable is proved by the

analysis in Art. 208.

Ex. 2. Let the resistance of the air on the top be represented by a retarding

couple whose axis is the instantaneous axis. Show that the instantaneous axis will

approach to or recede from the axis of figure OC according as the moment of inertia

C is greater or less than A. See Art. 183, Ex. 3.

Ex. 3. A homogeneous sphere of radius a is loaded at a point of its surface by
a particle whose mass is 1/pth of its own. If it move steadily on a smooth

horizontal plane, the diameter through the particle making a constant angle a with

the vertical, and the sphere rotating about it with uniform angular velocity n,
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prove that n2
ap(p + l) must not be less than 5 (2p + 7) g cos a and show that the

particle will revolve round the vertical in one or other of two periods whose sum is

47ro/&amp;gt;n/5&amp;lt;7. [Math. Tripos.

210. Ex. The boomerang. As another illustration of how the apparent

effect of a force is modified by a rapid rotation of the body we may consider the

flight of a boomerang. This is a stick cut flat and bent in that plane ; it is usually

bulged out on one side, flat on the other, with a sharp edge along the convexity.

The missile is so projected by a jerk of the hand that it has a rapid rotation about

an axis perpendicular to its plane. Since this is a principal axis the body after

projection will so move that the direction of the axis is sensibly fixed in space,

Art. 156. Let GC be this axis, GA a perpendicular horizontal axis and let GB be

perpendicular to both.

The resistance of the air at the edge is very small, but the flat side of the

instrument being downwards, the pressure on the lower part tends to support the

body in its flight. To make a rather vague comparison, the body moves as if

projected upwards on a fixed inclined plane along the line of greatest slope, the

pressure of the plane representing the supporting power of the air. The body
advances upwards until the translational motion is destroyed by gravity. If this

occurs before the rotation is much modified by the action of the air, the missile

begins to descend in the same plane towards the point of projection. The explana
tion requires (1) that the rotation should be so great that the direction of the axis is

sensibly fixed in space and in the body ; (2) that the resistance of the air should

prevent any great motion perpendicular to the plane of the bent stick.

According to some experiments of Prof. S. P. Langley on the motion of a heavy
disc placed with its plane horizontal the resistance of the air to vertical descent is

much increased by a horizontal motion of the disc, so much so that the time of

falling through a given space may be indefinitely prolonged by lateral motion. This

perhaps is due to the inertia of the undisturbed air over which the disc passes.

Paris, Academy of Sciences, translated in Nature, July 23, 1891.

In many specimens also of the boomerang the fore-part is slightly hollowed or

the curve has a slight lateral twist by means of which the instrument is caused to

rise or screw itself up in the air by virtue of its rotation.

Ex. It is stated by Col. Lane Fox in his lecture on Primitive Warfare that the

plane of rotation instead of continuing perfectly parallel to its original position is

slightly raised as the projectile advances
; (Journal of the United Service Institute,

vol. xii., 1868). A diagram is given, which is reproduced by Sir Richard Burton in

his book on The Sword (1884), and shows that the boomerang should therefore be

projected towards a point under the object intended to be hit. Show that this may
be explained on the principles of Art. 209, if we suppose that the pressure of the air

is greatest on that part of the under side which is moving in the same direction as

the centre of gravity.

In the lecture already referred to, Col. Lane Fox (now Major-Gen. A. Pitt Rivers)

remarks that the Australians cannot be said to have invented the boomerang. By

giving a series of diagrams of the intermediate forms between it and the club, he

shows that the savage may have been led to the adoption of the instrument &quot;purely

through the laws of accidental variation guided by the natural grain of the material

in which he worked.&quot;

211. Unsymmetrical tops. We now pass on to the impor
tant and general problem of finding the oscillations of a heavy,
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not necessarily uniaxal body, about a fixed point. We begin with

the general equations of motion and proceed to apply them to two
cases

; (1) when the vertical through the fixed point is a principal
axis at that point and the body has an initial rotation given to it

about the vertical. (2) When the vertical is not necessarily a

principal axis and the body has no initial rotation. Finally we
shall examine what cases of steady motion are possible.

A body whose principal moments of inertia are not necessarily

equal has a point fixed in space and moves about O under the

action of gravity. It is required to form the general equations

of motion.

Let OA, OB, OG be the principal axes at the fixed point 0,
and let these be taken as axes of reference. Let h, k, I be the

co-ordinates of the centre of gravity G, and let the mass of the

body be taken as unity. Let OF be drawn vertically upwards
and let p, q, r be the direction-cosines of OF referred to OA, OB,
00. Then we have by Euler s equations

Aw-t (B-C) o&amp;gt; 2 a&amp;gt; 3
= g(kr lq)\

Bco.^ -(C-A)a)3aj1
= -g(lp-hr)[ ............ (1),

Cw3 (A B) Wjtoa = g(hq kp))

where accents denote differentiations with regard to the time.

Also p, q, r may be regarded as the co-ordinates of a point
in OF, distant unity from 0. This point is fixed in space, and
therefore its velocities as given by Art. 17 are zero. We have

p = cosq o&amp;gt;2r, q
f = wjr a)sp, r =

w$&amp;gt;

- ^q ...... (2).

It is obvious that two integrals of these equations are supplied

by the principles of Angular Momentum and Vis Viva. These give

o)sr = E,

Aw* + Bw* + (7o&amp;gt;3
2 = F-2g(ph+qk + rl),

where E and F are two arbitrary constants. The first of these

might also have been obtained by multiplying the equations (1)

by p, q, r respectively, and (2) by Aw^, Bco2) Cw3 ,
and adding all six

results. The second might have been obtained by multiplying
the equations (1) by (o lt 2 ,

a)s respectively, adding and simpli

fying the right-hand side by (2).

212. A body ivhose principal moments of inertia at the centre of gravity G are

not necessarily equal, has a point in one of the principal axes at G fixed in space

and can move about under the action of gravity. It is set in rotation about OG
which is supposed to be vertical. Find the small oscillations.

Referring to the general equations of Art. 211, we see that in this case /t= 0,

k = 0. Since OG remains always nearly vertical, o^ and w2 are small quantities, we

may therefore reject the product Wj072 in the last of equations (1). This gives o&amp;gt;3

constant. Let this constant value be called n. For the same reason r=l nearly
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and p, q are both small quantities. Substituting we get the following linear

equations,

p = qn-toz \
&quot;

&amp;gt;v

q =-pn+uj&quot;

If we substitute for wl5 w2 in equations (3) their values given by (4) we should

obtain two linear equations to find p, q which might have been at once deduced from

the general equations of small oscillations given in Art. 1 5. But we may also solve

these by assuming

)l p = Psin(\t+f)\
l q = Qeos(\t+f)\

Substituting, we get

A\F-(B-C)nG = glQ\ , \P=Qn-G\ fi

B\G-(A-G}nF=glP\&quot; \Q = Pn-F\&quot;

Eliminating the ratios F : G : P : Q we have

\W(A + B-C)*={gl +A\*+(B-C)n2
}{gl + B\*+(A -(7)n

2
}.

If the values of X thus found should be real, the body will make small oscillations

about the position in which OG is vertical. If G be the greatest moment, and w2

sufficiently great to make both gl-(C-A) ri* and gl-(G-B) ro
2
negative, then all

the values of X are real and the body will continue to spin with OG vertical. If G
be beneath 0, I is negative and it will be sufficient that OG should be the axis of

greatest moment.

In order that the values of X2 may be real, we must have

{gl (A + B)+n2
(AC + BC - 2AB - C2

)}
2

&amp;gt;4 {(B
-
C) n* + gl} {(A

-
C) n* + gl} AB,

and in order that the two values of X2 may have the same sign we must have the

last term of the quadratic positive; .*. {(B
-

C)ri* + gl} {(A
-

C) n* + gl} is positive,

and in order that the values of X2 may be both positive, we must have the coefficient

of X2 in the quadratic negative ; /. gl (A + B)&amp;lt;
n2

(B
-
C) (A

-
C).

In the particular case in which A = B, each side of the quadratic becomes a

perfect square and we have

A\2
(2A -C)n\ + (A- C) n

2 + gl= ;

2A-C JC*tP-4AglX=T^J- n -Or
In this case the conditions of stability reduce to w&amp;gt;2 ^/Ayl/C. By referring to

equations (5) and (6) it .will be seen that when A=B we have F=G and P=Q. If

Xj ,
X2 be the two values of X found above, we have

p= Pi sin (X^ +fl ) + P2 sin (X2 +/2 )l

q = P! cos (\t +/j) + P2 cos (\.2t +/2) J

Following the notation used in Euler s geometrical equations Vol. i. Chap, v., let

6 be the angle OC makes with the vertical taken as axis of z, then r2= cos2 6= 1 - 2
,

and hence 0- =p 2 + q
2=P^ + P* + 2P1P2 cos { (Xx

- X2) t +/x -/2 }
.

Let be the angle the plane containing OA, OC makes with the plane contain

ing OC and the vertical 0V, we have p= - sin 6 cos 0, and q= sin sin 0, and hence

- tan $ = Pl C S (Xl * +M +P* COS^ +^)
P

1
sin (X^ +/j) +P2 sin (\t +/2 )

*

Since d is very small we have, still following the same notation, \l/
= nt + a- 0,

where a is some constant, depending on the position of the arbitrary plane from

which is measured.
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When the axis of the top is inclined at an angle a to the vertical, the period of

oscillation about the steady motion is found in Art. 208 to be 2-Tr/p. But this period

is different from either of the periods found in Art. 212 when the axis is supposed

to be nearly vertical. We easily see by eliminating JJL
from the expression for p that

p = \
1 -\2 ,

so that the period of oscillation of when the axis is inclined is the

same as the period of oscillation of 2 when the axis is vertical.

The periods of oscillation found by this method do not seem to agree with those

found by a different process in Vol. i. Art. 268. But the difference is only ap

parent. In Vol. i., the axis OC is referred to axes fixed in space, we have

= 6 cos ^/=P
1 cos fat +f1 ) +P2 cos fat +/2)

f\
= 6 sin ty

=P
l
sin fat +fl ) + P2 sin fat +/2).

In the method of this volume the vertical is referred to axes fixed in the body by the

direction cosines p= - Q cos 0, q - 6 sin 0, and 1. Now by Euler s third geometrical

equation o&amp;gt;3
= cos edif/jdt + dfijdt

hence
&amp;lt;f&amp;gt;

= nt - ^ + terms with P2
, see Vol. i. We have therefore

-p = cos (nt -\j/)
= cos nt (P1

cos ^t +P2 cos ^t ) + sin nt (Px
sin

fj^t +P2 sin fju2t)

=P
l
cos (n

-
fjLj)

t +P2 cos (n
-

/*2 )
t

q 6 sin (nt -\f/)=Pl
sin (n

-
/Zj) t +P2 sin (n

-
/u2) t.

Thus, since n- p= X, the expressions found here for p, q follow easily from those

for
, T] found in Vol. i.

213. A body whose principal moments at the centre of gravity are not necessarily

equal is free to turn about a fixed point 0, and is in equilibrium under the action of

gravity. A small disturbance being given, find the oscillations.

Keferring to the general equations in Art. 211 we see that in this case wlt w2 , w3 ,

are small, hence in equations (1) we may omit the terms containing the products

w^, &&amp;gt;2w3 , WgWj. Also since in equilibrium OG is vertical, p, q, r are always

nearly in the ratio h : k : Z; hence if OG = a, we may write h/a, kja, I/a for p, q, r

on the right-hand sides of equations (2). The six equations are now all linear. To
solve these we put w

x
=H sin (\t + p) and p = h/a + P cos (\t + /*) (3),

w2 , w3 , q and r being represented by similar expressions with K and L written for

H; Q, k and E, I written for P and h. Substituting these in the equations we get

six linear equations. Eliminating P, Q, R we have

a
} H-hkK-lhL^

9 )

- hkH+ - X2 + Z
2 + K2 K -lkL=0

- IhH - lkK+ (- CX2 + 7i
2 + 7c

2

J
L =

.(4).

Eliminating the ratios of H, K, L we have an equation to find X2. One root is

X2= 0, the others are given by the quadratic

(5).

To ascertain if the roots are real we must apply the usual criterion for a quad
ratic. This requires that

{A(B-C)hz +B(C-A)k2
-C(A-B)P}* + 4AB(B-C)(A-C)hW (6)

should be positive. Since A, B, C can be chosen to be in descending order, we see

that the condition is satisfied. See also Art. 58.
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If is above 0, a is positive and the values of X2 are both negative. The equi

librium is therefore unstable. If G is below 0, a is negative and the values of X2

are both positive. If the roots are equal, the two positive terms in (6) must be

separately zero, this gives k = and A (B
-
C) h*=C (A

- B) Z
2

, i.e. the centre of

gravity lies in the asymptote to the focal hyperbola of the momental ellipsoid. In

this case we find X2 = -
ag\E. The case in which k = 0, 1 = 0, B = C has been con

sidered in Art. 212.

If the values of X2 are written 0, Xj
2
,
X2

2 we have

wj =H +H t +Hl
sin (\t + /J.J +H2 sin (\2t + /*.2 ),

with similar expressions for o&amp;gt;2 ,
u&amp;gt;3

. Equations (2) then give p, q, r. But substitut

ing in (1) we find that all the non-periodic terms which contain t are zero.

Remembering that^
2 + ^

2+ r2 =:l we have finally

Wj = fife/a + H! sin (\t + ^) +Hz sin (\2t + jii2),

a&amp;gt;2 and u&amp;gt;3 being represented by similar expressions with k, K and I, L written for

h, H. The values of Klt L l
and K^, L2 are determined by equations (4) in terms of

H^ and H&amp;lt;, respectively. We also have

h

with similar expressions for q and r. There remain five constants, viz. ft, H1 , H*,

^ , /j..2 to be determined by the initial values of w
l , w.

2 ,
w3 ,

r and q.

When the roots are equal the equations depending on p, r, w2 separate from those

depending on q, ojj,
o&amp;gt;3 , forming two sets; we find

_ h = K sin (\t + fj^)
\

H
^AX . _

q= H cos (Xt + fj.^) a a\
9 l

A solution of this problem conducted in a totally different manner has been

given by Lagrange in his Mecanique Analytique. His results do not altogether

agree with those given here.

If we substitute the values of wlt w
a&amp;gt;

w
s , p, &amp;lt;?,

r in the equation of angular

momentum of Art. 211 and neglect the squares of small quantities, we evidently

obtain (A h
2 + Bk2 + CZ2) ft= a2

,
AHh + BKk + CLl= 0.

The first of these equations shows that ft vanishes when the initial conditions

are such that the angular momentum about the vertical is zero. In this case the

problem reduces to that considered in Art. 134.

214. A body whose principal moments of inertia are not necessarily equal has a

point fixed in space and moves about under the action of gravity. It is required

to find what cases of steady motion are possible in which one principal axis OC at

describes a right cone round the vertical while the angular velocity of the body about

OC is constant; and to find the small oscillations.

Referring to the general equations of Art. 211, we see that it is given that r and

w3 are constants. In this case the first two equations of (1) and (2) form a set of

linear equations from which we have to find the four quantities p, q, ult o&amp;gt;2 . The

solution of these equations is therefore of the form

!(
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But these must also satisfy the last of the equations (1). Substituting we see

that there will be a term on the left side of the form

_ %(A - B) .FjGj sin 2 (\t +/).

But there will be no such term on the right side. Hence we must have either

A=B, F
t
= Q or G^O. The motion in the case in which A=B has already been

considered in Art. 207. Again, substituting in the last of equations (2) and equat

ing to zero the coefficient of sin 2 (\t +/) we find

F^-Jft-fc
Substituting in the first two of equations (1) and equating to zero the coefficients

of cos (\t +/) and sin (\t +/), we find

A\f\ -(B-C) nG^glQ^ - B\G
l -(C-A)nF1

=- glPl ;

from these equations we have Flt G v Plt Q l
all equal to zero and therefore wls 2 ,

p, q are all constant as well as the given constants w
3 and r.

In this case the equations (2) give w^p = wjq = w3/r, so that the axis of revolu

tion must be vertical. Let w be the angular velocity about the vertical. Then

(t}
1 =p(&amp;gt;}, (d2

=
qb}, o&amp;gt;3

= rw. Substituting in equations (1) we get

P 9 q 9r 9

Unless, therefore, two of the principal moments are equal, it is necessary for

steady motion that the axis of rotation should be vertical and the centre of gravity

(h, k, 1)
must lie in the vertical straight line whose equations are (3).

This straight line may be constructed geometrically in the following manner.

Measure along the vertical a length OF=#/w2 and draw a plane through V perpen

dicular to OF to touch an ellipsoid confocal with the ellipsoid of gyration. The

centre of gravity must lie on the normal at the point of contact.

To find the small oscillations about the steady motion, i.e. to determine whether

this motion be stable or not, we must put

p= cos a + P sin \t + P^ cos \t,

with similar expressions for q, r, o^ ,
w

2 , w3 . Substituting we shall get twelve linear

equations to determine eleven ratios. Eliminating these we have an equation to

find X. It is sufficient for stability that all the roots of this equation should be real.

Motion of a Sphere.

215. General equations of Motion. To determine the motion

of a sphere on any perfectly rough surface under the action of any
forces whose resultant passes through the centre of the sphere.

Let G be the centre of gravity of the body and let the moving
axes GC, GA, GB be respectively a normal to the surface and
some two lines at right angles to be afterwards chosen at our

convenience. Let the motions of these axes be determined by
the angular velocities 1} 2 ,

#3 about their instantaneous positions
in the manner explained in Art. 3. Let u, v, w be the velocities

of G resolved parallel to the axes, and wl ,
&) 2 ,

o)3 the angular velo

cities of the body about these axes
;
then w = 0. Let F, F be the

resolved parts of the friction of the perfectly rough surface on the

sphere parallel to the axes, GA, GB, and let R be the normal
reaction. Let X, Y, Z be the resolved parts of the impressed
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forces on the centre of gravity. Let k be the radius of gyration
of the sphere about a diameter, a its radius, and let its mass be

unity. We shall suppose that in the standard case the sphere
rolls on the convex side of the fixed surface and that the positive
direction of the axis Z is drawn outwards from the surface. The

equations of motion of the sphere are by Arts. 14 and 5,

Fe
a\

Fa

=

(1).

du

di

dv

-0,v

(2),

and since the point of contact of the sphere and surface is at rest,

we have u a&&amp;gt;2 =0, v + a^ =
(3).

Eliminating F, F ,
a)l} &amp;lt;w2 from these equations, we get

du a2

dv a
(4).

216. The meaning of these equations may be found as follows.

They are the two equations of motion of the centre of gravity of

the sphere, which we should have obtained if the given surface

had been smooth and the centre of gravity had been acted on
k2 k2

by accelerating forces -=-
z O^aw^ and -=- @2 au&amp;gt;s along the axes

GA, GB, and by the same impressed forces as before reduced in

a2

the ratio =-. The motion therefore of the centre of gravity
Q/ ~\~ fC

in these two cases with the same initial conditions will be the
same. More convenient expressions for these two additional forces

may be found thus. The centre of gravity moves along a surface

formed by producing all the normals to the given surface a constant

length equal to the radius of the sphere. Let us take the axes

GA, GB to be tangents to the lines of curvature of this surface

and let plt p2 be the radii of curvature of the normal sections

through these tangents respectively. Then

1 _ 2 \ /*
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If G be the position of the centre of gravity at the time t, the

quantity 3dt is the angle between the projections of two successive

positions of GA on the tangent plane at G. Let j^, ^2 be the

angles the radii of the curvature of the lines of curvature at G
make with the normal. The centre of the sphere may be brought
from G to any neighbouring position G by moving it first from G
to H along one line of curvature and then from H to G along the
other. As the sphere moves from G to H, the angle turned round

by GA is the product of the arc GH into the resolved curvature
of GH in the tangent plane. By Meunier s theorem, the curvature

is -
, multiplying this by sin ^ to resolve it into the tangent

plane we find that the part of Os due to the motion along GH is
rt /

tan Xi- Treating the arc HG in the same way, we have

2 ............... (6).
PI PZ

This result follows also from that given in Art. 21, Ex. 2.

We have also an expression for o&amp;gt;3 given by equations (1).

Substituting for co l ,
a&amp;gt;.z from the geometrical equations (3) we get

/&amp;gt;7\

, ivv i i

^ /
).at \p2 pj

Many of the results in this section are deduced from equations

(4) and (7) and in all these cases an apparently independent
solution may be obtained by forming over again the equations
(1), (2), (3), &c. (from which (4) and (7) have been derived), with
such simplifications as suit the problem under consideration. An
example of this process is given in Art. 221.

217. The solution of the equations may be conducted as fol

lows. Let (a?, y, z) be the co-ordinates of the centre of the sphere.
Then u, v may be found from the equation to the surface in terms
of dx/dt, dy/dt, dzjdt by resolving parallel to the axes of reference.

If we eliminate u
} v, vlt 6.2) Os by means of (4), (5), and (6), we

shall get three equations containing #, yy z, o&amp;gt;3 ,
and their differential

coefficients with respect to t. These, together with the equation
to the surface, will be sufficient to determine the motion at any
time. One integral can always be found by the principle of Vis
Viva. Since the sphere is turning about the point of contact as

an instantaneously fixed point we have

(a
2 + k-) (a)!

2
4- a&amp;gt;2

2

) + &2&v = 20,

where is the force function of the impressed forces. This is

the same as u 2
4- v1

4-
-
2 pw3

2 = 2
2 p (8),

and the right-hand side of this equation is twice the force function

of the altered impressed forces.

R. D. II. 10
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218. It will sometimes be more convenient to take the axis GA to be a tangent

to the path. Then v = and therefore w1
= 0. If U be the resultant velocity of

the centre of the sphere we have u=U. Also if R be the radius of torsion of a

geodesic touching the path at G and p the radius of curvature of the normal

section at G through a tangent to the path, we have 6
l
= U/R and 2

=
Ujp. In these

expressions, as elsewhere, R is estimated positive when the torsion round GA is

from the positive direction of GB to the positive direction of GC. If % be the

angle the radius of curvature of the path makes with the normal, we have as before

3
= tanx Ulp. The equations (4) become

dU _ a? v fc
2 U

df
~^WX +

a+fc R
a

,

IT* a2
fc
2 U

The expression for w3 given by equations (1) now takes the form

dwo IT2

It may be shown by geometrical considerations that this form is identical with

that given in (7).

219. To find the pressure on the surface we use the last of equations (2). This

may be written in either of the forms

?- + +. -Z-B.. ..(9).
P Pi P2

The sphere will leave the surface when R changes sign. This will generally

occur when the velocity of the centre of the sphere is that due to one half of the

projection of the radius of curvature of the normal section on the direction of the

resultant force.

220. Ex. 1. Show that the angular velocity of the sphere about a normal to

the surface, viz. u&amp;gt;3 ,
is constant when the direction of motion of the centre of

gravity is a tangent to a line of curvature, and only then.

Ex. 2. A sphere is projected without initial angular velocity about the radius

normal to the surface, so that its centre begins to move along a line of curvature.

Show that it will continue to describe that line of curvature if the force transverse

to the line of curvature and tangential to the surface is equal to seven-fifths of the

centrifugal force of the whole mass collected into the centre, resolved in the tangent

plane to the surface.

Ex. 3. If the sphere be not acted on by any forces, show that

/ 2\ 7 (If 2\ 2
IT

2
( tan2 x + =

J

= constant, ao&amp;gt;

3
= - C7tan x, -p

log ( tan2
x + = \ = -

r&amp;gt;

Show also that the path will not be a geodesic unless the path is a plane curve.

221. Motion on a rough plane. If the given surface on

which the sphere rolls be a plane, we have pl and p2 both infinite,

hence lt 62 are both zero. If therefore a homogeneous sphere roll

on a perfectly rough plane under the action of any forces whatever

the resultant of which passes through the centre of the sphere, the

motion of the centre of gravity, with the same initial conditions, is the

same as if the plane were smooth, and all the forces were reduced to

five-sevenths of their former value. And it is also clear that the
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plane is the only surface which possesses this property for all initial

conditions.

We may easily obtain the first part of this theorem from first principles.

Taking the directions of the axes of x and
?/

to be fixed in space and parallel to the

rough plane we have (Arts. 14 and 236)

u =X+ F}
v =Y+F

\

Eliminating F, F
, ^ co2 we find ~=

^-^X,
~ = F

which is the analytical statement of the theorem. The six equations of motion

from which this result is derived are obviously only simplified forms of equations

(1), (2), (3) of Art. 215. See Vol. i. Art. 269.

222. Ex. 1. If the plane is imperfectly rough, prove that the sphere can roll only if

two-sevenths of the resultant impressed force parallel to the plane is less than the

greatest friction which can be called into play. Prove also that the direction of the

friction is opposite to that of the resultant impressed force parallel to the plane.

Ex. 2. If the rough plane on which the sphere rolls rotate about a normal

through any point with a uniform angular velocity 12, prove that the motion

in space of the centre of gravity is the same as if the plane were smooth and the

sphere acted on by the impressed forces reduced to five-sevenths of their former

values, together with an accelerating force acting perpendicular to the tangent

to the path and equal to
yftU&quot;,

where U is the velocity of the centre of gravity.

If the positive direction of rotation of fi is the same as that of the hands of a

watch, this additional force acts on the right-hand side of the tangent when

an observer at the centre of gravity looks in the direction of motion.

223. Motion on a rough spherical surface. If the given

surface on which the sphere rolls is another sphere of radius b a,

we have p 1
= pz

= b. Hence o&amp;gt;3 is constant
;
let this constant value

be called n, and let U be the velocity of the centre of gravity.
Since every normal section is a principal section, let us take GA a

tangent to the path. Hence the motion of the centre of gravity is

the same as if the whole mass, collected at that point, were acted on

by an accelerating force equal to ,
2 j

in a direction perpendi-
a&quot; ~\~ fa&quot; o

cular to the path, and all the impressed forces were reduced in the

ratio a*/(a
2 + k2

). According to the usual convention as to the re

lative positions of the axes GA, GB, GO it is clear that if the

positive direction of GA be in the direction of motion, the angular
velocity n should be estimated positive when the part of the sphere
in front is moving to the right of GA and the additional force when

positive will also act toward the right-hand side of the tangent.
Since this additional force acts perpendicularly to the path, it will

not appear in the equation of Vis Viva. Hence the velocity of

the centre of gravity in any position is the same as if it had
arrived there simply under the action of the reduced forces. Let

be the centre of the fixed sphere, 6 the angle OG makes with

102
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the vertical OZ, and
-fy

the angle the plane ZOG makes with any
fixed plane passing through OZ. Then by Vis Viva we have

where F is some constant to be determined from the initial con
ditions. This also follows from equation (8),

Also taking moments about OZ, we have

b d . d\ k* dd

an equation which will be found to be a transformation of the
second of equations (4). Integrating this equation we have

(in),
dt a? + k- b

where E is some constant. These two equations will suffice to

determine dd/dt and dty/dt under any given initial conditions.

The pressure on either sphere is given by
R /)3a

2 + &2 ,, / v- =
&amp;lt;7cos TT bF.................. (iv),m a? + &

where m is the mass of the sphere. The spheres separate when
R vanishes and changes sign.

If the sphere have no initial angular velocity about the normal
to the surface it is clear that n = and the additional impressed
force is zero. If therefore a homogeneous sphere roll on a perfectly

rough fixed spherical surface, and if the sphere either start from
rest, or have its initial angular velocity about the common normal

equal to zero, the motion of the centre of the sphere is the same as

if the fixed spherical surface were smooth and the forces on the

rolling sphere were reduced to five-sevenths of their former value.

It will be noticed that the equations (i) and (ill) which de
termine the motion when gravity is the acting force are the same
as those marked (6) in Art. 202 which give the motion of a top.
The results obtained in Art. 203 therefore also apply to the

motion of the sphere. If the sphere does not roll off it will roll

round the fixed sphere oscillating between an upper and lower
horizontal circle. In order that the sphere may not roll off it is

necessary that the value of cos found by equating the pressure R
to zero should not lie between the limiting circles of motion.

These results are given in greater detail in the examples im

mediately following.

Ex. 1. A homogeneous sphere rolls under the action of gravity in any
manner on a perfectly rough fixed sphere whose centre is O. Prove that through
out the motion (1) the velocity of the centre G of the moving sphere is that due to

five-sevenths of its depth below a fixed horizontal plane ; (2) the moving sphere will

leave the fixed sphere when the altitude of its centre above is ten-seventeenths of
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the altitude of the fixed plane above the same point ; (3) the transverse velocity of

G is proportional to the tangent of the angle GU makes with the horizon, where U
is a fixed point on a vertical through 0.

Ex. 2. As in the corresponding problem for a top, Art. 205, let the initial

motion of the sphere be simply a rotation n about the common normal. If i be

the inclination of this normal to the vertical prove that the angular radii of the

circles between which the point of contact oscillates are i and that value of

between i and tr which is given by the quadratic cos2 - 1 + 2p (cos i - cos 6) = and

bg (a
2 + k2

) p = fc%2 . The spheres separate when cos = cos i 2a2
/(3a

2 + fc
2
), and it

is supposed that the initial angular velocity TO is so great that this value of 6 does

not lie between the angular radii of the limiting circles.

224. Sphere rolling on a moveable sphere. If the guid

ing sphere, hitherto fixed, is either constrained to rotate with a

uniform angular velocity about a fixed diameter or is free to move
about its centre as a fixed point the theorems given above are but

slightly altered. The chief change is that the quantity n must be

replaced by another constant which we shall represent by n .

As the proofs are so nearly the same as when the guiding
sphere is fixed, minute details are unnecessary. It is sufficient to

enunciate the results in the following examples, the demonstrations
of which are left to the reader.

If the guiding sphere is constrained to turn about an axis OZ
with angular velocity H the equations (1) and (2) of Art. 215 are

still true, but the geometrical equations (3) become

u acoz
=

0, v -f aw l
= cO sin 6,

where c is the radius of the sphere whose diameter OZ is fixed,

is the inclination of the common normal OG of the two spheres
to OZ and the axis GA lies in the plane ZOG.

If the guiding sphere is free to move about its centre 0, its

equations of motion are the same as (1) except that we write

Hj, H2 ,
ns for oh, fc&amp;gt;3 ,

ft&amp;gt;3 ;
c for a; and MK~ for mk2

. The geo
metrical equations (3) become

Ex. 1. A sphere, radius a, rolls on a guiding sphere, radius c, which is con

strained to turn about a fixed diameter, taken as the axis of reference, with a

constant angular velocity ft. If 0, \f/
are the angular co-ordinates of the common

normal OG, prove (1) that ao&amp;gt;

3 -f-cft cos d=ari where n is a constant. The value of

n is therefore known from the initial conditions.

If U be the velocity in space of the centre G of the rolling sphere prove

(2) that the velocity of the centre G is the same as if the whole mass, collected

at that point, were acted on by the impressed forces, reduced in the ratio

a2
/(a

2 + fc
2
), together with an accelerating force equal to -g r ,

where b= a + c,

acting in a direction perpendicular to the path and tending to the right-hand side

of the tangent.

Prove (3) that the pressure R on the rolling sphere is given by - E = Z + C7
2
/6.
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It follows from these results that the equations (i.) (in.) and (iv.) of Art. 223

hold also when the guiding sphere rotates uniformly about a vertical diameter and

gravity is the only force acting.

Ex. 2. A sphere of radius a and mass in rolls on a guiding sphere of radius c and

mass M which is free to turn about its centre O as a fixed point. Let Qlt O2 ,
133 be

the angular velocities of the guiding sphere about axes meeting at parallel to

those about which Wj ,
w2 ,

w3 are the angular velocities of the rolling sphere, Art.

215. Prove (1) that aw3+ c03=aw where n is a constant. The value of TO is

therefore known from the initial conditions and is zero when both spheres start

from rest.

Prove (2) that the motion of G is the same as if the mass of the sphere, collected

at that point, were acted on by the impressed forces, reduced in the ratio
&amp;lt;?/(!

+ e)

where e
(

$ +
jj~x

r
2&amp;gt;

together with a transverse accelerating force equal to
1

in a direction perpendicular to the tangent and tending to the right-hand side,

where U is the velocity of G and b= a + c.

Ex. 3. A perfectly rough sphere of radius c is made to rotate about a vertical

diameter which is fixed, with a constant angular velocity n. A uniform sphere of

radius a is placed on it at a point distant ca from the highest point : investigate the

motion and determine in any position the angular velocity of the sphere. Show
that the sphere will leave the rotating sphere when the point of contact is at an

angular distance from the vertex, where cos 0=
7
cosa + ---

^
sin

17^ &quot;119 (a+ c)g
the initial impact.] [Math. Tripos, 1889.

225. Motion on a rough cylinder. If the surface on which the sphere rolls is

a cylinder the lines of curvature are the generators and the transverse sections.

Let the axis GA be directed parallel to the generators, then pl is infinite and p2
- a

is the radius of curvature of the transverse section. We have
X
= -v[p2 , 2=0,

and since X2= 0, #3 =0. The equations (4) and (7) therefore become

du _ a2

x _ k*
v_

x

dv.= o?
y

d (au3 ) _ uv

dt
~

p2

From these equations the motion may be found.

The second of these gives the motion transverse to the generators of the cylinder,

and if Y be the same for all positions of the sphere on the same generator, this

equation may be solved independently of the other two. The transverse motion of

the centre of Hie sphere is therefore the same, under the same initial circumstances,

as that of a smooth sphere constrained to slide, in a plane perpendicular to the

generators, on the transverse section of the cylinder and acted on by the same impressed

forces but reduced in the ratio 2
/(a

2 + A;
2
).

Having found v we may proceed thus
;

let be the angle the normal plane to

the cylinder through a generator and through the centre of the sphere makes with

some fixed plane passing through a generator, then v = p2d(^ldt. If
d&amp;lt;p/dt

is not

zero, the first and third equations then become

^ +
fc2

au&amp;gt;

_ a2
P*x u=

d
(
aus)

&amp;gt;
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If X is the same for all positions of the sphere on the same generator these

equations can be solved without difficulty. For v and p.2 being known in terms of 0,

we have in this case two linear equations to find u and ao&amp;gt;

3
. If X is zero, and

2=2^ we fin(j aw3
= ^sin(v/f $+ ), u= AJ$co8(,J$(j&amp;gt; + B),

where A and B are two arbitrary constants to be determined by the initial values of

u and o&amp;gt;3 .

If X is not the same for all positions of the sphere on the same generator, let

be the space traversed by the sphere measured along a generator. Then

Substituting this value of w, we have two equations to find and ao&amp;gt;3 in terms

of 0. One integral of these is equation (8) of Art. 217 which was obtained by the

principle of Vis Viva.

226. Ex. 1. A sphere rolls under the action of gravity on a perfectly rough

cylindrical surface with its axis inclined at an angle a to the horizon. The section

of the cylinder is such that when the sphere rolls on it, the centre describes a

cycloid with its cusps on the same horizontal line. If the sphere start from rest

with its centre at a cusp, find the motion.

Let the position of the sphere be defined by , the space described along a gene
rator, and s, the arc of the cycloid measured from the vertex. If 4& is the radius of

curvature of the cycloid at its vertex, we have s= 46 cos / JL?^L?
.

Since v=ds/dt and
/&amp;gt;2

2 + s
2=16&2 we find that v/p.2 is constant. This gives with

out difficulty sin a /S5bg (, 1 /5q cos a
W3= ~

*/ jl-coSy A/ -^-st

. n/ ^rV cos a 7 v 26

Ex. 2. If a rough inelastic sphere of radius c be dropped on to the lowest

generating line on the interior of a circular cylinder radius a, which is revolving

freely (with angular velocity ft) about its axis which is fixed at an angle a to the

horizon, prove that the plane through the axis of the cylinder and the centre of the

sphere will move like a simple circular pendulum of length I where

I . (2m+ 5M) cos a= (a
-

c) (2m + 7M),

M and m being the masses of the cylinder and sphere respectively.

[May Exam. 1877.

227. The relation,
t&amp;gt;//&amp;gt;2

= constant, holds whenever (1) the forces acting at the

centre of the sphere, and the form of the section of the cylinder, are so related that

the tangential component bears a constant ratio to p.2dp.2lds, and (2) the sphere starts

from rest at a point where p2 is zero. In such a case, the normal plane to the section

through the centre of the sphere has a constant angular velocity in space and the

resolved motion of the sphere perpendicular to the generators is independent of that

along the generators.

Ex. A sphere rolls on a perfectly rough right circular cylinder whose radius is

c under the action of no forces, show that the path traced out by the point of con

tact becomes the curve x = A sin (9y/7e)i when the cylinder is developed on a plane.

This result shows that the sphere cannot be made to travel continually in one

direction along the length of the cylinder except when the point of contact describes

a generator.

228. Motion on a rough cone. If the surface on wliicli the sphere rolls is a
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cone, the lines of curvature are the generators and their orthogonal trajectories.

Let the axis GA be directed parallel to the generator, then pl is infinite and p.2
- a

is the radius of curvature of a normal section perpendicular to the generators.

Also 6= -* //V #2
= ^j6 *1 the position f the sphere be defined by the distance r

of its centre from the vertex of the cone on which the centre always lies and by
an angle such that

d&amp;lt;f&amp;gt;

is the angle between two consecutive positions of the

distance r,
d&amp;lt;j&amp;gt; being taken as positive when the centre moves in the positive di

rection of GB. If the cone were developed on a plane it is clear that r and would

be the ordinary polar co-ordinates of a point G. We have

dd&amp;gt; dr dd&amp;gt;

The equations (4) and (7) become therefore

&r
(*4&amp;gt;\* =

a2 x
dt2 \dt) a2 +/c2

rdt

d (aw3) _ r_ d&amp;lt;j&amp;gt;

dr

dt
~
J ~di di

If the impressed forces have no component perpendicular to the normal plane

through a generator, Y= 0, and we have r2

d&amp;lt;t&amp;gt;jdt

= h, where h is some constant de

pending on the initial values of r and v.

If also the component X of the forces along a generator is a function of r only,

another integral can be found by the principle of Vis Viva, viz.

where h is another constant depending on the initial values of u, v and r.

If, further, the cone be a right cone, p2 =?-tan a where a is the semi- angle, and

we have h cot a .

aus
= --

;

--\-h ,

where h&quot; is a third constant depending on the initial values of w3 and r. The equa
tions of the motion of the centre of the sphere resemble those of a particle in central

forces. Hence r and will be found as functions of the time if we regard them as

the co-ordinates of a free particle moving in a plane under the action of a central

force represented by -^
-
2 \X- &2w3 ?K ,

where w3 has the value just found.

229. Ex. A sphere rolls on a perfectly rough cone such that the equation to

the cone on which the centre G always lies is r=
/32J

i

(0). If the centre is acted on

by a force tending to the vertex, find the law of force that any given path may be

described. If the equation to the path be !/ =/ (0), prove that the force X is

dw., a2 + fc
2
,_ . / . d2f\ , , du., h _ df

X=L*u8^ + -^- fcV
2

(f
+ #) , where 8 is given by _ = - - F~ .

230. Motion on a surface of revolution. Let the given rough surface be any

surface of revolution placed with its axis of figure vertical and vertex upwards, and

let gravity be the only impressed force. In this case the meridians and parallels are

the lines of curvature. Let the axis of figure be the axis of Z. Let 9 be the angle

the axis GO makes with the axis of Z, ^ the angle the plane containing Z and GC
makes with any fixed vertical plane.

Then ,= -*,, ,=, 8.=*t
d
*.
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Hence the equations (4) become

du

where E is some constant, and p is the radius of curvature of the meridian. Also

we have by (7) dws _ uv /I sin 0\ .~~ -~~ -~ lv

where r is the distance of the centre of the sphere from the axis of z. The

geometrical equations (5) become

d6 d

To solve these, we put (ii) into the form

dv d\b fc
2

dv p cos 6 k2
which by (v) becomes

-^ +
-

t
v= -y~~i.2 awa &amp;gt;

differentiating this, we have by (iv),

p cos 6 dv

where

Now p and r may be found from the equation to the meridian curve as functions

of 0. Hence P is a known function of 6. Solving this Ilinear equation we have v

found as a function of 0. Then by (iv) we have

do&amp;gt;3_ v f psin0\
de~~ a\ ~T~ )

and thence having found o&amp;gt;

3
we have u by equation (iii). Knowing it and v

;
d and

^ may be found by equations (v).

231. Oscillations on the summit of a rough fixed surface. A heavy sphere

rotating about a vertical axis is placed in equilibrium on the highest point of a surface

of any form and being slightly disturbed makes small oscillations, find the motion.

Let O be the highest point of the surface on which the centre of gravity G
always lies. Let the tangents to the lines of curvature at be taken as the axes of

x and y, and let (#, y, z) be the co-ordinates of G. We shall assume that is not

a singular point on the surface. In order to simplify the general equations of

motion (4) of Art. 215 we shall take as the axes GA and GB the tangents to the

lines of curvature at G. But since G always remains very near 0, the tangents to

the lines of curvature at G will be nearly parallel to those at 0. So that to the

first order of small quantities we have

Idy I dx dx dy~ -
f

and 63 will be a small quantity of at least the first order. Also since the sphere

is supposed not to deviate far from the highest point of the surface, we have ws

constant, let this constant be called n.

The equation to the surface on which G moves, in the neighbourhood of
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the highest point, is z= -I I + ) . The direction cosines of the normal at

\Pi pJ
x, y, z are #/ft, y/pa

* Hence the resolved parts parallel to the axes of the normal

pressure R on the sphere are Rx/pl , Ryfp2 and R. The equations of motion (4)

therefore become d*x a2 x %? dy an \

But 2 is a small quantity of the second order, hence the last equation gives

R= g . To solve these equations, we put x =F cos (\t +f),y= G sin (\t +f).

These give (x+^ *&amp;gt;

= ^U^ G22 22

Pi

The equation to find X is therefore

&4 a2X-n3

This is a quadratic equation to determine X2
. In order that the motion may

be oscillatory it is necessary and sufficient that the roots should be both positive.

If pt , p.2 are both negative, so that the sphere is placed like a ball inside a cup, the

roots of the quadratic are positive for all values of n. If ft ,
/&amp;gt;2 have opposite signs

the roots cannot be both positive. If ft , p2 are both positive the two conditions of

stability will be found to reduce to ?i
2

&amp;gt; rr

If ft is infinite, it is necessary that p2 should be negative, and in that case

the two values of X2 are -
-5^-55 and zero, which are both independent of n.
a2 +fc2 p2

If ft
= p2 &amp;gt;

we nave F=G. In this case if is the inclination of the normal to the

vertical, we have 2
=(#

2 + i/
2
)/p

2
and, as in Art. 212, we find

6*=F
1
* +F2*+ 2F1F2 cos {(\1

where Xj ,
X
2 are the roots of the quadratic

232. This problem may also be solved by Lagrange s method although the

geometrical equations contain differential coefficients with regard to the time. To
effect this we have recourse to the method of indeterminate multipliers as explained

in Vol. i. Chap. vui. Let the axes of reference Ox, Oy, Oz be the same as before.

Let GC be that diameter which is vertical when the sphere is in equilibrium on the

summit. Let GA, GB be two other diameters forming with GC a system of rect

angular axes fixed in the sphere. Let the position of these with reference to the

axes fixed in space be defined by the angular co-ordinates 6, 0, \f
in Euler s manner.

The vis viva of the sphere will then be

If we put sin cos ^= ,
sin Q sin ^= 77, + ^= Xj and reject all small quantities

above the second order, we find that the Lagrangian function is
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It is easy to see, by reference to the figure for Euler s geometrical equations

given in Vol. i. Chap, v., that and 17 are the cosines of the angles the diameter

GC makes with the axes Ox, Oy. See also Vol. n., Art. 15.

If wx ,
wv ,

wz are the angular velocities of the sphere about parallels to the axes

fixed in space, the geometrical equations are

x -a( wy -ws -)=0, y + a (wx -wz
-
)=0.

\ P2/ V PiJ

These are found by making the resolved velocities of the point of contact in the

directions of the axes of x and y equal to zero. See the expressions in Vol. i.

Art. 238 for the velocity of any point. The angular velocities ux ,
wy ,

uz may be

expressed in terms of 6, 0, \f/ by formulae analogous to those of Euler. See Vol. i.

Art. 257. Thus tax -B sin
\f/ + $ sin cos

\f/\

uy
= cos

if/ + sin 6 sin ^V .

wz
= cos0 + ^ )

Substituting and expressing the result in terms of the new co-ordinates , 77, x the

geometrical equations become

Lagrange s equations of motion modified by the indeterminate multipliers X and /*

are represented by the typical form

d_dLL _dL_ dLi dL^
dtdq dq 4? -W

where q stands for any one of the five co-ordinates x, y, , ij, x- The steady motion

is given by x, y, , 77 all zero and x = n Taking q=x and q=y and giving the

several co-ordinates their values in the steady motion, we find that X and p are both

zero in the steady motion.

To find the oscillations, we write for q in turn x, y, x&amp;gt;

an&amp;lt;* I* an(* retain the

first powers of the small quantities. Remembering that X and n are small quanti

ties (Art. 51), we find

^-^ + = 0, y- gl-^ k*x
&quot; = 0,

Pi a p2 a

fc
2

(&quot;
+ x -n )

- x= o, fc
2

(T,&quot;

- x ) + /*
= o.

These and the two geometrical equations Lx
and I/2 are all linear, and may be

solved in the usual manner. If we put x = n and eliminate first X and
/j, and then

and 17 we get two equations to find x and y, which are the same as those marked

(iv) in the solution of Art. 231.

233. Ex. A perfectly rough sphere is placed on a perfectly rough fixed sphere

near the highest point. The upper sphere has an angular velocity n about the

diameter through the point of contact
; prove that its equilibrium will be stable

if n,
2

&amp;gt;35# (a + &)/a
2

,
where b is the radius of the fixed sphere, and a is the radius

of the moving sphere.

234. Oscillations about steady motion. A perfectly rough surface of revolu

tion is placed with its axis vertical. Determine the circumstances of motion that a

heavy sphere may roll on it so that its centre describes a horizontal circle. And this

state of steady motion being disturbed, find the small oscillations.

In this case we must recur to the equations of Art. 230. We shall adopt the

notation of that article, except that to shorten the expressions we shall put for k-

its value fa
2

.
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To find the steady motion. We must put u, v, o&amp;gt;3 , 0, d\f/Jdt all constant. Let

a, fM and n be the constant values of 6, d\f/fdt and o&amp;gt;3 . Then we have u= 0, v = b/j.,

where b is the constant value of r. The equation (1) becomes

- b cos afj?= ^g sin a - f an sin a/A.

The other dynamical equations are satisfied without giving any relation between

the constants. If the motion be steady, we have therefore

50 76n= ~ 1-
- -

/* cot a (1),2 a/A 2 a

thus for the same value of n we have two values of /A, which correspond to different

initial values of v.

Elementary determination of the steady motion.

As the steady motion of a sphere on a rough solid of revolution is often

required, it will be useful to give a separate investigation of this result. The
centre of gravity G describes with uniform

velocity v a horizontal circle whose radius

GN is the perpendicular on the axis of the

solid. The friction perpendicular to the

meridian plane is therefore zero and we

have
-

fj?b =R sin a +F cos a)

g=R cos a - F sin af

We also have v=/j.b, where GN=b. Since

the point of contact of the sphere and solid

is at rest, we have the geometrical equations

Let the axes of reference for the rotations be the normal GC to the solid and

GA, GB respectively in and perpendicular to the meridian plane through G. These

axes move round G with angular velocities Q^=.
- ^ sin a, 2 =0, 3 =/*cosa. The

equation of moments about OB is obviously

See Art. 215. Substituting for 1? 3 , w
x
and F we obtain at once the required

result.

We have the geometrical relation aw
1
= -v, so that u

1
and n have opposite

signs if bja and a are positive. Hence the axis of rotation, which necessarily passes

through the point of contact of the sphere with the rough surface, makes an angle

with the vertical less than that made by the normal at the point of contact.

If the sphere roll on a surface of revolution so that the axis GC is turned

from the axis of symmetry, the angle a must be positive. By inspecting the

expression for n and making dw/&amp;lt;fyt
= it will be seen that the least value of the

angular velocity n of the sphere is given by w2= 35cota. bgja?. In this case the

precessional motion of the sphere is given by /x
2
rz^tan a. gjb. If the sphere roll

on the inner and upper side of such a surface as an anchor ring held with its axis

vertical the angle a is negative, and there is no inferior limit to the value of n.

To find the small oscillation.

Put 6= a + x, d\l/jdt
=

fj. + dyldt where a and /x are supposed to contain all the

constants parts of and d$jdt, so that x and dyjdt only contain trigonometrical
terms. Let c - a be the radius of curvature of the surface of revolution at the point
of contact of the sphere in steady motion, so that p differs from c only by small

quantities, and may be put equal to c in the small terms. Also we have r= b + ccos- a. x.
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Now by equations (iv) and (v) of Art. 230 we have

dua _dd d\f/ p sin 6 - r _ dx c sin a - 6

~dt
=

dt~di a ~~dt
fJ a

csina-&
,^

a

when n is the whole of the constant part of o&amp;gt;3.

Again, from equation (ii), we have

fc
2 dd

5F
+

^&amp;lt;MF=
;

dxdx b dzu c cos cm dx 2 dx _-- - +n =

/2 2uccosa\ b du
integrating we have (

- n \x = --~
,., .......................... (o),

ro because x

n
(i), we ha

\ r fd^Y
)

i \

tj a\dt J

the constant being put zero because x and y only contain trigonometrical terms.

Thirdly, from equation (i), we have

1 d I d6\ r fd^Y 2 &amp;lt; 5 9_
( p )

i \ cos0 + - w,sm0 V- = --sm0;
a d \ dtj a\dt J 7 dt 7 a

c d*x b + ccosax ,

2 , . . / dw\ / c sin a - 6 \ So,.
+ -(sma + cosaa:) ( /*+ ^J

( W + /A-
-- x\ =-

| (sma
+ cosa.r).

This expression must be expanded and expressed in the form

In this case, since x contains only trigonometrical expressions, we must have B = 0.

Putting x = in the above expression, we find the same value for n as in steady

motion. After expanding the preceding equation we find

A = u?( -cos2 a+ - sin2 a
) + u2

r- (
2 cos2 a + ^sin

2 a
)

\ 7 / c sm a \ 7 /

25
&amp;lt;7

2 sin a 10 g . 10 g

In order that the steady motion may be stable, it is sufficient and necessary that

this value of A should be positive. And the time of oscillation is then 2ir/*jA.

It is to be observed that this investigation does not apply if a and therefore b be

small, for some terms which have been rejected have b in their denominators, and

may become important.

Ex. A heavy sphere rolls round the inside of a rough horizontal circular wire,

the normal to the sphere at the point of contact being inclined at a constant angle

a to the vertical
; prove that the angular velocity /x of the point of contact of the

sphere is given by /x
2= f# tan

&amp;lt;x/(/t

- a sin a), h being the radius of the ring, and a that

of the sphere. [Math. Tripos, 1881.

In this problem the rough surface on which the sphere moves is an anchor ring

in which the radius of the generating circle is zero. Supposing the sphere to roll,

but not to spin about the normal at the point of contact, the result follows by

writing n = in equation (1).

235. Motion on an Imperfectly rough surface. The

general equations of the motion of a sphere on an imperfectly
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rough surface may be obtained on principles similar to those

adopted in Vol. I. Chap. VI. to determine the motion of rough
elastic bodies impinging on each other. The difference in the

theory will be made clear by the following example, in which a

method of proceeding is explained which is generally applicable,
whenever the integrations can be effected.

236. A homogeneous sphere moves on an imperfectly rough
inclined plane with any initial conditions, find the direction of the

motion and the velocity of its centre at any time.

Let be the centre of gravity of the sphere. Let the axes of

reference GA, GB, GO have their directions fixed in space, the

first being directed down the inclined plane, and the last normal to

the plane. Let u, v, w be the velocities of G resolved parallel to

these axes, and wl) o&amp;gt;2 ,
&&amp;gt;3 the angular velocities of the body about

these axes. Let F, F be the resolved parts of the frictions of the

plane on the sphere parallel to the axes GA, GB, but taken

negatively in those directions. Let k be the radius of gyration of

the sphere about the diameter, a its radius, and let the mass be

unity. Let a be the inclination of the plane to the horizon.

Whether the sphere rolls or slides the equations of motion are

!(*&; = -Fa\ m u =

#, = Fa]
W

v =

Eliminating F and F from these equations and integrating we
have

k2 k2

u+.- acts Ug + g sin at v aw-^ = F (3),

where J7 and F are two constants determined by the initial

values of u, v, w l ,
o&amp;gt;2 -

The meaning of these equations may be found as follows. Let
P be the point of contact of the sphere and plane, let Q be a point
within the sphere on the normal at P so that PQ =

(a
2 + k*)/a.

Then Q is the centre of oscillation of the sphere when suspended
from P. It is clear that the left-hand sides of the equations (3)

express the components of the velocity of Q parallel to the axes.

The equations assert that the frictional impulses at P cannot affect

the motion of Q, and this also readily follows from Vol. I. Chap. III.,

because Q is in the axis of spontaneous rotation for a blow at P.

237. The friction at the point of contact P always acts oppo
site to the direction of sliding and tends to reduce this point to

rest. When sliding ceases the friction (see Vol. i. Chap. IV.) also

ceases to be limiting friction and becomes only of sufficient magni
tude to keep the point of contact at rest. If sliding ever does

cease, we then have

u ao&amp;gt;2 =0, v + a! =
(4).
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The equations (3) and (4) suffice to determine these final values

of u, v, o&amp;gt;!
and o&amp;gt;2 . Thus the direction of the motion and the

velocity of the centre of gravity after sliding has ceased have been

found in terms of the time. It appears that both these elements

are independent of the friction.

If the equations (4) hold initially the sphere will begin to move
without sliding provided the friction found from the equations (1),

(2) and (4) is less than the limiting friction. To determine this

point we must find the magnitude of the friction necessary to

prevent sliding. If the sphere does not slide we may differentiate

the equations (4) ;
then substituting from (1) and (2) we find F =Q

and F= g sin a . &2

/(a
2 + &2

). But, since the pressure on the plane is

g cos a, this requires that the coefficient of friction fi &amp;gt; tan a -

p .

Supposing this inequality to hold the friction called into play will

be always less than, or not greater than, the limiting friction, and
therefore equations (3) and (4) give the whole motion.

This method of finding the inferior limit to the value of fi is

the same as that used in Vol. I. Chap. iv. in the corresponding

problem where the sphere rolls down the inclined plane along the

line of greatest slope.

238. If the equations (4) do not hold initially or if the in

equality just mentioned is not satisfied, let 8 be the velocity of

sliding and let 6 be the angle the direction of sliding makes with
GA. To fix the signs we shall take 8 to be positive while 6 may
have any value from TT to TT. Then

8 cos = u aa)2 , $sin = v 4- aa&amp;gt;j (5).

The friction is equal to fig cos a and acts in the direction oppo
site to sliding, hence

F = fig cos a. cos 0, F =
fig cos a sin 6.

The equations (1), (2) and (5) therefore give

d(Scos0) /, a2
\

Y7
-

1 1 +ii}t*g cos a cos 6 + g sin a
ttt \ K J

sin0)
~ 2X

Expanding we find

dS /, a2
\ J\

di
= ~

V SV flffC S a +5rsm W C S

8 -77
= g sin a sin 9

cut J

If 6 is not constant, we may eliminate t and integrate with

regard to 0, this gives $Rin# = 2^1 (tan -^ (8),
\ */
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where n = (1 -f- a~/k-) //-
cot a, and A is the constant of integration.

If S and 0o are the initial values of S and 6 determined by equa

tions (5), we have 2^= S sin
(cot -J

l

...................... (9).

Substituting the value of 8 given by (8) in the second of equa
tions (7) and integrating we find

- n + 1 n-1 n + 1

the constant of integration being determined from the condition

that = 0o when t = 0. The equations (8), (9) and (10) give S and

in terms of t. The equations (3) and (5) then give u, v, &&amp;gt;!
and &&amp;gt;2

in terms of t.

The second of equations (7) shows that d0/dt has an opposite sign
to 0, hence beginning at any initial value except + TT continually

approaches zero. It follows that, unless a is zero, will be constant

only when = or + TT, i.e. the direction of sliding on the plane is

not fixed in space but continually approaches the line of greatest

slope. On a horizontal plane a = 0, and the direction of sliding is

fixed.

If n &amp;gt; 1, i.e. /A &amp;gt; tan a . &2

/(a
2 + k2

),
we see from (8) that sliding

will cease when vanishes. This, by (10) will occur when

= & /cos
2

-|^o sin2

|0

g sin a \ n 1 n + 1

The subsequent motion has already been found.

If n &amp;lt; 1 we see by (8) that S increases as decreases, so that

sliding will never cease. It also follows from (10) that vanishes

only at the end of an infinite time.

If S = 0, sliding will never begin if n &amp;gt; 1, but will immediately

begin and never cease if n &amp;lt; 1.

239. Billiard Balls. The theory of the motion of a sphere
on an imperfectly rough horizontal plane is so much simpler than

when the plane is inclined or than when the sphere rolls on any other

surface, that it seems unnecessary to consider this case in detail.

At the same time the game of billiards supplies many problems
which it would be unsatisfactory to pass over in silence. The fol

lowing examples have been arranged so as both to indicate the

mode of proof to be adopted and to supply some results which may
be submitted to experiment.

The result given in Ex. 1, was first obtained by J. A. Euler, the son of the cele

brated Euler, and published in the Mem. de VAcad. de Berlin, 1758. Most, possibly

all, of the other results may be found in the Jeu de Billard par G. Coriolis, pub
lished at Paris in 1835.

Ex. 1. A billiard-ball is set in motion on an imperfectly rough horizontal
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plane, show that the direction and magnitude of the friction are constant through
out the motion. The path of the centre of gravity is therefore an arc of a parabola

while sliding continues, and finally a straight line. The parabola is described with

the given initial motion of the centre of gravity under an acceleration equal to fig

tending in a direction opposite to the initial direction of sliding.

Ex. 2. If S be the initial velocity of sliding prove that the parabolic path lasts

for a time f SJfjLfj. From some experiments of Coriolis it appears that /x
= i nearly.

If the initial velocity of sliding be one foot per second, the parabolic path lasts

therefore less than a twentieth part of a second.

Ex. 3. If P be the point of contact in any position and Q the centre of oscilla

tion with regard to P, prove that the velocity of Q is always the same in direction

and magnitude. Thence show that the final rectilinear path of the centre of gravity

is parallel to the initial direction of the motion of Q and the final velocity of the

centre of gravity is five-sevenths of the initial velocity of Q. If PP be the initial

direction of motion and V the initial velocity of the centre of gravity and t the time

given by Ex. 2, prove that the final rectilinear path of the centre of gravity inter

sects PP in a point P so that PP = Vt.

Ex. 4. A billiard-ball, at rest on an imperfectly rough horizontal table, is struck

by a cue in a horizontal direction at any point whose altitude above the table is h
t

and the cue is withdrawn as soon as it has delivered its blow. Supposing the cue

to be sufficiently rough to prevent sliding, show that the centre of the ball will

move in the direction of the blow and that its velocity will become uniform and

equal to - B after a time - where P&amp;gt; is the ratio of the blow to the mass
7 a 7a fig

of the sphere and a is the radius.

In order that there should be no sliding the distance of the cue from the centre

of the ball must be less than a sin e where tan e is the coefficient of friction between

the cue and ball.

Ex. 5. A billiard-ball, initially at rest and touching the table at a point P, is

struck by a cue making an angle /? with the horizon. Show that the final recti

linear motion of the centre of gravity is parallel to the straight line PS joining P
to the point S where the direction of the blow meets the table, and the final velocity

of the centre of gravity is f B sin j8 . PS[a in the direction of the projection of the

blow on the horizon. It should be noticed that these results are independent of

the friction.

Ex. 6. Measure ST= lacotp along the projection of the blow on the horizon

tal table, then TS measures the horizontal component of the blow referred to a

unit of mass, on the same scale that PS measures the final velocity of the centre of

gravity. Prove that, during the impact and the whole of the subsequent motion,

the friction acts along PT and that the whole friction called into play is measured

by PT on the scale just mentioned. Thence show that unless
^&amp;lt;y PT/a the

parabolic arc of the path is suppressed. Show also that PT is the direction in

which the lowest point of the ball would begin to move if the horizontal plane were

smooth and the ball were acted on by the same blow as before.

Motion of a Solid Body on a plane.

240. Historical Summary. The motion of a heavy body of any form on a

horizontal plane seems to have been studied first by Poisson. The body is supposed

to be either bounded by a continuous surface which touches the plane in a single

R. D. II. 11
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point or to be terminated by an apex as in a top, while the plane is regarded as per

fectly smooth. Poisson uses Euler s equations to find the rotations about the

principal axes, and refers these axes to others fixed in space by means of the

formulae usually called Euler s geometrical equations. He finds one integral by the

principle of vis viva and another by that of angular momentum about the vertical

straight line through the centre of gravity. These equations are then applied to

find how the motion of a vertical top is disturbed by a slow movement of the smooth

plane on which it rests. See the Traite de Mecanique.

In three papers in the fifth and eighth volumes of Crelle s Journal (1830 and

1832) M. Cournot repeated Poisson s equations, and expressed the corresponding

geometrical conditions when the body rests on more than one point or rolls on an

edge such as the base of a cylinder. He also considers the two cases in which the

plane is (1) perfectly rough, and (2) imperfectly rough. He proceeds on the same

general plan as Poisson, having two sets of rectangular axes, one fixed in the body
and the other in space connected together by the formula usually given for

transformation of co-ordinates. As may be supposed, the equations obtained are

extremely complicated. M. Cournot also forms the corresponding equations for

impulsive forces. Those however which include the effects of friction do not agree

with the equations given in this treatise.

In the thirteenth and seventeenth volumes of Liouville s Journal (1848 and

1852) there are two papers by M. Puiseux on this subject. In the first of these

he repeats Poisson s equations and applies them to the case of a solid of revo

lution on a smooth plane. He shows that the inclination of the axis of the solid

to the vertical remains very nearly constant provided a sufficiently great initial

angular velocity is communicated to the body about that axis. An inferior limit

to this angular velocity is found only in the case in which the axis is vertical.

In the second memoir he applies Poisson s equations to determine the conditions of

stability of a solid of any form placed on a smooth plane with a principal axis at

its centre of gravity vertical, the body rotating about that axis. He also determines

the small oscillations of a body resting on a smooth plane about a position of

equilibrium.

In the fourth volume of the Quarterly Journal of Mathematics, 1861, Mr G. M.

Slesser forms the equations of motion of a body on a perfectly rough horizontal

plane and applies them to the problem considered at the end of Art. 251. He uses

moving axes, and his analysis is almost exactly the same as that which the author

independently adopted.

241. Oscillations about steady motion. A solid of revolution rolls on a per

fectly rough horizontal plane under the action of gravity. To find the steady motion

and the small oscillations.

Let G be the centre of gravity of the body, GC the axis of figure, P the point of

contact. Let GA be that principal axis which lies in the plane PGC and GB the

axis at right angles to GA, GC. Let GM be a perpendicular from G on the hori

zontal plane, and PN a perpendicular from P on GC. Let E be the normal reaction

at P ; F, F the resolved parts of the frictions respectively in and perpendicular to

the plane PGC. Let the mass of the body be unity.

Let 6 be the angle GC makes with the vertical, \p the angle MP makes with any
fixed straight line in the horizontal plane. Then 6 and

\f/
are two of the angles used

in Euler s geometrical equations to refer the moving axes GA, GB, GC to an axis

fixed in space, viz. the vertical (Vol. i. Chap. v.). The third Eulerian angle is here

zero. The moving axes GA, GB, GC are therefore the same as those described in
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Art. 13. Since GO is fixed in the body we have
1
= o^ , 2

= w2 . Since = the third

of Euler s geometrical equations gives 3
=

cos0&amp;lt;ty/df. Remembering that the

angular momenta about the axes are h^Ata^ /t2=4w2 , 1i$=C&amp;lt;a%
as in Art. 12, the

equations of moments of Art. 10 become

w = -F . GN
..(1).

A 2A
dt~ dt

MP (2).

(3).

The first two of Euler s geometrical equations give the relations between lt 0.2

and the angles 0, $. Since 1
= ul , 2

= w2 and = 0, these become

d0_ .

fi
d\{/_

The Eulerian geometrical equations which refer the body to the axes fixed in

space are not required. We may also notice that the equations (4) and (5) are suf

ficiently obvious from the geometry of the figure to render any reference to Euler s

equations unnecessary.

Let u and v be the velocities of the centre of gravity respectively along and per

pendicular to MP, both being parallel to the horizontal plane. The accelerations

of the centre of gravity along these moving axes will be

dv
&amp;lt;ty_ / 7 \

dt dt
~

And if z be the altitude of G above the horizontal plane, i.e. z GMt we have

^ -
,

(8).

112
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Also since the point P is at rest, we have

(9),

(10),

(11).

These are the general equations of motion of a solid of revolution moving on a

perfectly rough horizontal plane. If the plane is not perfectly rough the first eight

equations will still hold, but the remaining three must be modified in the manner

explained in the next proposition.

When the form of the solid of revolution is given these equations may admit

of considerable simplification, and may generally be formed in any special case

without much difficulty. Thus if the solid is a plane hoop or disc of radius a, we

have GN=Q, Glf= z = a sin 0, 3/P= acos0, and the radius of curvature p-0.

242. To find the steady motion,

When the motion is steady, the surface of revolution rolls on the plane so that

its axis makes a constant angle with the vertical. In this state of motion, let

6= a, d\f//dt
=

fjL,
w3
= n, GM=p, MP=q, GW=, NP=

-rj,
and let p be the radius of

curvature of the rolling body at P. The relations between these quantities may
be found by substitution in the above equations.

Suppose it were required to find the conditions that the surface may roll

with a given angular velocity n, its axis of figure making a given angle a with the

vertical. Here n and a are given, and p, q, , 17, p may be found from the equations

to the surface. We have to find /*, ult o&amp;gt;2 , u, v and the radius of the circle described

by G in space. Eliminating F and J^, we have F = 0, and

/j? sin a (A cos a -
jp)

- n^ (C sin a +py) -gq = Q ............... (12),

!=-/* sin a, w2
= 0,

u = 0, v= -
nt}

-& sin a.

Let r be the radius of the circle described by G as the surface rolls on the plane.

Since G describes its circle with angular velocity ^, we have
?&amp;gt;

= v, and hence

Eliminating n we may also find r from the equation

^{Aif] sin a cos a+ (7 sin2 a + r
(&amp;lt;7 sma+pr})}=gqtj.

For every value of n and a there are two values of /z, which however correspond
to different initial conditions. In order that a steady motion may be possible, it

is necessary that the roots of the quadratic (12) should be real. This gives

(C sin a +pr)fri
1+ 4gq sin a (A cos a -p) = a positive quantity.

The instantaneous axis passes through P and intersects the axis of figure in

some point E, not drawn. Let EH be a perpendicular on the horizontal plane,

then as the body rolls in steady motion, the vertical EH is fixed and G revolves

round it with an angular velocity /t. To find E, we notice that the velocity of N is

/* . EN . sin a, but since EP is the instantaneous axis it is also w . EN . sin NEP.

Equating these, we see that E is determined by the equation /*sin a= wtan NEP.

Elementary determination of the steady motion.

In many problems only the steady motion is required, and then the process just

described becomes very simple. Since all the quantities, except ^, are constant, we
omit all the differential coefficients in the general equations of motion of Art. 10.

Since G describes its circle uniformly under the influence of all the forces
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transferred to that point, w= and ^ = 0. Thus to find the steady motion we have

merely to substitute in Art. 10 the values h
l
= Ault /f2

= 0, h3 =Cn, o&amp;gt;2
= 0, l

= u
1 ,

02=0, 63 =/j.cos a. In this way we find, writing g for R, a for 6,

-Cnu1 + Aul[tcosa= -F . GM-g.MP ..................... (2).

/usina= -
w^ ...... (5). -v/j.=F ...... (6).

Joining these to the geometrical equation (10) the results given above for the steady

motion follow at once.

Why some tops rise.

If the body is set in motion by unwinding a string, as in a top, the initial values

of ojj, w.2 , u, v are small. If therefore the oscillations of the body are to be small,

the steady motion, by (5), must be such that /x is small. Referring to (12) we see

that this condition can be satisfied by making n large. We then have

nfjL(Csina+ptj)= -
gq.

Since a large value of u&amp;gt;3 or n renders (10) impossible, we infer that a steady motion

cannot be established in this manner unless n . PAT
is small or GN is large.

If the body is a top with its apex rounded off PN is small, but nevertheless the

angular velocity n communicated by unwinding the string may still be too great to

satisfy the equation (10). If the plane is perfectly rough an impulsive friction is

called into play at P sufficiently great to reduce that point to rest. If the plane is

imperfectly rough the point P slides on the plane and there is therefore a com

ponent of friction acting perpendicularly to the plane GPM in the direction

opposite to that marked F in the figure. This produces a new couple acting on

the body in the plane GPF besides those which act in the steady motion. Since

in a top G is on the other side of N to that represented in the figure, the positive

direction of the axis of the couple is to the left of GO. Comparing this couple

with the couple Q in Art. 209, we see that its general effect is to make the

invariable line at G, accompanied by GC, approach nearer to the vertical drawn

through G. If the initial value of n is only a little greater than that required by

(10) the top slightly rises to adjust itself to the equation. But if n is much too great

the top rises until the axis is sensibly vertical.

243. To find the small oscillation.

We put 6 = a + x, d\f//dt
=

/* + dyjdt, us
= n + z. Then we have by geometry,

PM=q + (p-p)x,

and substituting in (5), (9), (10), (6), (7) respectively, we find

u
l
= -

ft sin a -/* cos ax -sin ay , u=px ,

v = -
fj.
sin a -

nrj
-

(fj.
cos a +

/*/&amp;gt;

sin2 a + np cos a) x - sin ai-y
-

rjz,

l^=j&amp;gt;x + /K
2sina +n^ + 2sina/*/+ i7^

F = -
()iicosa-p/x+ /x/)sin

:J a +
7i/&amp;gt;cos a) x

-
smaty&quot; -yz ,

where accents, except in the case of F
, denote differentiations with regard to t.

Substituting these in equation (3) and integrating, we have

(G + if) z = (p/j.
-

/* cos a -
fj,p

sin2 a - np cos a) t\x,
-

77
sin a^y ......... (A),

the constant being omitted because n, a and
fj.

are supposed to contain all the

constant parts of wa , 6, and d\f/jdt.

Again substituting in (1) and integrating, we have

{ Cn -
2Afj. cos a + (pfj.

-
/j.
cos a -

/x,
sin2

ap
-
np cos a) }x

- (A + 2
)
sin ay = r)Z... (B).
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Also substituting in (2), we have

(A +p2 + 5
2
)

x&quot; + x{Afj? (sin
2 a - cos2

a) + Cnjj. cos a + (p
-
p) g

+ fj? sin a&amp;lt;/
+ nfj-rjq + fj? cos ay? + nppp cos a + ,u

2 sin2 app }

+ y { -2A/JL sin a cos a + Cn sin a + 2^ ^ sin a + nprj} /- = 0. . . (C) .

+ {
- A sin a cos a/t

2 + C?i/x, sin a + gq + sin a/r^ + nuprj]

The last term of this equation must vanish since x, y ,
z contain only periodic

terms. It is the equation thus formed which determines the steady motion and

gives us the value of p.

To solve these equations we may put

x=Lsm(\t+f), y = Msm(\t+f), z= N(\t+f).

If we substitute these in (A), (B), (C) we shall get three equations to eliminate

the ratios L : M : N. Before substitution it will be found convenient to simplify

the equations, firstly by multiplying (A) by , (B) by 77 and subtracting the latter

result from the former, secondly by multiplying (A) by fj-p/tj
and adding the result

to (C). We then obtain the following determinant,

-(A+p2+q 2
)X

2 + (p-p)f)

+ ij? (p
z - A cos 2a -qr)

+ nfj.C cos a
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disturbed from this state of steady motion, show that the time of a small oscillation

1S27T I- (fc
2+^2)!in_a _H

\(ja 3/c
2 cos2 a + a2 sin2 a)

Ex. 3. An infinitely thin circular disc moves on a perfectly rough horizontal

plane in such a manner as to preserve a constant inclination a to the horizon.

Find the condition that the motion may be steady and the time of a small oscillation.

Let the radius of the disc be a, and the radius of gyration about a diameter k.

Let w3 be the angular velocity about the axis, ^ the angular velocity of the centre

of gravity about the centre of the circle described by it, r the radius of this circle,

then in steady motion

(2A;
2 + d2

)
w3
= kV cos a - cot a, (2k

1 + a2
)
r= - k*a cos a +^ cot a.

If T be the time of a small oscillation

Ex. 4. A homogeneous right circular cylinder, whose altitude is twice the radius

of the base, rolls on a rough horizontal plane with its axis inclined at an angle 45

to the vertical. If n be the angular velocity about its axis, prove that in steady

motion the vertical plane through its axis turns round a fixed vertical line with an

angular velocity /JL
U . 30^/2/31. Show that the instantaneous axis divides the axis

of the top in the ratio 31 : 29. Prove also that the period 2irj\ of the small oscil

lations about the steady motion is given by X 2 + V ~ = - - w2 where h is the
ol ll

(&amp;lt;J-L)&quot;

radius of the base.

The motion of a cylinder rolling on its edge may be deduced from that of the solid

of revolution by putting the radius of curvature p 0. The general results for the

cylinder are rather long, but when a = 45, %= ~h&amp;gt; &quot;n=-li
we have p = h^2 and # = ;

putting also G= |/t
2

,
A = T̂ li

2 the results are considerably simplified.

Ex. 5. A heavy body is attached to the plane face of a hemisphere so as to form

a solid of revolution, the radius of the hemisphere being a and the distance of the

centre of gravity of the whole body from the centre of the hemisphere being h. The

body is placed with its spherical surface resting on a horizontal plane, and is set

in motion in any manner. Show that one integral of the equations of motion is

A sin20^+CVjf cos0 +
-)
= constant whether the plane be smooth, imperfectly

rough, or perfectly rough.

It is clear that the first two terms on the left-hand side of this equation is the

angular momentum about the vertical through G. Let this be called I. Since we

may take moments about any axis through G as if G were fixed in space, we have

dIjdt =F .PM. But PM= -PN. 7i/a, hence eliminating F 1

by equation (3) and in

tegrating, we get the required result.

This integral is given by Prof. Jellett in his Theory of friction, chap. vin. 1872 :

though he obtains it by a very different process. He also assumes that the rotation

about the axis of figure is so rapid that the friction acts perpendicularly to the

vertical plane containing the axis of figure. He proceeds to apply the integral to

show that when a top is placed on an imperfectly rough horizontal plane
&quot; the axis

will soon become vertical, assuming that the other motions are slow compared with

the rotation round the axis.&quot;

Ex. 6. A surface of revolution rolls on another perfectly rough surface of

revolution with its axis vertical. The centre of gravity of the rolling surface lies
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in its axis. Find the cases of steady motion in which it is possible for the axes of

both the surfaces to lie in a vertical plane throughout the motion.

Let 6 be the inclination of the axes of the two surfaces, P the point of

contact, GM a perpendicular on the tangent plane at P, PN a perpendicular

on the axis GC of the rolling body; F the friction, E the reaction at P; n the

angular velocity of the rolling body about its axis GC, n the angular rate at which

G describes its circular path in space, r the radius of this circle. Then in steady

motion Mfj. sin (Cn -
A/J. cos 6) = - F . GM - R . MP,

R= - Mr/j? sin a +Mg cos a,

F= - Mrp* cos a -Mg sin a,

n . PN+fj. sin . GN= -
?&amp;gt;,

where M is the mass of the body. These results were set by the author in an ex

amination paper in the University of London, 1860.

245. General equations of motion. A surface of any form rolls on a fixed

horizontal plane under the action of gravity. To form the equations of motion.

Let GA, GB, GC, the principal axes at the centre of gravity, be the axes of

ftr

reference and let the mass be unity. Let (, 77, f)
= be the equation to the

bounding surface, (, 77, f) the co-ordinates of the point P of contact. Let (p, q, r)

be the direction-cosines of the outward direction of the normal to the surface at

the point {,,, then p ^j - = r
f

.

Firstly, let the plane be perfectly rough. Let X, Y, Z be the resolved parts

along the axes of the normal reaction and the two frictions at the point , 77, ,
and

let the mass of the body be unity. By Euler s equations we have

Aw,? -(fi-C) w2w3
= r)Z

-m
Bua -(C-A)uaWl= fX-^\. .......................... (1),

Co&amp;gt;3
- (A -

B) Wlw3
= y-

77
AJ

where accents denote differentiations with regard to the time.

Also the equations of motion of the centre of gravity are by Art. 5,

I

\. .............................. (2).

w - ww2 + vwj = gr + Zj
Also since the line (p, q, r) remains always vertical (Art. 18),

Since the point (, 77, ) which, for the moment, is fixed relatively to the moving
axes is also, for the moment, fixed in space, we have by Art. 17,
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U= u-

(4),

where U, V, W are the resolved parts of the velocity of the point of contact P in

the positive directions of the axes.

246. Secondly, let the plane be perfectly smooth. The equations (1), (2), (3),

apply equally to this case, but equations (4) are not true. Since the resultant of

X, F, Z is a reaction R normal to the fixed plane, we have

X=-pR, Y=-qR, Z=-rR ........................... (5).

The negative sign is prefixed to R because (p, q, r) are the direction-cosines of

the outward direction of the normal, and it is clear that when these are taken posi

tively, the components of R are all negative. If at any moment R vanishes and

changes sign the body will leave the plane.

Since the velocity of G parallel to the fixed plane is constant in direction and

magnitude, it will usually be more convenient to replace the equations (2) by the

following single equation. Let GJ/ be the perpendicular on the fixed plane and let

MG= z, then 2&quot;= -g +R .......................................... (6).

It is necessary that the velocity of the point of contact resolved normal to the

plane should be zero, this condition may be written in either of the equivalent

forms Up+Vq+Wr=
r

247. Thirdly, let the body slide on an imperfectly rough plane. The equa
tions (1), (2), (3) and (7) hold as before. If ^ be the coefficient of friction the

resultant of the forces X, Y, Z must make an angle tan&quot;
1

/x, with the normal at the

point of contact, hence
x*+Y* + Z*

=
1 + v?

.................................^
Also since the resultant of (X, Y, Z), the normal at P and the direction of slid

ing must lie in one plane, we have the determinantal equation

X(qW-rV) + Y(rU-pW) + Z(pV-qU) = Q ..................... (9).

Since the friction must act opposite to the direction of sliding, we must have

XU+ YV+ZW negative. When this vanishes and changes sign, the point of con

tact ceases to slide.

If the body start from rest we must use the method explained in Vol. i. Chap. iv.

to determine whether the point of contact will begin to slide or not. The rule may
be briefly stated as follows. Assume X, Y, Z to be the forces necessary to prevent

sliding. Then since u, v, w, ult o&amp;gt;2 , w3 are all initially zero, we have by differentiat

ing (4) and eliminating the differential coefficients of u, v, w, uly w2 ,
w3 three linear

equations to find X, Y, Z, in terms of the known initial values of (p, q, r) and

(&amp;gt; ill )
The point of contact will slide or not according as these values make the

left-hand side of equation (8) less or greater than the right-hand side.

In this way when the point of contact is fixed for the moment the equations

(1), (2), and (4) are sufficient to find the initial values of X, Y, Z, i.e. the components

of the reaction at the point of contact. This is also the rule given in Vol. i. Chap. iv.

under the heading Initial Motions to find the initial value of a reaction, viz. we
differentiate the geometrical equations, and substitute from the dynamical equa
tions. This seems the simplest method of proceeding, but we may also adopt
either of the following methods.

The equations to find X, Y, Z may be obtained by treating the forces as if they
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were indefinitely small impulses. In the time dt, we may regard the body as acted

on by an impulse gdt at G and a blow whose components are Xdt, Ydt, Zdt at P.

It is shown in the chapter on Momentum in Vol. i. that we may consider these in

succession. The effect of the first is to communicate to P a velocity gdt in a

direction normal to the fixed plane and outwards. If P does not slide, the effect of

the blow at P must be to destroy this velocity.

In the chapter on Momentum in Vol. i. certain formulas have been deduced from

the ordinary equations of impact by which we can find the resolved initial velocities

of the point of application of any impulse. A geometrical representation of these

formulae is also given by the help of an ellipsoid, E= constant, where E is the vis

viva generated by the impulse. To avoid the repetition of this investigation we

may use these formulas to find X, F, Z. We accordingly write ii^^pg, vr
= qg,

w
l
= rg and w2 ,

t 2 ,
w2 each equal to zero on the left-hand sides and (to suit the

notation of this article) change p, q, r on the right-hand sides into f, 77, f.

Geometrically the point of contact will not slide if the diametral line of the fixed

plane with regard to the ellipsoid called E makes a less angle with the normal than

tan&quot;
1

[j,.

In any of these cases when p, q, r have been found, the inclinations of the prin

cipal axes to the vertical are known. Their motion round the vertical may then be

deduced by the rule given in Art. 19. When
, v, w and the motions of the axes

have been found, the velocity of the centre of gravity resolved along any straight

line fixed in space may be found by resolution.

248. Some integrals of these equations are supplied by the principles of angular

momentum and vis viva. If the plane is perfectly smooth we have

Aw-ip + Bu2q + Cw.dr = a,

AcV + Bw2
2 + Cw3

2 + (dz/dtf= p-2gz,

where a and /3
are two constants. If the plane is perfectly rough we have

249. Examples. Ex. 1. A body rests with a plane face on an imperfectly

rough horizontal plane whose coefficient of friction is p. The centre of gravity of

the body is vertically over the centre of gravity of the face, and the form of the

face is such that the radius of gyration of the face about any straight line in its

plane through its centre of gravity is 7. The body is now projected along the

plane so that the initial velocity of its centre of gravity is v and the initial rota

tion about a vertical axis through its centre of gravity is o&amp;gt; . If w be very small, prove
that the centre of gravity moves in a straight line and that its velocity at the end

of any time t is v -
ngt. If w be the angular velocity at the same time, prove that

2 log
= 1 - ^-

,
where k is the radius of gyration of the body about a vertical

through the centre of gravity. [Poisson, Traite de Mecanique.]

Ex. 2. A body of any form rests with a plane face in contact with a smooth

fixed plane so that the perpendicular from the centre of gravity G on the plane falls

within the face. If the body is then struck by a blow which passes through G, or

begins to move from rest under the action of any finite forces whose resultant

passes through G, prove that it will not turn over, but will begin to slide along the

plane, even if the line of action of the force cuts the plane outside the base.

[Cournot.]

Ex. 3. A heavy ellipsoid is placed on an inclined plane, touching it at a point
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P whose co-ordinates referred to the principal diameters are (, 77, ).
Deduce from

Arts. 246 and 247 the initial values of the reaction at P when the plane is (1)

perfectly rough, and (2) perfectly smooth. Thence deduce the initial direction of

motion of the centre of gravity.

250. Oscillations on a rough horizontal plane. Whatever the shape of a

body may be we may suppose it to be set in rotation about the normal at the point

of contact with an angular velocity n. If the body continue to rotate about that

normal as a permanent axis, the normal must be a principal axis at the point of

contact, and yet it must pass through the centre of gravity. This cannot be

unless the normal is a principal axis at the centre of gravity. If however n= Q,

this condition is not necessary. There are therefore two cases to be considered.

Case 1. A body of any form is placed in equilibrium resting with the point C on

a rough horizontal plane, with a principal axis at the centre of gravity vertical, and

is then set in rotation with an angular velocity n about GC. A small disturbance

being given to the body, it is required to find the motion.

Case 2. A body of any form is placed in equilibrium on a rough horizontal plane
with the centre of gravity over the point of contact. A small disturbance being given
to the body, it is required to find the motion.

251. Case I. Supposing the body not to depart far from its initial position,

all the quantities p, q, u, v, w, o^ ,
w2 are small and r= 1 nearly. Hence, by (2), when

we neglect the squares of small quantities, we see that X, Y are also small, and

that Z= -g nearly. It follows by (1) that w3
is constant and /. =n. Also and 77

are small and f= h nearly, where h was the altitude of the centre of gravity above

the horizontal plane before the motion was disturbed. The equation to the surface

may, by Taylor s theorem, be written in the form

f= h -
2

where (a, b, c) are some constants depending on the curvatures of the principal

sections of the body at the point C.

The squares of all small quantities being neglected, the equations of Art. 245

become A w/ - (B -
C) nw,2= -

grj- hY]\

j

, .

a b be
Eliminating X, Y, u, v, wl5 w.2 from these equations, we get, as in Art. 15,

(A + h
2

) q&quot;
+ (A + B + 2h- - C) np -

{(B
-
C) n&amp;gt; + hg + hW}q=-(g + 1m*) tj + ling

-
(B + /i

2
) p&quot;

+ (A +B + 2/t2 - C) nq + { (A
-
C) li1 + hg + Ji

2n2

}p = (g + 7m2
) + Jiny .

It will be found convenient to express , TJ
in terms of p, q. The right-hand

sides of each of the equations will then take the form

Lp + Mq +L^ + Mtf .

To solve the equations, we must then assume p, q to be of the form

p= PQ cos \t + Pj sin \t
, q^Qo cos Xi + Q l

sin \t.

If the tangents to the lines of curvature of the moving body at C are parallel to
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the principal axes at the centre of gravity, these equations admit of considerable

simplification. In that case the equation to the surface may be written in the form

where a and c are the radii of curvature of the lines of curvature. The right-hand

sides of the equations then become respectively

-
(g + 7m2

) cq + hnap and (g + 7m2
) ap + hncq .

To satisfy the equations, it will be sufficient to put

p = Fcos(\t+f), q = Gsin(\t+f).

This simplification is possible because we can see beforehand, that if we substi

tute these values, the first equation will contain only sin(X+/) and the second only

cos (\t+f). These trigonometrical terms may then be divided out of the equations

leaving two relations between the constants F, G and X. Eliminating the ratio FjG,
we get the following quadratic to determine X2

[(A + /*-)
X2+{B-C + h(h- c) }n* + g (h

-
c)][(B + ti

2
)
X2+ [A - G + h (h -a)}n*+y (h

-
a)]

If Xj, X2 are the roots of this equation, the motion is represented by the

equations p=F cos (\t +fj) +Fz cos (X2 +/2)|

q= G! sin (X^ +/J + G2 sin (X2t +/2) j

where G^/Fj ,
6r2/F2 are known functions of X

x ,
X2 respectively, and F

l ,
F2 ,fi, /2 are

constants to be determined by the initial values of p, q, dp[dt, dqjdt.

In order that the motion may be stable, it is necessary that the roots of this

quadratic should be real and positive. The conditions may be easily expressed.

252. Examples. Ex. 1. A solid of revolution is placed with its axis vertical

on a perfectly rough horizontal plane and is set in rotation about its axis with an

angular velocity n. If c be the radius of curvature at the vertex, h the altitude of

the centre of gravity, k the radius of gyration about the axis, k that about an axis

through the vertex perpendicular to the axis of figure, show that the position of the

VjaW-c)
body will be stable if n&amp;gt;2 .

Ex. 2. An ellipsoid is placed with one of its vertices in contact with a smooth

horizontal plane. What angular velocity of rotation must it have about the vertical

axis in order that the equilibrium may be stable ?

Result. Let a, b, c be the semi-axes, c the vertical axis, then the angular

velocity must be greater than * - [Puiseux.]

Ex. 3. A solid of any form is placed in equilibrium with the point C on a

smooth horizontal plane, a principal axis GC at the centre of gravity being vertical,

and an angular velocity n is then communicated to it about GC. A small disturb

ance being given, show that the harmonic periods may be deduced from the quad
ratic (^X

2 + E) (X2+ F) = (A+B-C) 7i
2X2 + (j

2
(p

-
p)

2 sin2 S cos2
5,

where E = (B- C) w
2
H- g { (h

-
p) sin2 5 + (h

-
p ) cos

2
5} ,

F= (A
-
C) 7i

2 + g { (h
-

p) cos
2 d + (h-p )

sin2
5} .

Also h is the altitude of the centre of gravity, p, p are the principal radii of

curvature at the vertex, and 5 is the angle the principal axis GA makes with the

plane of the section whose radius of curvature is p. [Puiseux.}

Ex. 4. A heavy rigid body with a plane base rests in equilibrium on the summit
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of a rough fixed sphere, the principal axis GO at the centre of gravity G being

vertical. It is then set in rotation about the axis GO with an angular velocity n, it

is required to determine the periods of the oscillations about this steady motion.

In the general case the result is rather long, but it is simplified when A = B. Let

(p, q, -c) be the co-ordinates of the point of contact referred to axes GA, GB, GC
fixed in the body. Let a be the radius of the sphere and let the mass of the body
be unity. We then have p =P sin pt, q = Q cos pt, where p is determined by

One factor is obviously p =F n.

If (, 77) be the co-ordinates of the point of contact referred to axes fixed in space,

we have = Psin (p + ri) t, r)= Qcos(p + n) t.

Ex. 5. A solid cube is in neutral equilibrium on the summit of a rough fixed

sphere of radius c. It is then set in rotation about a vertical axis through its

centre of gravity with an angular velocity n. Prove that this state of steady motion

will not be stable unless w2
&amp;gt; (55 + 7v/70) 0/4c.

In this case the cubic obtained in the last question reduces to

p
3 + np

2 -
frc

2
/)
-
f (n

2 + (jr/c)
n = 0.

The roots are real if the condition given is satisfied.

253. Case 2. Returning now to the general problem enunciated in Art. 250,

we proceed to discuss the oscillations about equilibrium of a heavy body resting on a

rough horizontal plane ivith the centre of gravity over the point of contact.

Supposing the disturbance to be small, all the quantities a&amp;gt;j,

w2 ,
a&amp;gt;3 , u, v, w are

small. Hence, when we neglect the squares of small quantities, the equations

(1) and (2) of Art. 245 become respectively,

A^ = -nZ-$Y, Bua
=&-lZ t CuJ =&-nX............... (i),

u =gp + X, v =gq+Y, iv = gr +Z ..................... (ii).

Let
, 77 , f be the co-ordinates of the point of contact in the position of equili

brium, and let $= + !, ^ = ^0 +^ f=fo + fi- Tnen in the small terms of

equation (4) we may write
, ?7 , f for

, 77, f. Hence, differentiating these and

eliminating X, F, Z, u, v, iv by help of equations (i)
and

(ii), we get

(4 +V +foW-oW*2 -UoW8 =-00Pt

-fa) .................. (Hi),

and two similar equations.

Let pQ , q ,
r be the values of p, q, r in the position of equilibrium. Then

n!Po
= nol (lo

= &lro= P&amp;gt;

where p is the radius vector from G to the point of contact.

Now in the small terms of equations (3) we may write pp , pq , prn for
, T;O , f . Hence

equations (iii) become by substitution from the second and third of equations (3)

Aul
=

r) pr&quot;-&pq&quot;-g(T1r-te) ........................... (iv),

and two similar equations. At the time t Ietp=p + x, q = qQ + y, and r= r + z.

Then since (p + x)
z + (q (, + y)

2
+(r()

+ z)
2= 1, we have p x + q y + r z = 0. The

form of the surface being known we can find x, y, z in terms of
ls rjv ft, and thus

express rjr
-

fa, fr
-

r, q
-

tjp in the form -g(rjr- fa) = Lx + My.
The equations (iv) now become

Aui^riopz&quot; -fay&quot; + Lx + My .............................. (v),

and two similar equations.

Differentiating equations (3), and substituting for do^jdt, dwjdt, dus/dt, from

(v), and for z and z&quot; from p x + q y + rQz= 0, we get equations of the form

Fx&quot; + Gy&quot;
= IIx + KH
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To solve these we put x = Pcos (\t+f), y = Q cos (\t+f), substituting, and

eliminating the ratios PjQ, we have the following quadratic to determine X2

~

Thus, by virtue of the relation existing between x, y, z, each of these may be

represented by an expression of the form

P! cos (\jt +fj) +P2 cos (X2* +/2).

Substituting these values in equations (v) we see that u
1 ,

w2 ,
w3 can each be

represented by an expression

where Elt
E2 are known functions of PI} P2 ...and X1? X2 ,

but Qlt O2 , 123 are small

arbitrary quantities. By substituting in equations (3) and equating the coefficients

of cos (Xji -f/j) and cos (X2 +/2), we may find the values of E
l
and 2 without diffi

culty. And we also see that we must have QI!PO fi2/2
= s/o so that

&amp;gt;

of tlie tliree

fij, Q2 , 3 , only one is really arbitrary. We have therefore but five arbitrary

constants, viz. P1? P2 , /1? /2 ,
and fij. These are determined by the initial values

of Wj, w2 ,
u&amp;gt;3 , a; and y.

To find the motion of the principal axes round the vertical, let be the angle
the plane containing GC and the vertical makes with the plane of AC. Then, by

drawing a figure for the standard case in which p, q, r are all positive, it will be

seen that, if
/x,
be the rate at which GC goes round the vertical,

fjL/Jl
- r3= wj cos + w2

sin =
(p^ + q^^jjl - r 2

.

Substituting for ulf o&amp;gt;2 , this takes the form

/A
= ?*

3 + Nj_ cos (\t +fj) -fN3 cos (X2t+/2) ,

where n ,
N

In order that the equilibrium may be stable it is necessary that both the roots

of the quadratic (vi) should be real and positive. These conditions may easily

be expressed.

These conditions being supposed satisfied, the expressions for x, y, z will only
contain periodical terms, and thus the inclinations of the principal axes to the

vertical will not be sensibly altered. But the expressions for w15 w2 ,
u&amp;gt;

3 may each

contain a non-periodical term, and if so the rate at which the principal axes will

go round the vertical will also contain non-periodical terms. The body therefore

may gradually turn with a slow motion round the normal at the point of contact.

The expressions for u, v, w will contain only periodic terms, so that the body will

have no motion of translation in space.

Motion of a Rod.

254. When the body whose motion is to be determined is a rod, it is often

more convenient to recur to the original equations of motion supplied by
D Alembert s principle. The equations of Lagrange may also be used with

advantage. These methods will be illustrated by the following problem.
A uniform heavy rod, suspended from a fixed point Q by a string, makes small

oscillations about the vertical. Determine the motion.

Let O be taken as origin, and let the axis of z be measured vertically downwards ;

let 2a be the length of the rod, 6 the length of the string. Let (I, m, n] (p, q, r)

be the direction-cosines of the string and rod. Then I, m, p, q are small quantities
whose squares are to be neglected, and we may put n and r each equal to unity.
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Let u be the distance of any element du of the rod from that extremity A of the

rod to which the string is attached. Let (x, y, z) be the co-ordinates of the element

du, then we have x = bl + up t y = bm + uq, z = b+u (1).

Let M be the mass of the rod, MT the tension of the string. The equations of

motion of the centre of gravity will be

bl&quot; + ap&quot;=-Tl bm&quot; + aq&quot;=-Tm = -T (2),

where accents denote differential coefficients with regard to t.

By D Alembert s principle the equation of moments round x will be

-Ldu
(yz&quot;

-
zy&quot;)

= 2du (yZ -zY) = Vdu (yg).

By equations (1) this reduces to

2a

du {
-

(b + u) (bm&quot; + uq&quot;) }
= 2ag (bm + aq).

I:

Integrating, we get

- Gab
(bm&quot; + aq&quot;)

- Gba*m&quot; - 8a*q&quot;
= Gag (bm + aq),

which, by equations (2), reduces to

3bm&quot; + 4:aq&quot;= -Sgq ................................. (3).

Therefore by (2) and (3) the four equations of motion are

bl&quot; + ap&quot;= -gl, 3bl&quot; + 4ap&quot;=-3gp ........................ (4),

and two similar equations for m, q. These equations do not contain m or q, and

on the other hand the equations to find m and q do not contain I or p. This shows

that the oscillations in the plane xz are not affected by those in the perpendicular

plane yz.

To solve these equations, put l=Fsm(\t + a), p = Gsm (Xt + a),

we get b\*F+ aX2 = gF, b\*F+ $ a\2G=
&amp;lt;/&amp;lt;?;

a&X4 - (4a+ 36) g\* + 3g*= 0,

and the values of X may be found from this equation.

255. In order to make a comparison of different methods, let us deduce the

motion from Lagrange s equations. In this case we must determine the semi vis viva

T true to the squares of the small quantities, p, q,l, m, we cannot therefore put r= 1,

n= l. Since _p
2 + 2

2+r2 =l, P+m2 +?z2 =l, we have

we must therefore replace the third of equations (1) by

We have 2mx 2= Sm (b-l
2 + Zbl p u +p 2uy

)
=M (b

2
l
2 + 11)1 p a + 1 a

2/2
).

The value of Zmy 2 may be found in a similar manner. The value of Swz 2 is of

the fourth order and may be neglected. Hence the vis viva is

Also we have U= -%gb (Z
2 +m2

)- bga(p
2+ q

2
) + constant.

ddT dT dU ,

The equation - =: becomes bl + ap = -
gl ;

cit dl cii fit

similarly we get bl&quot; + f ap&quot;
= -

gp.

These are the same equations which we deduced from D Alembert s principle,

and the solution may be continued as before.
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EXAMPLES *.

1. A uniform rod, moveable about one extremity, moves in such a manner as

to make always nearly the same angle a with the vertical ; show that the time of a

small oscillation is 2?r . / .
- - -r

, a being the length of the rod.V % l + 3cos2 a

2. If a rough plane inclined at an angle a to the horizon be made to revolve

with uniform angular velocity n about a normal Oz and a sphere be placed at rest

upon it, show that the path in space of the centre will be a prolate, a common, or a

curtate cycloid, according as the point at which the sphere is initially placed is with

out, upon, or within the circle whose equation is x2 + y
2 = (350 sin a/2/?,

2
) x, the axis

Oy being horizontal.

When the sphere is placed at rest on the moving plane, it should be noticed

that a velocity is suddenly given to it by the impulsive frictions.

3. A circular disc capable of motion about a vertical axis through its centre

perpendicular to its plane is set in motion with angular velocity ft. A rough
uniform sphere is gently placed on any point of the disc, not the centre, prove that

the sphere will describe a circle on the disc, and that the disc will revolve with

angular velocity . r .
.,

-
ft, where Mk 2 is the moment of inertia of the disc

2 *

about its centre, m is the mass of the sphere and r the radius of the circle traced

out.

4. A sphere is pressed between two perfectly rough parallel boards which are

made to revolve with the uniform angular velocities ft and ft about fixed axes per

pendicular to their planes. Prove that the centre of the sphere describes a circle

about an axis which is in the same plane as the axes of revolution of the boards and

whose distances from these axes are inversely proportional to the angular velocities

about them.

Show that when the boards revolve about the same axis, their points of contact

will trace on the sphere small circles, the tangents of whose angular radii will be

-.
~

,
a being the radius of the sphere and c that of the circle described by its

a &quot; + &quot;

[Math. Tripos, 1861.
centre.

5. A perfectly rough circular cylinder is fixed with its axis horizontal. A

sphere being placed on it in a position of unstable equilibrium is so projected

that the centre begins to move with a velocity V parallel to the axis of the cylinder.

It is then slightly disturbed in a direction perpendicular to the axis. If 6 be

the angle the radius through the point of contact makes with the vertical, prove

that the velocity of the centre parallel to the axis at any time t is Fcos^/ftf
and that the sphere will leave the cylinder when cos 6= {%.

6. A uniform sphere is placed in contact with the exterior surface of a perfectly

rough cone. Its centre is acted on by a force the direction of which always meets

the axis of the cone at right angles and the intensity of which varies inversely as

the cube of the distance from that axis. Prove that if the sphere be properly

started the path described by its centre will meet every generating line of the cone

on which it lies in the same angle. See the Solutions of Cambridge Problems for

I860, page 92.

7. Every particle of a sphere of radius a, which is placed on a perfectly rough

* These Examples are taken from the Examination Papers which have been

set in the University and in the Colleges.
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sphere of radius c, is attracted to a centre of force on the surface of the fixed sphere

with a force varying inversely as the square of the distance ;
if it be placed at the

extremity of the diameter through the centre of force and be set rotating about that

diameter and then slightly displaced, determine its motion ;
and show that when it

leaves the fixei sphere the distance of its centre from the centre of force is a root

of the equation 20.r ! - 13 (2c + a) x
2 + la (2c + a)

2= 0. [Math. Tripos, 1867.

8. A perfectly rough plane revolves uniformly about a vertical axis in its own

plane with an angular velocity n, a sphere being placed in contact with the plane

rolls on it under the action of gravity, find the motion.

Take the axis of revolution as axis of z, and let the axis of x be fixed in the

plane. Let a be the radius, in the mass of the sphere ; F, F the frictions resolved

parallel to the axes of x and z, and It the normal reaction. The motions of the axes

(Art. 5) are given by ^= 0, 2
= 0, 3

= n. The equations of motion (Arts. 5, 10) are

n dx/dt
-
an, v = xn, w = dzjdt,

dujdt
- vn= F/ni, dv/dt + un= R[m, divjdt = - g + F fm,

dujdt-nwy
= -F a/k

2
,

dw
!//dt + nux= 0, dwJdt= Fa/k*.

Since the point of contact has the same motion as the plane the geometrical

equations are u + awe
= 0, w-aux= Q. Solving these equations we find that the

sphere will not fall down. If the sphere start from relative rest at a point in the

axis of x ,
we have ri*z = -g tan2

i{l- cos (nt cos i) } ,
where sin i = *J$ . The sphere

will therefore never descend more than 5gjn- below its original position.

9. A perfectly rough vertical plane revolves with a uniform angular velocity /JL

about an axis perpendicular to itself, and also with a uniform angular velocity ft

about a vertical axis in its own plane which meets the former axis. A heavy uni

form sphere of radius c is placed in contact with the plane ; prove that the position

of its centre at any time t, will be determined by the equations

7&quot;
- 5ft2 -

2fjiz
= 0, lz

&quot; + 2ftV + 2/* (&quot;
+ ft

2
)
= 0,

z denoting the distance of the centre from the horizontal plane through the hori

zontal axis of revolution, and that from the plane through the two axes.

Prove also that 7u 7cft + 2,ufr, 7v + 2jua = 0, if a and b be the initial values of

and z, u and v those of d%/dt anddz/dt.

10. A hoop AGBF revolves about AB its diameter as a fixed vertical axis. GP
is a horizontal diameter of the same circle, which is without mass and which is

rigidly connected to the circle ; DC is a smaller concentric hoop which can turn

freely about GF as diameter. If ft, ft
, w, w ,

be the greatest and least angular

velocities about AB, GF respectively, prove that ft . ft = w2 - w 2
.

11. OA, OB, OC are the principal axes of a rigid body which is in motion

about a fixed point 0. The axis OC has a constant inclination a to a line OZ
fixed in space, and revolves with uniform angular velocity ft round it, and the

axis OA always lies in the plane ZOC. Prove that the constraining couple has its

axis coincident with OB, and that its moment is - (A - C) ft
2 sin a cos a.

12. A ring of wire, of radius c, rests on the top of a smooth fixed sphere of

radius a, and is set rotating about the vertical diameter of the sphere with an

angular velocity n. If the ring is slightly displaced, prove that the motion is

unstable if nV is less than 2g (2a
2 - c2

) V (a
2 - c2). [Math. Tripos, 1885.

Since the ring is rigidly connected with the centre of the fixed sphere it may be

regarded as a top having that point for vertex. The condition of stability for a

top has been shown in Art. 212 to be
C&quot;*ii*&amp;gt;Agl. Substituting the values of A

and C for a ring the result follows at once.

R..D. II. 12
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13. A uniform right circular cone of mass M is capable of turning freely about

its vertex which is fixed above a rough horizontal table on which is a sphere of mass
M and radius a. The cone rolls on the sphere whose centre is describing with

velocity V a circle of radius 6 whose centre is vertically below the vertex of the

cone
; prove that in the steady motion of the cone and the sphere, the angular

velocity ft of the cone about its axis is

[nab sin /3 cos /3
- V (a sin a cos

/3
cos 7 + 6 cos a sin y-b sin2 P)]j[b (b + a cos ]8) sin 7],

and that the condition that such steady motion may be possible is

where 7 is the semi-vertical angle of the cone, a the inclination of its axis to the

vertical, fi=a-y, and klt k.2 are the radii of gyration of the cone about its axis and

a perpendicular to its axis through the vertex and h is the distance of the centre of

gravity of the cone from its vertex, and n the spin of the sphere about the vertical.

[Math. Tripos, 1889.

14. A rough sphere of radius a and radius of gyration K capable of moving
about its centre is initially at rest

; another sphere of l//i the mass and of radius b

and radius of gyration k is placed gently on it, having initially an angular velocity w

about the common normal which makes an acute angle a with the vertical drawn

upwards. Prove that the second sphere will not roll off provided

{ (-V + 1)
2 -V cos2 a

}
sec a, where p = a z

lnK
2 + &2

/fc
2

.

[Math. Tripos, 1888.



CHAPTER VI.

NATURE OF THE MOTION GIVEN BY LINEAR EQUATIONS
AND THE CONDITIONS OF STABILITY.

Linear Differential Equations.

256. IT has been shown in Chap. in. that the problem of

determining the small oscillations of a system about a state of

steady motion is really the same as that of solving a corresponding

system of linear differential equations. In that chapter the forces

were assumed to have a potential, so that the differential equations
had a certain symmetry which simplified the solution. We now

propose to remove this restriction. Taking the differential equa
tions in their most general form, but still with constant coefficients,

we shall briefly discuss any peculiarities of their solution which

appear to have dynamical applications.

The chief object of this chapter is to determine the conditions

that the undisturbed motion should be stable. This resolves

itself into two questions (1) under what circumstances do positive

powers of the time enter into the expressions for the co-ordinates,
and what is the highest power which presents itself? (2) when
the roots of the fundamental equation cannot be found, what
conditions must be satisfied by the coefficients of that equation
that stability may be assured ? In order to make our remarks on
these two questions intelligible it will be necessary to sum up a
few propositions which belong rather to the theory of differential

equations than to that of dynamics. The discussion of the first

question begins therefore at Art. 268 though alluded to before

that article. The second question will occupy the next section.

257. Following the same notation as in Art. Ill, let 0,
&amp;lt;f&amp;gt;,

&c.

be the co-ordinates of the system. Let the system be moving in

any known manner determined by =f(t), &amp;lt;/&amp;gt;

=
F(i), &c. We

now suppose the system to be slightly disturbed from this state of

motion. To discover the subsequent motion we put 0=f(t) + x,

&amp;lt;/&amp;gt;

= F(t) + y, &c. These quantities x, y, &c. are in the first in

stance very small because the disturbance is small. The quantities

122
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x, y, &c. are said to be small when it is possible to choose some

quantity numerically greater than all of them which is such that

its square can be neglected. This quantity may be called the

standard of reference for small quantities.

258. To determine whether x, y, &c. remain small, we substi

tute these new values of 6, $, &c. in the equations of motion.

Assuming, for the moment, that x, y, &c. remain small we may
neglect their squares, and thus the resulting equations will be

linear. The coefficients of x, dxjdt, d2

x/dt
2
, y, dyjdt &c. in these

equations may be either constants or functions of the time. Fol

lowing the definitions in Art. Ill, the undisturbed motion in the

former case is said to be steady.

259. We propose to consider first the case in which the system

depends on two independent co-ordinates or (as it is sometimes

called) has two degrees of freedom. This is a case which occurs

very frequently, and as the results are comparatively simple it

seems worthy of a separate discussion. We shall then proceed to

the general case in which the system has any number of co

ordinates.

260. Two degrees of freedom. The equations of motion

of a dynamical system performing its natural oscillations with two

degrees of freedom may be written

To solve these equations we put

these suppositions evidently satisfying the first equation whatever
V may be. Substituting in the second, and using the symbol S to

represent -7- for the sake of brevity we find
at&amp;gt;

r=o:

This is an equation to find V in terms of t. Since S enters

into the determinant in the fourth power, the value of V when
found will contain four arbitrary constants. Thence we find

both x and y by means of the formulae given above. It will be

observed that these require no operation to be performed except

differentiation. Thus, no matter how complicated V may be, the

values of x and y readily follow.

261. Let A(8) represent the determinant which is the operator
on V. Then making A (8) = 0, we have a biquadratic to find 8.
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If the roots of this biquadratic are ml} ma ,
W3 ,

ra4 ,
we know by the

rules for solving differential equations that

V = L^emit + L.2e
m^ + L3e

mst + L^mit

where Z/l3 L2 ,
L2 ,

L 4 ,
are the four arbitrary constants.

If all the roots of the biquadratic are real and unequal, this is

the proper expression to use for V. But it takes a variety of

different forms when the biquadratic contains imaginary or equal
roots. These however are described in the theory of differential

equations, and will be summed up in Art. 264.

262. Many degrees of freedom. The equations which

occur in Dynamics are in general all of the second order, but as

this restriction is not necessary in what follows, we shall suppose
the equations to contain differential coefficients of any order.

Let there be n dependent variables represented by x, y, z, &c.

and one independent variable represented by t. If the symbol 8

represent differentiation with regard to t, the n equations to find

x, y, &c. may be written :

/u (8) x +/,2 (8) y +/is (8) *+-..= 0]

/(&amp;lt;)*+/&amp;lt;%+/(*)*+ &amp;lt; H ............ (i).

...... ... = o)

To solve these, we use the analogy which exists between the

rules for combining symbols of differentiation and those of common

algebra. Omitting for the moment any one equation, say the first,

and proceeding to solve the remaining n 1 equations by the rules

of common algebra, we find the ratios

where each of the equalities has been put equal to V. Here we
have used the letter / to stand for the minors of the determinant

The suffix of the letter / indicates the number of the column
in which the constituent of the omitted equation lies whose minor
is required.

Substituting these values of x, y, z, &c. in the equation pre

viously omitted, we obtain

A(8)F=0 (4).

This is an equation to determine a single quantity V as a

function oft. We may call V the type of the solution. Supposing
this equation to be solved by the usual rules, the values of x, y, z,

&c. are found by equations (2). Thus we have

x = Ii(*)V, y = /a (8)F,&c (5).
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These operators, II (S), L2 (S), &c., are all integral and rational

functions of 8
;
so that when V is once known, all the other opera

tions necessary for the complete solution of the equations are

reduced to the one operation of continued differentiation.

263. This arrangement of the solution of the differential

equations (1) has the advantage of expressing the results by means
of integral and rational functions of the symbol 8. In practice,
this will be found to introduce a great simplification into the

solution. The type F can always be immediately written down by
the usual rules for solving equation (4). It is sometimes very

complicated, and in such cases it is very convenient to be able

to deduce the forms of x, y, z, &c. without having to perform

any inverse operation.

264. Different types of the solution. If the roots of the determinantal

equation A (5)
= be mlt m.2 ,

&c. the type V is known to be

F=Z,
1
e
w *+ Z,

8e
wl *+ ........................................ (6),

where Llt L2 , &c. are arbitrary constants. When a pair of imaginary roots of the

form rJ=pfJ- 1 occurs we replace the two corresponding imaginary exponentials

by the terms V= e
rt

(L cos pt +M sin pt) ............................. (7).

If equal roots occur, the value of F thus given has no longer the full number of

constants. Supposing that we have a roots each equal to m, the type of the solution

which depends on these roots is

V=(L + Lit+...+La_l
t
a-l

)e
mt

........................ (8)

where the Z/ s are a arbitrary constants. This may be put into the form

If we have a equal pairs of imaginary roots of the form rjp *J
- I we replace

the a pairs of terms by

e
rt

(L cospt +M sin pt) + -^
e
rt

(Lx
cos pt + J/j.

sin pt) + &c....... (10).

Here, if we please, we may replace the differentiation with regard to r by a differen

tiation with regard to p.

The peculiarity of the case of equal roots is the presence of terms containing

some power of t as a factor. The occurrence of a equal roots in general indicates

the presence of terms containing all the integral powers of t up to t*&quot;

1
.

265. In order to deduce the corresponding values of x, y, &G. from these types,

we shall have, in the absence of equal roots, to operate with some integral and

rational function of 8 such as I (5) on an exponential real or imaginary.
I. We have the theorem I (5) e

mt= I (m) e
mt

,

so that when the roots of the equation A (5)
= are all real and unequal we have

immediately x= L
l
!
l (m^ e

m^ +L^ (m.2 ) e
m*f + &c.,

II. If X be any function of t, we have the theorem I (d) e
rtX=crt

I(d + r) A ,

so that when a pair of imaginary roots occurs, and we have to operate on the
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product of a real exponential and a sine or cosine, we can immediately remove the

real exponential, and reduce the operator to that of continued differentiation of the

sine or cosine.

III. We have the theorem / (5
2
)
sin mt =/( - w2

)
sin mt.

Hence if we have to operate with F(d), we arrange the operator in the form

We then have F(d) sinm = (- m-) sin mt + \p (- m2
)
mcosmt.

266. When the determinantal equation A(5) = has equal roots we have to

operate on expressions which contain some powers of t. But since the operators

djdt and dfdm or d/dr are independent we may use the theorem

i(a) **=
{jo*)*&quot;*}.

dm* dm*

Thus when the equation A () = has a roots each equal to m we may write the

solution given by equations (5) and (9) of Arts. 262, 264 in the form

x=L [Ij (m) e
mt

] + L,
A

[I, (m) e
mf

] +...+La_ 1
-1

[I, (m) e**],

y= L [I2 (m) e
m + L1

-

[Ia (m) e\ + ...+La _ l
~

[

z = &c.

267. Ex. 1. If there be two roots of the determinantal equation A (5)
= each

equal to m, show by an actual comparison of the several terms that we have the

same solutions for x, y, &c. whether we use as operators the minors of the first or

the minors of any other row of the determinant A (5).

Ex. 2. The values of x, y, &c. are obtained from V by operating with certain

functions of 5, viz. I
l (5), J2 (5), &c. If instead of these operators we use ^1^ (5),

yu,7o(5), &c. where
fj.

is some function of 5 such as /*=f(8), show that the effect is

merely to alter the arbitrary constants L
,
L 1? &c. Thence show that the solutions

are the same, whether there be equal roots or not, whatever set of first minors of

A (5) are used as operators.

268. An Indeterminate Case. If the roots of the deter

minantal equation A (8)
= are

??^&amp;gt;
mz ,

&c. we have shown that the

values of x, y, &c. are given by
x = 2.L/! (m) emt

, y = 2LL(m)emt,
&c.

But we see at once that there is a case offailure. If one of the

roots of the equation A (8)
= makes all the minors, I (m), J2 (m),

&c. equal to zero
t
the solution becomes incomplete, for then one of

the constants called L disappears from the solution. If all the

minors of only one row vanished, we could find the values of

oc, y, z, &c. by choosing as our operators the minors of some other

row. But this cannot be done if all the minors of all the rows are

zero.

269. We shall now prove that this indeterminate case cannot occur unless the

determinantal equation A (5) =0 has equal roots. To show this, we differentiate

equation (3) of Art. 262. We find
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where the letter I stands for the minor of that constituent of the determinant A (5)

which is indicated by the suffix. We notice that the right-hand side of this equa

tion vanishes when all the first minors are zero. Thus the equation A (5)
= must

have at least two equal roots. In the same way, if the second minors are all zero

also, any first minor has two equal roots, and therefore the original equation has

three equal roots, and so on.

270. We may notice two obvious results. (1) If all the first minors of a

determinant have a root a times, the determinant has the root a-f 1 times at least.

(2) If a determinant have r equal roots, and all its first, second, &c. minors vanish

for these roots, then each of the first minors has the equal root r - 1 times, each of

the second minors r- 2 times, and so on.

271. Let us consider, as an example, Lagrange s determinant

to find the periods of the small oscillations of a system about a

position of equilibrium, Art. 57. Suppose this determinant has

two equal roots, then by Art. 266, we might expect that each

co-ordinate of the system would contain a term of the form

(A + Bt) e
mt

. Thus the amplitude of the oscillation will contain

powers of the time.

By Art. 61 we know that every first minor of Lagrange s

determinant also contains this root, so that the solution given by
Art. 266 fails. Accordingly we shall find in Art. 273 that the

solution does not contain any powers of the time, but that the

independent constants arrange themselves in another manner
which may be conveniently represented by using a double type of

solution. See also Art. 281.

272. We may now consider the following general problem :

Let the determinant A (8) have a roots each equal to m. Let ft of
these roots make every first minor of A (8) equal to zero. Let y of
these last make every second minor equal to zero, and so on. It is

required to state tlie generalform of the solution and to explain how
the a constants in that solution are to be found.

Solution with a single type. First, let us consider the a
roots which are equal to m. It has been proved in Art. 266, that

the part of the solution which depends on these may be written in

the form

, ... .., [Tl (m) e&quot;&quot;],

with similar expressions for u, z, &c.

If these first minors are finite, these formulas contain powers
of t from t to t

a~l
,
and thus supply the a constants which belong

to the a equal roots. If the first minors have ft roots equal to m,
j?! (m), 72 (m), &c., and their differential coefficients up to the

(ft l)th are all zero. In this case the powers of t extend only
to tf&quot;&quot;

3 &quot;1
,
and thus these formulae do not supply the full number

of constants.
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When all the first minors have the root a times and all the

second minors have the root /3 times, we know by Art. 270 that

a (3 1 cannot be negative.

273. Solution with a double type. To find the proper
forms for x, y, &c. when the first minors are all zero, we return to

the analogy between operations and quantities alluded to in Art.

262. We now reject any two of the equations (1), say the first

two. Solving the remaining n 2 equations we can express all

the co-ordinates z, u &c. in terms of x and y t
thus obtaining a

series of equations of the form

where the functional symbols are really second minors of the

determinant A (8). We now substitute these expressions for z,

u, &c. in the two omitted equations. These two equations will be

satisfied provided x and y have any values which make / (8) x =
and / (8) y = 0, where / (8) is any first minor of A (8).

We notice also that these two equations are satisfied by the

separate parts of these values of z
t u, &c. which arise from x and

from y. We may therefore arrange the solution so as to find

these two parts separately, and then finally add the results. The

following arrangement will be found convenient in practice.

When the first minors are all zero, reject some one of the given
differential equations (1), say the first. We have now n l equa
tions to determine the n co-ordinates. Putting ?/

= in these

equations we find x, z, &c. in terms of a single type f, where f
satisfies the equation /3 (8) f = 0. Here /2 represents the minor of

the second constituent of the first line of the determinant A (8).

We write the solution thus found in the form

^ = /21 (8)f, T/
= O, z = JB (8) ?,

&c.

where the operators are the second minors of the constituents in

the first two lines of A (8). Next, putting a? = instead of y
in the equations after the first, we obtain another solution, by
which x, z, &c. are expressed in terms of another single type rj.

Here 77 satisfies the equation /j (8) 77
= 0, where /x is the minor of

the first constituent of the first line of A (8). We write the solu

tion thus found in the form

x = 0, y = Jw (8) rj,
z = JK (8) 17, &c.

Adding these two solutions together, we have the following values

of x, y, z, &c.

* =
&amp;lt;/*($)?, 2/

= /la (8) 77,
z = J*(S)Z + J(S)&amp;gt;n,&c.

These evidently satisfy all the equations except the one rejected.
But this equation also is satisfied because by hypothesis we take

those parts only of these solutions which make all the first minors

equal to zero.
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The types f, 77
are the same exponentials but with different

constants, the operators also are different. Suppose for example
the determinant A (8) had two roots only equal to m and that

these make every first minor of A (S) equal to zero. The terms of

x,
y&amp;gt;

z &c. which depend on the roots other than m are found each

from its own exponential by the rule given in Art. 262 for a single

type. The terms of x, y, z &c. which depend on the root m are

found by putting ^ = L,e
mt

} r)
= L.2e

mt where L^ and L2 are two
different arbitrary constants. The portions of the solution due to

these are respectively

x =A /21 (m) emt
, y = 0, z = L, J&quot;23 (m) emt

,
&c.

x = 0, y = L J,, (m) emt
,

z = L J13 (m)e
mt

,
&c.

where Jab is a second minor which may be deduced from A (8) by
rejecting the ath and 6th columns and the two first rows, giving
the second minor thus left its proper sign. The suffix 2 occurs in

every J in the first line and the suffix 1 in every J in the second.

The complete solution due to the root m is the sum of these two

partial solutions. We notice that the two arbitrary constants

Llt L.2 so enter into the values of x, y, z &c. that the exponential
emt is accompanied by two arbitrary constants instead of one and
these are not separated by the presence of powers of t.

274. If the minors which the types f and rj are to satisfy
contain the root S = m, /3 times, we have therefore

The corresponding values of sc
t y, &c. are found by substitution,

and may be written in the form

with similar expressions for y, &c.

The peculiarity of the solutions which are derived from the

double type f, 77 is that the corresponding terms in the expressions
for x and y have independent constants.

If the second minors which form the operators are all finite,

these formulae contain powers of t up to t^~ l and supply 2/3 con
stants. But if these second minors contain y roots equal to m,
the powers of t extend only to t^-*- 1

,
and thus the full number of

constants has not been found.

275. Solution with a triple type. Thirdly, we have to find the solution when
the second minors are zero as well as the first minors. In this case the solution

just found becomes again insufficient. To determine the proper forms of .r, y, z, &c.

we now reject any three of the differential equations (1) of Art. 262, and proceed
as before. We thus have n - 3 equations to find the n co-ordinate. We see at

once that we can express all the co-ordinates in terms of any three we please, say
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x, y, z. We thus have three times as many arbitrary constants as there are roots

equal to TO.

In the same way as before we can express the solution in terms of a triple type

, 77, f. Putting y and z equal to zero, we find the remaining co-ordinates, viz.

x, u, &c. in terms of a single type . Putting x and z equal to zero (instead of y

and z) in these n-3 equations we obtain a second solution depending on another

single type 77. Lastly, putting x and y equal to zero we obtain a third solution

depending on f. Adding together these three solutions we find that all the co

ordinates may be expressed by means of operators which are really third minors of

the determinant A (5). The subjects of operation are the three independent

functions
, 77, f. These are such that if I (S) be any of the second minors of the

constituents of the three omitted equations I (5)
= 0, 1(5)^= 0, I (d) =Q. If

these contain the root 8=m, y times, each of the three
, 77, f will be expressed by

a series of the form (K +KJ +...+K _ 1
*
Y
~

)
e

,

but with independent constants.

276. The number of constants. Each of the sets of values of x
t y, &c. given

in Arts. (272), (273), and (275) is, of course, a solution. The complete solution is

really the sum of these partial solutions, provided it has the proper number of

constants. We appear, however, to have too many constants. We must therefore

examine these, and determine what terms are absolutely zero and what terms are

repeated in the several partial solutions.

We begin with the solution derived from the type F, Art. (272), by the help of

the first minors. Since the first minors have
ft

roots each equal to w, the first ft

terms of each of the expressions for x, y, &c. are easily seen to be zero. Consider

the solution derived from any term L^ , where k lies between ft
- 1 and 2/3. In the

case of the variables x and y they are expressions of the form

All these are evidently included amongst the terms derived from
, 77 by the help

of the second minors. The corresponding terms in 2, u, &c. must be related to the

terms in x, y by the formula given in Art. (273), and are therefore also included in

the series derived from , 77. Lastly, consider the solution derived from the terms

from L. to L .. They include powers of t from t
ft

to t
a~ l ~ ft

. These a -2ft
Zp a 1

terms are not included in the terms derived from and 77, and they supply a - 2/3

arbitrary constants.

Secondly, we turn our attention to the solution derived from the double type

, 77 by the help of the second minors (Arts. 273 and 274). Each of these second

minors has 7 roots each equal to m ; hence, by the same reasoning as before, the

first 7 terms of the series for x and y are zero, and the highest power of t is ft
- 1 - 7

instead of
ft
- 1. In consequence of this, the terms of the series derived from the

single type F, and not included in those derived from the double type , 77, now
extend their powers of t from tP~V to t

a~ l ~P. There are therefore a -2,8 + 7 sucl1

terms instead of a - 2/3.

The same reasoning applies to all the other partial solutions derived from the

triple and higher types. We therefore conclude that the partial solution derived

from a single type by operating with the first minors of the first row of the fundamental
determinant supplies a -2/3 + 7 terms not included in the solutions which follow.

These supply as many arbitrary constants. The partial solution derived from a

double type by operating with the second minors of the two first rows of the funda
mental determinant supplies ft

- 2y+ 5 terms not included in the solutions which follow.
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These supply twice as many constants. The partial solution derived from a triple

type by operating with the third minors of the three first rows supplies y - 25 + e terms

and thrice as many constants, and so on.

Thus suppose (for example) the fourth minors are not all zero ; the number of

constants supplied by each of the several partial solutions is indicated by the terms of

the series (a
-

2/3 + 7) + 2 (0
-

2-y + 5) + 3 (7
-

25) + 45.

If none of the terms of this series are negative, we have obtained a series of

partial solutions containing the proper number of constants. This point we now

proceed to discuss.

277. If a determinant contain the root just a times, if the first minors of the

two first constituents of the two first rows contain the root just /3 times, if the second

minor of these four constituents contain the root just 7 times, then a -2/3 + 7 is

positive.

To prove this, let A be the determinant, I
I ,

72 ,
Jlt J2 the four first minors, A2

the second minor. Then we know that ^.^= I
l
J.2 -I.-

i
J

l
. The left-hand side

contains the root just ct + 7 times, the right-hand side contains the root at least 2/3

times. Hence a + 7 -
2/3 is positive.

In the same way we may show, on similar suppositions, that /3
- 27+ 5 is positive,

and so on.

278. Example. Solve the differential equations

(3-l)
3
(3 + l)ff-(8-l)($-2)y + (3-l)* = 0\

3 (5
-

l)
2 s - (5

-
1) (5

-
3) ?/ + 2 (5

-
1) 2 = L .

The fundamental determinant (Art. 262) is A (5)=
-

(d
-

I)
6

. This determinant

(Art. 271) has six equal roots (a= 6), every first minor has the root three times

(/3
=

3), and every second minor has the root once (7=!). The part of the solution

depending on a single type (Art. 276) will supply a -2^3 4-7 (i.e. one) constants.

These accompany the highest powers of t which occur in the type, one constant for

each power (Art. 272). The part of the solution depending on a double type will

supply 2
(/3

-
27) (i.e. two) constants. These accompany the highest powers of t

which occur in this type, two constants to each power. The part of the solution

depending on a triple type will supply 3y (i.e. three) constants which again accom

pany the highest powers of t, three constants to each power. To obtain the full

number of constants it is necessary in this example to retain only the one highest

power of t which occurs in each type.

The single type is = (&c. + At5
)
e* by Art. 264. Taking the minors of the first

row of A (d) we have by Art. 262 x = -
(5
-

I)
3

, y = -
(5
- If ,

z = 5 (d
-

I)
3
f.

To find the part of the solution which depends on a double type we reject the

first equation (Art. 273). Putting x=0 we find y = (5-l), z = -(S-l) where

(3-1)* | = 0. Putting y = Q we find x=(5-l)y, z = -(5-l)2
i7 where (5 -I)

3
77
= 0.

The double type is therefore =(&c. +Bt2
)
e

, 77
= (&c. + C 3

)
e*. The values of the

co-ordinates are x = (d
-

1) 77, y = (d
-

1) , z= -
(d
-

1)
-

(d
-

I)
2

1\.

To find the part of the solution which depends on a triple type we reject the two

first equations (Art. 275). The three partial solutions are then first, x= 0,y = Q,

z= L)e f

; secondly, x= 0, y = Ee f

,
z = 0, thirdly, x= Fe*, y = 0, z = 0. The sum of

these is the solution derived from a triple type.

Adding up the solutions which are derived from all the different types and sim

plifying the constants we have
t

,
z= {D-Bt-A
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279. Conversely, suppose it is given that we have such a solution as that described

in Art. 276, let us enquire what minors must be zero.

Let it be given that the solution contains terms depending on a triple type con

taining (7-!) powers of t accompanied by independent constants in some three

co-ordinates. Putting any two of these co-ordinates equal to zero the differential

equations are satisfied by a solution depending on a single type. Thus we have

n equations containing n - 2 co-ordinates all satisfied by values of the co-ordinates

which contain powers of t up to the (7
-

l)th. This shows that all the second

minors which can be formed from these equations must be zero and each of these

minors must contain the root 7 times.

From this we infer by Art. 270 that every first minor must contain the root 7 + 1

times. But let us suppose that the given solution contains also terms derived from

a double type which have powers of t extending up to the
(/3
- 7 -

l)th with inde

pendent constants in some two of the co-ordinates. Reasoning in the same way as

before, we see that every first minor must have the root (/3
- 7 -

1) times. These

must be in addition to the 7 + 1 roots already counted, because we may regard the

given solutions derived from the double and triple types as solutions which depend

on unequal roots and then make these roots become equal in the limit. It follows

therefore that every first minor has the root /3 times.

We now infer by Art. 270 that the determinant (4) of Art. 261 must have the

root
/3
- 1 times. But if the given solution also contains terms derived from a

single type with powers of t extending to the (a-/3- l)th, we deduce by the pre

ceding reasoning that the determinant (4) must have the root a times.

280. We may notice as a corollary of this theory that the solution cannot contain

terms in which the high powers of t depend on a larger type than the low powers

of t. For example, if the term t
n
e
mt occur accompanied by k independent con

stants, this term must be part of a solution- derived from a kth type. It follows

that all the lower powers of t which multiply the same exponential will be part of

the same type and must be accompanied by at least k independent constants.

281. Condition that all powers of t are absent. In some

dynamical problems it is well known that, though the fundamental
determinant has a equal roots, yet there are no terms in the solution

with powers of t. We may now determine the conditions that this

may occur.

We see by Art. 272 that, unless every first minor has the root

a 1 times at least, a solution can be deduced from the first minors
which has some power of t greater than zero in the coefficient.

Again, unless every second minor has the root a 2 times at least,

a solution can be deduced from the second minors with some power
of t in the coefficient. On the whole, we infer that when a. equal
roots occur in the determinant, and the terms in the solution with t

as a factor are to be absent, it is necessary as well as sufficient that

all the first, second, &c. minors up to the (a l)th should be zero.

282. Dynamical Meaning of the Types. We shall now
consider how the three different types of solution given in Art. 264
indicate different kinds of motion. Let us begin with a real root.

In this case every co-ordinate has a term of the form Me*. If m
be positive this term will become greater as time goes on, and the



190 MOTION GIVEN BY LINEAR EQUATIONS. [CHAP. VI.

system will therefore depart widely from its undisturbed state,

and our equations will represent only the manner in which the

system begins its travels. Ifm be negative this term will gradually
dwindle away and the motion will finally depend on the other

terms in the solution.

Similar remarks apply whenever we have a real exponential
whether multiplied by a trigonometrical function or not. We may
therefore state as a general principle, subject to some reservations

in the case of equal roots which will be presently mentioned, that

the necessary and sufficient conditions of stability are that the real

roots and the real parts of the imaginary roots should be all

negative or zero. A simple rule to determine whether this is the

case or not will be given in another section of this chapter.

283. Effect of equal roots on stability. When there are

equal roots in the determinantal equation we have seen that the

solution in general has terms which contain powers of t as a factor.

The important question for us to determine is the effect of these

terms on the stability of the system. If m be positive the presence
of a term Mtqemt will of course make the system unstable. But if m
be negative, this term can never be numerically greater than

M { }
. If m be very small the initial increase of the term may

\ernj
J

make the values of x, y, &c. become large, and the motion cannot

be regarded as a small oscillation. But if the system be not so

disturbed that M I 1 is large, the term will ultimately disappear

and the motion may be regarded as stable. If m be wholly

imaginary and equal to nJ 1, this term will take the form

flsiunt and will of course cause the system to be unstable.

Thus equal roots do not disturb the stability if their real parts
are negative, but do render the system unstable if their real parts
are zero or positive.

284. It is clear from this that the whole character of the

motion depends on the nature of the roots of the determinantal

equation A (8)
= 0. If we can solve this equation and find the

roots, we of course know immediately the nature of the motion.

But if this cannot be done we must have recourse to the theory
of equations to determine whether the roots are real or imaginary,
and whether any roots are equal or not. The theorems of Fourier

and Sturm will be of use in the equations of the higher orders, but
in many dynamical problems we have only to deal with two co

ordinates, and we have therefore to examine the roots of the

biquadratic in Art. 260.

Rules by which the analysis of a biquadratic is made to depend
on the solution of a cubic are given in most treatises on the

theory of equations ;
but as this form is not convenient in prac-
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tice, a short analysis will be given here for reference. The criteria

of the nature of the roots of the biquadratic are very conveniently
summed up in Art. 68 of the Theory of Equations by Burnside and

Panton, 1886.

285. Analysis of a biquadratic. Let the biquadratic be

ax* + 4foo;3 + 6c#2 + 4dx + e = 0,

so that the invariants are 1= ae - 4bd + 3c2
,
and J= ace + 2bcd - ad2 - el- - c3 . This

last may also be written as a determinant. It will generally be found convenient

to clear the equation of the second term. Let the equation so transformed be

where a~H= 3 (b
2 -

ac) and a3G= 4 (21*
- 3abc + a-d) . By using the invariants or by

actual transformation it is easy to see that

I=a?H - a?F and J= ^a^H3 -
r\a*G* - ^alH.

Let A be the discriminant, i.e. A=I- -27J2
,
then it is proved in all books on

the theory of equations that if A is negative and not zero, the biquadratic has two

real and two imaginary roots. If A is positive and not zero the roots are either all

real or all imaginary.

Usually we can distinguish between these two cases by ascertaining if the bi

quadratic has or has not a real root. Thus if a and e have opposite signs, one root

is real and therefore all the roots are real. In any case we can use the following

criterion. Having cleared the given biquadratic of the second term we may write

the resulting equation in the form
(

2 - H)
2 + G = K.

If Sn be the arithmetic mean of the nih powers of the roots, we have by

Newton s theorem on the sums of powers, ^= 0, S2
= H, 4/S3

= 3G and K=S- $2
2
.

If all the roots are real we have S.2 positive and by a known theorem in &quot; in

equalities
&quot; S4 is greater than S2

2
. Hence^ H and K are_both positive. If all the

roots are imaginary, let them \)erp,J - 1 and - r q*J
- 1. Then

If H is positive or zero we see that K is negative. The criterion may therefore be

stated thus. If H and K are both positive the four roots are real. If either is

negative or zero the four roots are imaginary.

If the discriminant A is zero but I and J not zero, it is known that the biquad

ratic has two roots equal. If two of the roots are real and equal and the other two

imaginary we see (by putting q = 0) that if H is positive or zero, K must be negative.

The criterion therefore is, IfH and K are botli positive all the roots are real, ifH or

K is negative or zero, tivo roots are real and two are imaginary. If G is zero, there

are then two pairs of equal roots. In this case K is zero and these roots are all

real if H is positive, all imaginary if H is negative.

Lastly let the discriminant A be zero and also both I and J zero. The biquad
ratic has three roots equal and therefore all the roots are equal. If H is also zero

the four roots are all equal and real.

Ex. If the discriminant of a biquadratic be positive, clear the equation of the

term containing the third power in the usual manner, and then arbitrarily erase the

term containing the first power. If both the roots of the quadratic thus formed be

real and the sum of the roots be positive, then all the four roots of the biquadratic

are real, If either contingency fail the four roots are imaginary.
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Conditions of Stability.

286. It has been shown that the determination of the oscilla

tion of a system can be reduced to the solution of a certain

determinantal equation, which has been represented in Art. 262,

by A =y(8) = 0. In many cases it is impracticable to solve this

equation and therefore the motion cannot be properly found. If

however we only wish to ascertain whether the position of equili
brium or the steady motion about which the system is in oscillation

is stable or unstable we may proceed without solving the equation.

It is clear from Art. 282 that the conditions of stability are

that the real roots and the real parts of the imaginary roots should

all be negative. It is now proposed to investigate a method to

decide whether the roots are of this character or not.

287. Taking first the case of a biquadratic ;
let the equation

to be considered be

f(z)
= az* + bz* + C2-

where we have written z for 8. Let us form that symmetrical
function of the roots which is the product of the sums of the roots

taken two and two. If this be called X/a
3
,
we find*

X = bed - ad2 - 2a b c

b d

c d 2e\

It will be convenient to consider first the case in which X is

finite. Suppose we know the roots to be imaginary, say a +pj 1
,

s,udpqj-l. Then

X/a* = 4a/3 {(a + )
2 + (p + q?} {(a + 0)* + (p- qf}.

* The value of X may be found in several ways more or less elementary. If

we substitute z =EZ in the given biquadratic and equate to zero the even and

odd powers of Z, we have

aZ4 + (6E 2 + 3bE + c) Z 2 + aE* + bEs + cE* + dE + e = 01

(4aE + b) Z* + (4a
3 + 36 8 + 2cE + d) Z = 0]

Rejecting the root Z = and eliminating Z we have

where only the first and last terms of the equation are retained, the others not

being required for our present purpose. Since z =EZ it is clear that each value

of E is the arithmetic mean of two values of z. We have an equation of the sixth

degree to find E because there are six ways of combining the four roots of the

biquadratic two and two. The product of the roots of the equation in E may be

deduced in the usual manner from the first and last terms, and thence the value

of X is seen to be that given in the text.

If we eliminated E we should obtain an equation in Z whose roots are the

arithmetic means of the differences of the roots of the given equation taken two

and two. If we put Z 2 =
f, we obtain by an easy process the equation whose roots

are the squares of the differences of the roots of the given equation/ (z = 0).
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Thus, a/3 always takes the sign of X/a, and a + ft always takes the

sign of - b/a. The signs of both a and ft can therefore be deter

mined
;
and if a, b, X have the same sign, the real parts of the

roots are all negative.

Suppose, next, that two of the roots are real and two imagi-

nary. Writing q J I for q, so that the roots are a + p J 1 and

ft q ,
we find

Z/a
3 = 4a/3 {[(a + ft)* + jo

2 -
tf*f + 4pY8

}.

Just as before, yft takes the sign of X/a, and a + ft takes the sign
of b/a. Also, ft

2

q
2 takes the sign of the last term e/a of the

biquadratic. This determines whether ft is numerically greater or

less than q . If, then, a, 6, e, and X have the same sign, the real

roots and the real parts of the imaginary roots are all negative.

Lastly, suppose the roots to be all real. Then, if all the

coefficients are positive, we know, by Descartes rule, that the

roots must be all negative, and the coefficients cannot be all posi
tive unless all the roots are negative. In this case, since X is the

product of the sums of the roots taken two and two, it is clear that

X/a will be positive.

Whatever the nature of the roots may be, yet if the real roots

and the real parts of the imaginary roots are negative, the biquad
ratic must be the product of quadratic factors all whose terms are

positive. It is therefore necessary for stability that every coeffi

cient of the biquadratic should have the same sign. It is also

clear that no coefficient of the equation can be zere unless either

some real root is zero or two of the imaginary roots are equal and

opposite.

Summing up the several results which have just been proved,
we conclude that if X and e are finite, the necessary and sufficient
conditions that the real roots and the real parts of the imaginary
roots should be negative are that every coefficient of the biquadratic
and also X should have the same sign.

288. The case in which X = does not present any difficulty.

It follows from the definition of X, that if X vanishes two of the

roots must be equal with opposite signs, and conversely if two
roots are equal with opposite signs X must vanish. Writing

z for z in the biquadratic and subtracting the result thus
obtained from the original equation we find bz3 + dz = 0. The

equal and opposite roots are therefore given by z J djb. If

b and d have opposite signs these roots are real, one being positive
and one negative. If b and d have the same sign, they are a pair
of imaginary roots with the real parts zero.

The sum of the other two roots is equal to b/a and their

product is be/ad. We therefore conclude that if X = 0, the real
roots and the real parts of the imaginary roots will be negative

R. D. n. 13
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or zero, if every coefficient of the biquadratic is finite and has the

same sign.

289. If either a or e vanishes, the biquadratic reduces to a

cubic, see note to Art. 105. Putting e zero, we have

X/a*d = bc- ad.

If the coefficients have all the same sign it is easy to see that

it is necessary for stability that be ad should be positive or zero.

If a and e be not zero and one of the two b, d vanish, the other

must vanish also, for otherwise X could not have the same sign as

a. In this case X vanishes, and the biquadratic reduces to the

quadratic az4 + cz2
-f e = 0.

As this equation admits of an easy solution, no difficulty can

arise in practice from this case. It is necessary for stability that

the roots of the quadratic should be real and negative. The con

ditions for this are, firstly the coefficients a, c, e, must all have the

same sign, secondly that c
2

&amp;gt; 4ae.

290. Equation of the ??th degree. When the degree of

the equation is higher than a biquadratic the conditions of stability
become more numerous. A very simple rule will now be proved

by which these conditions can be calculated as quickly as they can

be written down. Besides this we propose to give an extension of

this rule by which we may determine how many roots there are,

real or imaginary, which have their real parts positive. If there

be no such roots the conditions of stability are supposed to be

satisfied. The number of roots with their real parts equal to zero

is also found.

291. To discover this rule we have recourse to a theorem of Cauchy. Let

z = x + y *y -1 be any root, and let us regard x and y as co-ordinates of a point

referred to rectangular axes. Substitute for z and let

f(z) =P+Qj^T.
Let any point whose co-ordinates are such that P and Q both vanish be called a

radical point. Describe any contour, and let a point move round this contour in the

positive direction, and notice how often P/Q passes through the value zero and

changes its sign. Suppose it changes a times from + to - and /3 times from - to

+ . Then Cauchy asserts that the number of radical points within the contour is

\ (a
-

). It is however necessary that no radical point should lie on the contour.

Let us choose as our contour the infinite semicircle which bounds space on the

positive side of the axis of y. Let us first travel from T/=-OO to ?/
= + oo along

the circumference. If / (z) =poZ
n +pl

zn
~1 +... +pn (1),

we have, changing to polar co-ordinates,

/ (
z
)
=Wn

(cos nd + sin nQJ ^T) + . . .

Hence P=pQr
n cos nd +p1

rn~* cos (n
-

1) 6 + . . .1

Q =p rn sin nB +plr
n~l sin (n

-
1) + . . . j

In the limit since r is infinite PIQ cot nd.
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P/g vanishes when 0=i
\ , 5|, 5| ...................... (A).

P/Q is infinite when = 0, ?|, | |
...................... (B).

The values of d in series (B), it will be noticed, separate those in series (A).

When is small and very little greater than zero, P/Q is positive and therefore

changes sign from + to - at every one of the values of d in series (A). If there

fore n be even there will be n changes of sign.

If n be odd there will be n - 1 changes of sign excluding = \ TT, in this case

P/Q is positive when is a little less than \ir and negative when d is a little greater

than TT, but this result will not be wanted in the sequel.

Let us now travel along the axis of y, still in the positive direction round the

contour, viz. from y~ +00 to y=-co. Substituting z = x + y*J-~L in (1) and

remembering that x= along the axis of y, we have, when n is even,

Q

Let e be the excess of the number of changes of sign from - to + over that

from + to - in this expression as we travel from y= + 00 to y= - CD
,
then by

Cauchy s theorem the whole number of radical points on the positive side of the

axis of y is %(n + e). This of course expresses the number of roots which have

their real parts positive.

292. To count these changes of sign we use Sturm s theorem. Taking

/i (y)
=

we perform the process of finding the greatest common measure of /x (y) and /2 (y),

changing the sign of each remainder as it is obtained. Let the series of modified

remainders thus obtained be /3 (?/), f4 (y), &c. Then, as in Sturm s theorem, we

may show that when any one of these functions vanishes the two on each side have

opposite signs. It also follows that no two successive functions can vanish unless

/! (y) and /2 (y) have a common factor. This exception will be considered presently.

Taking then the functions /x (y), /2 (y), &c., using them, as in Sturm s theorem,
we see that no change of sign can be lost or gained except at one end of the series.

Now the last is a constant and cannot change sign, hence changes of sign can be

gained or lost only by the vanishing of the function f: (y) at the beginning of the

series.

Consider now the beginning of the series of functions /x (y), /2 (?/), &c., and

using them in Sturm s manner let y proceed from + oo to - oo . We see that a

change of sign is lost when the first two change from unlike to like signs, i.e. when
the ratio of f^ (y) to /2 (y) changes from - to + . In the same way a change of

sign is gained when the ratio changes from + to -
. Hence e is equal to the

number of variations or changes of sign lost in the series as we travel from y = + oo

to y= -oo.

293. When y = oo we need only consider the coefficients of the highest

powers in the series of functions /j (y), /2 (y), &c. Let these coefficients when y is

positive be called p , plt &amp;lt;/ 3 ,
&amp;lt;?4 , &c.

132
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When y is negative the signs, since n is even, will be indicated by

PO&amp;gt; Pi* &amp;lt;?3&amp;gt; -&amp;lt;?4
&C -

Then we have just proved that e is equal to the number of variations or changes of

sign lost as we proceed from the first series to the second.

294. If every term of the series p , p l , &amp;lt;y ;! ,
&c. have the same sign, it is evident

that n changes of sign will be gained and therefore e = -n; and e cannot = - n

unless all these terms have the same sign. In this case there will be no radical

point on the positive side of the axis of y. We therefore infer the following

theorem. The necessary and sufficient conditions that the real part of every root

of the equation f (z)
= should be negative are that all the coefficients of the

highest powers in the series /x (?/), /2 (j/), &c. should have the same sign*.

295. Suppose next that these coefficients do not all have the same sign. The

degree of the equation being n, there are ?i +1 functions in the series /\ (?/), /2 (?/), &c.,

and therefore on the whole there are n variations and permanencies. Let there be

k variations and n - Ic permanencies of sign. Now every permanency in the series

?/=+ oo changes into a variation in the series y= -co, and every variation into

a permanency. It follows that there will be n - ft variations and Jc permanencies

* As these are the conditions of stability in dynamics (Art. 282) it
:

s worth while

to give a short summary of the argument as adapted to this special case. Putting

z = x + yi, let f(z) = P+Qi. Regarding P and Q as functions of x and y, let us

trace the curves P= 0, Q = 0; it is evident that each intersection corresponds to a

root of / (z)
= Q. The polar forms of these curves are given in equations (2) of Art.

291. The P curve has evidently n asymptotes whose directions are given by
cos nd= 0, the Q curve has also n asymptotes but these are given by sin w0 = 0.

We shall first show that the conditions given in Art. 294 are necessary, if there

is to be no radical point on the positive side of the axis of y. Draw a circle of

infinite radius, and let it cut the asymptotes of the P curve in P
x ,
P2 ...Pn and the

asymptotes of the Q curve in Qlt Q8 ...Qn . These points alternate with each other.

Taking only those points which lie on the positive side of the axis of y, the P and Q
curves may be said to begin at these infinitely distant points and passing towards

the negative side of the axis of y are not to intersect each other on the positive side

of that axis. The branches of the two curves must therefore remain alternate with

each other throughout the space on the positive side of the axis of y. Their points

of intersection with the axis of y must also be alternate. If we put# = 0, in the

equations P= 0, Q= Q we have/1 (y)
= 0, /2 (y)

= (Art. 292), and these equations

must therefore be such that their roots are real and that the roots of each must

separate or lie between the roots of the other. It is then pointed out in Art. 292,

that the conditions that the roots of one equation should separate those of the other

may practically be found by Sturm s theorem.

Conversely, we may deduce from Cauchy s theorem that the conditions given in

Art. 292 are sufficient. For suppose the intersections of the P and Q curves with

the axis of y are known to be alternate. It is evident that as we travel round the

contour formed by the infinite semicircle which bounds space on the positive side

of the axis of ?/, we pass over each P branch and each Q branch twice, crossing each

in one direction on the semicircle and in the opposite direction on the axis of ?/. In

Art. 293 the consequent changes of sign of P/Q are counted and it is shown that the

changes of sign balance each other. It follows by Cauchy s theorem that there is

no radical point within the contour.
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in this second series. Hence the number e of variations lost in proceeding from

the first to the second series is 2k - n. But the number of radical points on the

positive side of the axis of y has been proved to be = (n + e) ; substituting for e,

this becomes equal to k. We therefore infer the following theorem. If we form
the series of coefficients of the highest powers of the functions f^ (y), /2 (y), &c., every

variation of sign implies one radical point within the positive contour, and there

fore one root with its real part positive.

296. We require some rule to construct the series of coefficients with facility.

If we perform the process of Greatest Common Measure on the functions /: (y),

/., (y) changing the signs of the remainders, we find that the first three functions are

/i (V) =P y
n

-P-2&amp;gt;J

n~* +PMn- 4 ~ &c.,

/2 (y)
=

Pi Pi

Thus the coefficients of f3 (y) may be obtained from those of /x (y) and /., (y) by a

simple cross -multiplication, and may therefore be written down by inspection. The

coefficients of/4 (y) may be derived from those of/2 (y) and/3 (y) by a similar cross-

multiplication and so on. These successive functions may be called the subsidiary

functions.

297. First form of the Rule. Summing up the preceding arguments, we have

the following rule. The equation being

arrange the coefficients in two rows thus

Po Ps P4. &c -

Pi. Ps Ps &c -

Form a new row by cross-multiplication in the following manner

PiP-j
-
PoPj PiPt-PoPs &G

Pi Pi

Form a fourth row by operating on these two last rows by a similar cross -

multiplication. Proceeding thus the number of terms in each row will gradually

decrease, and we stop only when no term is left. Then in order that there may be

no roots whose real parts are positive it is necessary and sufficient that the terms in

the first column should be all of one sign. If they be not all of one sign, the number

of variations of sign is equal to the number of roots with their real parts positive.

The terms which constitute the first column may be called the test functions.

As in forming these rows we only want their signs, we may multiply or divide

any one by any positive quantity which may be convenient. We may thus often

avoid complicated fractions.

298. Equations of an odd degree. In order to simplify the argument we have

supposed the degree of the equation to be even. If n be odd, let as before

/ (*) =P zn +Piz
n~ 1 + ... +pn .

We may regard this equation as the limit of

P zn+l +p^n
+...+pnz +pnh= 0.

If h be positive and indefinitely small the additional root of this equation is real

and negative, and ultimately equal to - h. Those roots also of the two equations
which lie within the positive contour are ultimately the same.
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Since n + 1 is even we may apply to this equation the preceding rule. The two

first rows are p , p2 &c., pn_v pnh,

Pl , PS&C., pn .

We easily see by calculating a few rows that none of the coefficients in the sub

sequent rows contain h as a factor except the extreme coefficients on the right-hand

side. Hence in the general case all the test functions, except the two last, remain

finite when h is put equal to zero ;
and therefore have the same sign as if the rows

had been calculated before the addition of the final term pnh. The last two co

efficients in the first column, when only the principal power of h is retained, are pn
and pnh. But since h is positive there can be no variation of sign in this sequence.

We may therefore omit this final term pnh altogether as giving nothing to the

number of variations of sign. The result is that the rule to calculate the number

of roots whose real parts are positive is the same whether the degree of the equation is

even or odd.

299. Simplification of the rule when tests of stability only are required.

In a dynamical point of view it is generally more important to determine the condi

tions of stability than to count how many times those conditions are broken. If

we only want to discover these conditions we may in forming the successive sub

sidiary functions by the rule of cross-multiplication omit the divisor at every stage

provided p be made positive to begin ivith, for this divisor being one of the test

functions must in every case be positive.

Supposing the conditions of stability to be satisfied we see by reference to Art.

292 that the proper number of variations cannot be lost at the beginning of the

series unless the roots of the equation f (y) are all real and the roots off2 (y) separate

the roots of f (y) and therefore are all real also. Then because when a subsidiary

function vanishes the two on each side have opposite signs it follows that the roots

of f.A (y) are real and separate those of/2 (y) and so on.

Supposing the roots of the equation f(z) = Q to have their real parts negative,

the real quadratic factors made up of those roots must have their terms positive.

Thus every term of the equation / (z)
= must be positive. It follows from the

definition of the functions /x (y) and/2 (y) in Art. 292 that the signs of their terms

are alternately positive and negative, and since their roots are real every one of

those roots is positive. Hence all the subsequent auxiliary functions /3 (?/),/4 (#),

&G. have their roots real and positive. The signs therefore of all their terms are

alternately positive and negative, and by Art. 297 the coefficient of the highest

power is in every case positive.

In this way we are led to an extension of the theorem in Art. 297. Supposing

p to have been made positive, we see by the preceding reasoning that though it is

necessary and sufficient that all the terms in the first column should be positive,

yet it is also true that the terms in every column must be positive. Hence as we per

form the process indicated in that article we may stop as soon as we find any negative

term, and conclude at once that/ (z) has some roots with their real parts negative.

300. Ex. 1. Express the condition that the real roots and the real parts of

the imaginary roots of the cubic z2
+2&amp;gt;1

z2 +p2z+ps
= Q should be all negative.

By Art. 296 A(y) = y
3 -PM,

/a (y)
= P\y*-Pv

Using the method of cross-multiplication given in Art. 297 and omitting the

divisors as shown in Art. 299 we have

/a (y)
=

(piP-2
-
PS) y&amp;gt; f*(y)= (P\P*

-
PS) P*

The necessary conditions are that plt PiPz-p-A and^ should be all positive.
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We have retained the powers of y in order to separate the terms, and also the

negative signs in the second column, but both these are unnecessary and in accord

ance with Art. 297 might have been omitted. In both this and the next example all

the numerical calculations are shown.

Ex. 2. Express the corresponding conditions for the biquadratic

/4 (y)
= {(PiP2 -pj PS

-
PI*P*} y&amp;gt;

f5 brMfajfc-j*)A-J&amp;gt;i

The conditions are that PU Pipz -p3 , (PiP&amp;gt;2-Ps)P-Pi*P4 and #4 should be all

positive. These are evidently equivalent to the conditions given in Art. 287.

301. Second Form of the rule. When the degree of the equation is very

considerable there is some labour in the application of the rule given in Art. 297.

The objection is that we only want the terms in the first column and to obtain these

we have to write down all the other columns. We shall now investigate a method

of obtaining each term in the first column from the one above it without the necessity

of writing down any expression except the one required.

We notice that each function is obtained from the one above it by the same

process. Now the three first functions are written down in Art. 297. The first

and second lines will be changed into the second and third by writing for

Po, JPi. #&amp;gt; Ps&amp;gt;
&G -

}

........................... (A) *

the values l^
Pi Pi }

We therefore infer the following rule. To form the test functions of Art. 297 we

write down the first, viz. p ; the second may be obtained from the first and the third

from the second and so on by changing each letter as indicated in the schedule A just

above.

In these changes we always increase the suffix, hence we may write zero for any

letter as soon as its suffix becomes greater than the degree of the equation.

We thus form the test functions, each from the preceding, and we stop as soon

as we have obtained the proper number, viz. (counting ^ as one test function) one

more than the degree of the equation.

302. Example. Express the test functions for the quintic

f (z)
= p z

5 +2V4
+p.2z*+p^ +p4z +p5

= 0.

Here we notice that p6 ,p7 , &c- are all zero, so that any term which has the factory
will become zero in the next test function. Following the rule the six test functions

are p , pl

_ __ _
PlP-2-PoPs Pi PlP3(PlP&amp;gt;2-PoP2)-Pl

2
(PlP4-PoP5 )

and lastly, p5 .

If we regard z as of one dimension in space it is clear that the dimensions of the

several coefficients p , p v , &c. are indicated by their suffixes. Hence we may test the

correctness of our arithmetical processes by counting the dimensions of the several

terms in each of the test functions.
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303. When any test function vanishes this process causes an infinite term to

appear in the next function. In such a case we may replace the vanishing function

by an infinitely small quantity a and then proceed as before. Thus suppose p l
= Q

1

writing a for^ the six functions become p , a, -p pa ja, ps , p -p.2p5 lp3 +PoP5*/p3*,

p5
. Consider the first four of these functions ; the signs of pQ and p3 being given, it

is easy to see by trial that there will be the same number of variations of sign

whether we regard a as positive or negative. Thus if p and ps have the same sign,

the middle terms have always opposite signs and there will be just two variations
;

if p and p3
have opposite signs, the middle terms are both positive or both negative

and there will be just one variation.

304. Vanishing of a Subsidiary function. In the preceding theory two

reservations have been made.

1. In applying Cauchy s theorem it has been assumed that there were no

radical points on the axis of y.

2. It has been assumed that P and Q have no common factor. In this case as

we continue the process of finding the greatest common measure in order to con

struct the subsidiary functions /3 (y), &c. we arrive at a function which is this

greatest common measure and the next function is absolutely zero. Thus we are

warned of the presence of common factors by the absolute vanishing of one of the

subsidiary functions.

It is clear that iff(z) = Q have two roots which are equal and opposite, the even

and odd powers of z must separately vanish. It follows from the definition in Art.

292 that /j (y) and /2 (y) will have these roots common to each. The greatest

common measure of /x (y) and /2 (y) must therefore contain as factors all the

roots of f(z) which are equal and opposite. Conversely, the greatest common
measure of /x (y) and /2 (y) is necessarily a function of y which contains only even

powers of y*, and if it be equated to zero, its roots are necessarily equal and

opposite. These roots must obviously satisfy f(z) = 0.

Now if any radical point lie on the axis of y,f(z) must have roots of the form

k/&amp;gt;J

- 1 and these are equal and opposite. The two reserved cases therefore are

included in the one case in which /x (y) and /2 (y) have common factors.

305. Let the greatest common measure of ft (y) and /2 (y) be \p (?/
2
).

If then we

putf(z) = \f/ (
- z 2

) (z), the function (z) is such that no two of its roots are equal

and opposite, and to this function we may therefore apply Cauchy s theorem without

fear of failure. By Art. 295, the number of roots of (z) which have their real

parts positive is equal to the number of variations of sign in the coefficients of the

highest powers of the subsidiary functions of (z). But, since
\f/ (

- z 2
)
is real when

we write z = y*J
-

1, the subsidiary functions of (z) become, when each is multiplied

by \(/ &), the subsidiary functions of f(z). The presence of this common factor will

not affect the number of variations of signs in the series. Suppose then we agree to

omit the consideration of the factors of ^ (
- z2

) , we may test the positions of the

remaining radical points by discussing either of the functions f(z) or
&amp;lt;j&amp;gt;(z).

We may therefore make the following addition to the rule given in Art. 297.

If ice apply that rule, using only the subsidiary functions which do not wholly vanish,

we, obtain the number of roots wldch have their real parts positive, but excluding

those roots which are in pairs equal and opposite to each other.

*
If

/&amp;gt;n = 0, we have an additional root, viz. z = 0, which is not included in this

remark. But this root may be either divided out of the equation f(z)=0, or it may
be included in the following reasoning as a part of the function (z).
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These omitted roots are of course given by equating tojzero,
the last subsidiary

function which does not wholly vanish. Putting y\/-l = z we may deduce the

corresponding roots of the original equation.

It will be seen that for every pair of imaginary roots of y there will be one

value of z which has its real part positive, and for every pair of real roots of y there

will be two values of z of the form W - 1. The former indicate an unstable, the

latter a stable motion according to the rule of Art. 283.

306. Usually we may best find the nature of these roots by solving the equation
formed by equating to zero the last subsidiary function. But if this be troublesome

we may conveniently use Sturm s theorem. Since the powers of y in any subsidiary

function decrease two at a time we may effect Sturm s process of finding the

greatest common measure exactly as described in Art. 297. We may also show by
the same kind of reasoning as in Art. 295, that for every variation of sign when

y = + oo in Sturm s functions there will be a pair of imaginary values of y. We
may thus make a second addition to the rule given in Art. 297.

In forming the successive subsidiary functions, as soon as we arrive at one ichich

wholly vanishes, we write instead of it the differential coefficient of the last ivhich does

not vanish and proceed to form the succeeding functions by the same rule as before.

Every variation of sign in the first column will then indicate one root with its real

part positive. The remaining roots will have their real parts negative or zero.

307. Equal Boots. We know by Art. 283 that whether a single root of the

form a + b^f
- 1 indicate stability or instability, several equal roots will indicate the

same, except when a= Q. In this latter case while solitary roots of the form 6^-1
imply stability, several equal roots indicate instability. It is therefore generally

important to determine if the roots of the latter form are repeated or not.

When the equal roots are of the first form and there happen to be no others

equal and opposite to them, their number is fully counted in using Cauchy s theorem.

When the equal roots are of the second form, i.e. b*J -1, they appear in the com
mon factor \f/(-z~). If we can solve the equation ^(-22

)
= 0, we know at once

whether the repeated roots are of the first or second forms. If we analyse the

equation by Sturm s theorem (Art. 306) and stop as usual at the first Sturmian

function which does not vanish, we must remember that these equal roots will be

counted as if they were one root. The last Sturmian function which does not

vanish gives by its factors the sets of equal roots with a loss of one root in each set.

If we differentiate this function and continue the process described in Art. 297, we
are really applying Sturm s theorem anew to this function, and will arrive at another

Sturmian function containing the sets of equal roots with a loss of two of each set.

Thus by continuing the process the number of repetitions may be counted.

Numerical Examples. Determine how many roots of the equation

have their real parts positive.

Forming the first two rows by the rule of Art. 297 we have

2/
10

1, -1, 1, 1 -1, 1,

2/
9

1, -2, 3, -2, 1,

where we have written on the left-hand side the highest power of each subsidiary

function, and have omitted the negative signs given in the second, fourth and sixth

columns of Art. 292. We may notice that the presence of negative terms shows that

the equation indicates an unstable motion (Art. 299). Hence if we merely wish to
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determine the question of stability or instability the process terminates at the first

negative sign. To illustrate the other rules we continue as follows.

Operating by the rule of Art. 297 we have

y
8

1, -2, 3, -2, 1.

These are the same as the figures in the last line, hence the next subsidiary

function will wholly vanish . Therefore $ (
- z2

)
= zs - 2z6 + 3z* - 2zz + 1 . By Art. 306

we replace the next function by the differential coefficient

( 8,
- 12, 12,

- 4, divide by 4,

y?
{2, -3, 3, -1,

(-1, f, -f, 1, multiply by 2,

1-1, 3, -3, 2,

( 3,
-

3, 3, divide by 3,

11, -1, 1,

4 (2,
-

2, 2, divide by 2,

( I, -1, 1.

Here again the next function vanishes. There are therefore equal roots given

by z4 - z2 + 1 = 0. The nature of these roots may be found by solving this equation.

Disregarding this, we may (Art. 307) replace the next function by the differential

coefficient (4,
-

2, divide by 2,

k -i,

y-
-

1, 2, after multiplication by 2,

V 3,

y 2.

Looking at the first column, we see that there are four changes of sign. Hence

there are four roots whose real parts are positive. We verify this by remarking

that the given equation may be written in the form (z
4 - z2 + 1)

2
(z

2 + z + l.)=:Q.

In this example we have exhibited all the numerical calculations.

Ex. 2. Show that the roots of the equations

s
2 + l = 0,

l0,
do not satisfy the conditions of stability.

Ex. Show that the roots of the equations

do satisfy the conditions of stability.

The conditions of stability given in this section are taken from the third chapter
of the author s essay on Stability of Motion. Other methods of testing the roots of

the equation / (z)
= are given in the second chapter of that essay. The conditions

for a biquadratic were read before the Mathematical Society in 1874. The theory

of linear differential equations with especial reference to the indeterminate case is

abridged from a paper by the author in the Proceedings of the Mathematical Society,

1883.



CHAPTER VII.

FREE AND FORCED OSCILLATIONS.

Free Oscillations.

308. THE difference between free and forced vibrations will be explained in the

next section of this chapter. The following rough distinction will be sufficient for

our present purpose. When the forces which act on a system depend only on the

deviations of the several particles from their undisturbed motion, every term in

the equations of motion, as explained in Art. 257, will contain the first powers of

the co-ordinates. The equations of motion will then take the form given to them in

Art. 310 of this chapter. The oscillations of such a system are called its free oscil

lations.

Besides these forces we may have others due to external causes which may be

functions of the time, and may not vanish when the system is placed in its undis

turbed position. Such forces are usually written on the right-hand side of the

equations of motion, to intimate that their effects must be calculated by different

rules from the former forces. The oscillations produced by these forces are called

forced oscillations.

309. Introductory summary. The propositions in this section are con-

structed for the purpose of examining the small oscillations of a system which

depends on many co-ordinates. But as they are of general application they are

here presented in a form which is purely mathematical. No reference is made to

any dynamical principle and when dynamical terms are used it is only for the sake

of explanation.

We begin by taking the equations of the second order with n dependent variables

in their most general forms, though such general forms do not occur in dynamics.

Two typical equations are then deduced, and from these, the chief propositions in

the section are derived.

The first step usually taken in solving simultaneous equations is to form a cer

tain determinant (Art. 262). The general form of the solution and the stability of

the resulting motion depend on the roots of this determinant. If as explained in

Art. 282 the real parts of the roots are positive the motion is unstable. Two

propositions are shown to follow immediately from the typical equations. If three

functions, here called A B, C, are one-signed it is shown (1) that, however general

the equations may be, the real roots of the determinant cannot be positive, (2) that,

if the equations have that simpler character which occurs in dynamics, the real part

of every imaginary root is negative .

When we apply our equations to the case of a system oscillating about a posi-
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tion of equilibrium we see that the function A corresponds to half the vis viva, B to

the dissipation function, and C to the potential of the forces of restitution.

The first of these propositions has been established by Lagrange and Sir W.
Thomson when the equations represent the oscillations of a system about a position

of equilibrium. The second is to be found in the author s essay on the Stability of

Motion but expressed in a different form. It is also given in the last edition of

Thomson and Tait s Natural Philosophy. The reader is also referred to a paper by

the author read in April 1883 before the Mathematical Society of London.

310. The roots of the fundamental determinant. Let

there be any number of dependent variables x, y, 2, &c., to be

found in terms of t, by means of as many differential equations of

the second order with constant coefficients. Whatever these

equations may be, they may be very conveniently written in

the form

(Au 52 + Bn d + Cn )
x + ( A 1S 5- + 12 5 + &amp;lt;7

12
\ y + / A

13
52 + Bn d + C

13
\ z + &c. = 0,

V 5* -f 12 5 +F12 \ +D 13 5* + E19
d + F13

&amp;gt;

12
5 + C13

\ x + (J 22 52 + 22 5 + C2o) y+ J
23 52 + 23 5 + C23\ z + &c. = 0,

f
A

13 P +Bl3 d + C
ls\x+/ A 23 8* + B.2 .

A8+C23 \

\
- D13 52

- EU 8 -Fj \
- D23 5

2 - Ea t -Fj
&c. + &c. + &c. = 0,

where the symbol 8 represents differentiation with regard to t, and
the order of suffixes is immaterial, so that A 12

= A 2i, and so on.

We see here two sets of terms, (1) those which depend on the

letters A, B, C, and which by themselves constitute a symmetrical
determinant

; (2) those which depend on the letters D, E, F, and
which by themselves constitute a skew determinant.

311. For the reasons given in Chap. IX. of Vol. I., we may
call the terms which depend on the letter A the effective forces,
those which depend on the letter B the forces of resistance, those

on C the forces of restitution. It generally happens that the

terms which depend on the letters D and F are absent. The
terms which depend on the letter E occur when we consider the

oscillations about a state of motion, Chap, in., Art. 112. These
we shall call the centrifugal forces.

If we write A, B, C for the three functions

B = Pu
C = Cn

the terms in the several equations which arise from A, B, G may
be written

~dA ,dB dC .dA ^dB dC
p

6- ,- + + -
,

d2

-j- + 6 ,- + -
T ,

&C.
ax ax ax ay ay ay

Hence A, B, C may be called respectively the potentials of the
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effective forces, the forces of resistance, and the forces of resti

tution.

312. When we compare the equations of motion with those

given by Lagrange for the oscillations about a position of equi
librium (Chap. IL), we see that the function A cannot be otherwise

than positive. So also these oscillations are stable if the function

C be always positive.

Thus, it frequently occurs that the three functions A, B, C,

or some of them, are such that they keep one sign whatever real

quantities we write for x, y, z, &c., and do not become zero except
when x, y, &c. are all zero. Such functions will be referred to as

one-signed quadrics.

313. The method of solving the differential equations in

Art. 310 has been explained in Chap. vi. Let mly m2 , &c., be

the roots of the fundamental determinant, which we need not here

write down. This determinant is the same as that represented

by the symbol A(8) in Art. 262. Let as suppose that these roots

are unequal, the case of equal roots being regarded as a limiting
case of unequal roots. The solution may be written thus :

x = xtf
m t + x2e

m^ + . . . \ dxjdt= x(e
mt + x^ + . . .

j

dy/dt
=

y(e
m^ + y.,e

m^
+...&amp;gt;,

&C. = &C. J

where x( = x^ m^ ,y(
= yl

m
, &c., x.,

= x., m.,
,
&c.

Here xlt yl} zl} &c. contain as a common factor one constant

of integration, x.,,
y.&amp;gt;,

&c. another constant, and so on. The forms

of these constants are not wanted here. It is enough that we
should remember that the coefficients which belong to a real ex

ponential are themselves real. On the other hand, if mlt m.2) be a

pair of imaginary roots, the coefficients (x1} #.,), &c ,
take the form

314. The first equation. If we substitute the first terms
of each of these values of x, y, z, &c., in the equations of Art. 310,
we obtain a set of equations which differs from those only in

having m^ written for S, and xlt yly &c. for x, ?/, &c. Multiply
these respectively by xl , ylt &c., and add the results together; we
have

(A na\
2 + 2^1 j,^?/, + &c.) m* + (B^x^ + 2 JB

1,^1 ?/1 + &c.) m^

+ (Cn&amp;lt;

2 + 2(712^12/1 + &c. )
= 0.

It should be noticed that the terms which depend on the letters

D, E, F have altogether disappeared from this equation.

It should also be noticed that the coefficients of the powers of
m are twice the functions A, B, C with xl} ylt &c. written for
x, ,

&c.
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315. PROP. I. On real roots. We may immediately de

duce the three following theorems:

(1) If the potentials A, B, C are either zero or one-signed func
tions, and if all three have the same sign, the fundamental deter

minant cannot have a real positive root.

For if ml were real, the coefficients ccl) yl ,
&c. would be real.

We should thus have the sum of three positive quantities equal
to zero.

(2) If there are no forces of resistance, i.e. if the term B is

absent, and if the potentials A and C are one-signed and have the

same sign, the fundamental determinant cannot have a real root,

positive or negative.

(3) If A, B, C are one-signed functions, but if the sign of B is

opposite to that of A and C, the fundamental determinant cannot

have a negative root.

These propositions are true, whether there are any terms in the

differential equations which depend on the functions D, E, F or not.

We may also notice that, unless the potential C can vanish for
some real values of the co-ordinates other than zero, the fundamental
determinant cannot have a root equal to zero. If, for example, the

co-ordinate x is absent from C (Art. 98), then C vanishes when the

other co-ordinates are zero and x is finite. In this case m^ can be

equal to zero. If the forces depending on B are also absent the

determinant will have two roots equal to zero.

When two zero roots occur terms such as nt + a must be added to some of the

expressions for the co-ordinates given in Art. 813. Unless the initial conditions

are such as to make the constants n and a equal to zero, these terms should be

included in the expressions 6=f(t), $ =F (t) t &c., which as explained in Art. 257

give the steady motion. The presence of these terms thus indicates a slight change
in the steady motion about which the system has been supposed to oscillate.

316. The two equations. Exactly as in Art. 314, let us

again substitute the first term of each of the values of x, y, &c. in

the equations of motion. But let us now multiply these by
#a 2/2 , &c., and add the results. We thus obtain

+ A& (y^z, + y^) + &c.] m?

+ [#i2 (x$,
-

x.y,) + &c.] nh + [F
To bring this equation within bounds, we must use some

notation to shorten the coefficients. Let us represent the halves

of these series by their first terms, omitting suffixes to A, B, &c.

We may therefore write the equation in the form

A (a^jj) Wj
2 + B (X#2) mj + C (#^2)

= D (x$J m^
2 + E (Xy,)
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In the same way we have

A (a?i#2) m&amp;lt;? + B (x^ m.2 + C (x^
= -D faya) mf - E (x,y^

Also we deduce from these the two equations

A (X^) mj* + B (XM) mi + C (x^) = 0}

A (xzx^) m2
2 + B ( o#2) m^ + G (av&2)

The first of these is the same as that already found in Art. 314.

Here we may notice that the functions A (xx\ B (xx\ C (xx)
are really the same as those we have already more simply denoted

by A, B, C. We also notice that D(##i) = 0, E(x,y 1 )
=

)
and

317. Let us now suppose that there is a pair of imaginary
roots in the fundamental determinant of the form ml

= r +p V 1,

mz
= r pj l. The values of #, y, &c., given in Art 313,

become x = (xl + #2) ert cospt + (&\
-

#,) V - 1 e
rt sin pt + &c.,

y =(yi + y2) e
rt

cospt + (?/!
-
y2) V - 1 e

rt
sinpt + &c.,

which may be conveniently abbreviated into

x = Xl e
rt
cospt + X, e

rt sin p^ +

2/
= F! e r&amp;lt; cospt + F2 e

rt

If X{ = rX, +pX2 and Z/ =-^ + rZ2 , &c.,

= Z/ e
?i cos _p^ + Z3 e

r* sin p^ + x

= F/ e r&amp;lt; cos j9^ + F2 ert sin pj5 + ys

&c. = &c.

318. Returning now to the two first equations of Art. 316,
let us divide them by ml and m2 respectively. If we first add and
then subtract the results, we have

A (*&) r + B faxj + C (xjxj
f2^ =

JJ)
(x^)p-F (.r1?/2)

A
(Xlx2 )p-C (Xl

By substitution, we find that

4A
(a?ia?a)=(Z1Z1 ) + 4 (ZaZa)

with similar results for the other letters. We also infer from these

equations that if A is a one-signed function, A (#i#2) is not only
real, but has always the same sign as A. Similar remarks apply
to the functions B and C.
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If the functions D, E, F are absent, the two first equations of

this Article reduce to

A (x^ 2r + B (x^ =
- A

&amp;lt;XO (r
2 + p) + C (awa)

=
j

except when p = 0, i.e., except when the roots (which we have

supposed imaginary) are real.

These equations may be conveniently written

_ l =
2 A (XY,) + A(X9XJ A (X,X,) + A (XaX,)

thus giving r and p when the amplitudes of the oscillations are

known.

319. PROP. II. On imaginary roots. We may immediately
deduce the following theorem from the equations of Art. 318.

(1) Let the fundamental determinant be symmetrical, i.e.., let

the functions D, E, F be all absent. Let the potentials A and B
be one-signed and have the same sign (whether C be a one-signed

function or not). Then the real part r of every imaginary root

must be negative and not zero. But if the potential B is absent,

then the real part of every imaginary root is zero.

If the potentials A and C are one-signed and have opposite signs,

there can be no imaginary roots.

These results follow by simply looking at the two last equations
of Art. 318.

(2) If the terms depending on D and F are absent from the

equations, whether the terms depending on E are present or not, and

if the three potential functions A, B, C are all one-signed and have

the same sign, then the real part r of every imaginary root is

negative, and not zero. But if the forces of resistance, i.e. B, are

also absent, then the real part of every imaginary root is zero.

(3) If the terms depending on T&amp;gt; and E are absent, but not

necessarily those depending on F, and if A
, B, C are all one-signed

and have the same sign, then the real part r of every imaginary
root must be negative, or, if positive, must be less than p.

320. Ex. 1. If A is a one-signed function prove that {A (o^)}
2 is always less

than the product A (x^) . A (x^x2).

Ex. 2. If A (m) is the determinant of motion, A
x (/) the minor of its leading

constituent, x
ly l , &c. the minors of the first row, and m any quantity not neces

sarily a root of A(w), prove the identity

A faxj m2 + B (x^) m + C (x^) = A (m) Ax (m).

Ex. 3. If w
x ,

m.2 are any two quantities, not necessarily roots of the determinant

A (m), prove that ^*^! +
*&amp;lt;*A &amp;gt; 1+^^1 =A( 1 ) A, (,.).- D foyjV - E fay*) w*i

-

Ex. 4. If the determinant is symmetrical, and if the potentials A and C are
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one-signed and have opposite signs, then, whatever sign the potential B may have,

the roots of the determinant are all real.

Ex. 5. If the terms depending on F and E are absent, but not necessarily those

depending on D, and if the three potentials A, B, C are all one-signed and have the

same sign, then the real part r of every imaginary root must be negative or if posi

tive less than p.

321. Effect of the forces of resistance on oscillations about a position of

equilibrium. Let a system be oscillating about its position of equilibrium under

no forces of resistance, so that the functions B, D, E, F are all zero. We also

suppose the functions A and C to be one-signed and to have the same sign.

By referring to the equations of motion in Art. 310 we see at once that the

determinant of the motion viz. A (5) contains only even powers of 5. This deter

minant is of course the same as the Lagrangian determinant discussed in Chap. n.

It follows either from Chap. n. or from Arts. 315 and 319 of this chapter that all

the roots of the equation A(5) = are of the formip^/-!. Any co-ordinate

therefore is represented by a series of the form

x = X
l cospt +X2 sinpt + ......

Let now some small forces of resistance act on the system, we therefore intro

duce into the equations of motion the terms which depend on the function B. The

forces thus introduced are supposed to be so small that we may reject the squares

of the coefficients of the function B. We represent this by supposing every co

efficient to contain a factor K whose square can be neglected. It is the effect of

these additional forces on the former motion which we wish to discover.

Referring again to the equations of motion in Art. 310, let A
1 (5), A2 (5) be the

determinants of motion before and after the introduction of these forces of resis

tance. The determinantal equation therefore becomes

A
2 (5)

= A! (5) + BnSIu (d) + &c. = 0,

where the symbol I indicates the minors of the constituents of Aj (5) as explained in

Chap. vi.

This equation may be written in the form A
x (5) + /c50 (5)=:0, where &amp;lt; (5) con

tains only even powers of 5. Since p/J
- 1 is a root of A

1 (5)=0, we let the corre

sponding root of this new equation be p*J
- 1 + r where r is a small quantity, real

or imaginary, whose square can be neglected. We find by Taylor s theorem

Hence, since A
1 (S) contains only odd powers of 5, it follows that r is necessarily

real.

We have thus proved that the correction to any root of the determinantal equa
tion when we introduce the resistances is necessarily real. This means that the

correction to the imaginary part of the root depends on the square of the resistances.

The addition r to the real part of the root introduces a real exponential factor ert into

the amplitude of any oscillation. The addition to the imaginary part alters the

period of the oscillation (Art. 317). Thus the periods of the oscillations are a/ected

only by the squares of small quantities when we introduce the resisting forces.

322. The series for any co-ordinate now takes the form (see Art. 317)

x=X^ cos pt + X2e
rt sinpt+ ...

where p is the same as before and, by Art. 319, r is negative. With the same given

initial values of x, y, &c, dxjdt, dyjdt, &c. the coefficients Xl ,
&G. are changed

R. D. II. 14
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only by terms which contain the factor K, and being themselves small, these changes

may be neglected.

The value of r may be deduced from the expressions given at the end of Art.

318. If the forces of resistance were zero, the real exponentials would be absent

and the ratios A j/X,, r
a/F2 would all be equal. With small forces of resistance

these ratios differ from each other by quantities which contain the small factor K.

It follows that the ratios B (X^jA (J^Xj and B (XZX^A (X2X2) are also equal

when we reject the square of the small quantity. The expression for r therefore

reduces to the simple form

_ , B(X1
X

1 ) =1 A

Translating this formula into English we see by Art. 73 that the numerical value

of r, for any one principal oscillation, is one half the ratio of the mean value of the

dissipation function to the mean value of the kinetic energy for that oscillation.

Forced Oscillations.

323. We may suppose a system to be moving in a given state

of motion denned, as explained in Art. 257, by the co-ordinates

# =
0&amp;gt;

&amp;lt;

=
&amp;lt; 0) &c. where

, $ ,
&c. are known functions of the time.

This motion we shall call sometimes the undisturbed motion and
sometimes the steady motion. If the system be now disturbed in

any manner, we write 6 # + x,
&amp;lt;j&amp;gt;

=
&amp;lt;t&amp;gt;

+ y, &c. where ac, y t
&c. are

so small that we may reject their squares. This disturbance may
have been made by some small impulse and the system may then

have been left to oscillate about the undisturbed motion.

We may also have continuous forces acting on the system

tending to make it oscillate about the undisturbed motion. As
the object of our enquiry is the oscillation of a system, we shall

suppose that these forces when they exist are periodic. If f (t)

represents any one we may suppose this function to be expanded
by the known processes of Trigonometry in a series of multiple

angles; thus

f(t) = Pe~Kt sin (\t + a) + Ftr* * sin (\ t + a) + &c.

Each of these terms is called a disturbing force. The coefficient of

the trigonometrical factor of any term is called the magnitude or

amplitude of that term. The angle \t + a. is called sometimes the

phase and sometimes the argument.
It frequently happens that the real exponentials are absent

from the expression for the force. This case will therefore be more

particularly considered in what follows. When we wish to call

attention to the absence of the real exponential, the disturbing
force is often called a permanent force. When the real exponential
is present with a negative index, we may call the force evanescent.

Sometimes instead of the force being given, some point of the

system is compelled to oscillate in a given manner. We then have
some given relation between the co-ordinates of the system of the

form ax +by + cz + &c. = Ger** sin (vt + 7)
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where a, b, c &c., G, g &c. are given constants. There may also be
several similar relations between some or all the co-ordinates. In
such a case we suppose these given relations to be included amongst
the differential equations, though they cannot be derived from a

Lagrangian function as in Art. 111. The method of finding the

corresponding forced vibration given in Art. 326, will then still be

applicable.

324. The general equations of motion of the second order are

given in Art. 310, but in dynamics the terms which depend on
the functions D and F are in general absent. The mode in which
these are formed when the resisting forces are absent is explained
in Art. 111. Including these resistances we may suppose that the

equations of motion take the form

+ On) x + /AV& + JB12 8 4- Ci3\ y + . . .
= Pe-** sin (\t+ a)

19 + v + &amp;lt; 12N x + (

-E* )

&c. = &c.

where we have written on the right-hand side only one disturbing
force in each equation as a specimen.

For the sake of brevity, it will be found convenient to distinguish the equation

in which any disturbing force occurs by some simple phrase. The first equation

is obtained from Lagrange s equations (Art. Ill) by differentiating with regard to

or x. The second by differentiating with regard to $ or y. The force on the right-

hand side of the first equation may therefore be said to act directly on the co-ordinate

x and indirectly on y, z, &c. So the force on the right-hand side of the second

equation acts directly on the co-ordinate y and indirectly on x, z, &c.

325. Forced and Free Oscillations. It is proved in the

theory of differential equations that the solution of these equa
tions leads to an expression for each of the co-ordinates which

contains two sets of terms. The first set is called a particular

integral and consists of any solution obtained by any process
however restricted. The second set is called the complementary
function and represents the value of the co-ordinate when all the

disturbing forces on the right-hand side are omitted. The comple

mentary function is therefore the same as the solution found and
discussed in the first section of this chapter.

The complementary functions in the expressions for the co

ordinates give the oscillations of the system about the undisturbed

motion when not influenced by any disturbing forces. These

integrals are therefore said to constitute the natural or free vibra

tions of the system. The particular integrals in the several co

ordinates which indicate the effects of any disturbing force are

called the forced vibrations or oscillations due to that force.

According to this definition any particular integral may be

142
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taken to represent the forced vibration. But in practice there is

one particular integral which is more convenient than any other.

What this is will be made clear by the next proposition.

A free oscillation does not necessarily mean a principal oscilla

tion though it is sometimes used in that sense (Arts. 53 and 116).

Any motion represented by any number of terms selected from

the complementary function will be a free motion. The word
&quot;

free
&quot;

is meant to be a contrast to the word &quot;

forced.&quot;

The term &quot;Complementary Function&quot; is used by Liouville in Vol. 13 of the

Journal Polytechnique, 1832 in an article on fractional differential coefficients.

It is also used in Gregory s Examples, 1841. The distinction of Waves into &quot;free&quot;

and &quot;forced&quot; may be found in Airy s Tides and Waves, published in the Encyclo

paedia Metropolitana, 1842.

326. To find the Forced Vibration. To find a particular

integral for any force Pe~Kt sin (\t + a) we follow the methods

already explained in Chap. VI. If A (8) be the determinant of

the motion and /, (8), 72 (5), &c. be the minors of the first,

second, &c. terms in that row of A () which corresponds to the

equation in which the force occurs, we have

We shall now prove that these operators will lead to two

trigonometrical terms in each of the co-ordinates. These two
terms constitute the forced vibration in that co-ordinate.

327. To perform the operations indicated by these functions of 5, we use the

following simple rule. To perform the operation F (6)
= ~ - - on Pe~ Kt

*

(\t + a) we

write 5 = - K + \*J
- 1 and reduce the operator to the form L + M^/ - 1. The required

result is then Pe~Kt
(L +M? }

Sm
(X + o).

\ X/ cos v

To prove this rule, we notice that by Art. 265 F (5) emt= (L +MJ -
1) emt where

7/1= -/c + X^-1. If we now replace the imaginary part of the exponential by its

trigonometrical value, and equate the real and imaginary parts on each side of the

equation, the result follows at once.

328. Ex. If the determinant A (5) have a roots each equal to m, i. e. - K + \,J~^1,

the result assumes an infinite form. Prove that in this case the operator may be

replaced by {
t
al (d) + at&quot;-

1! (5) + . . . + Ia (5) } /A* (5),

where the coefficients follow the binomial law, and Aa
(5), &c. have been written

to express the ath differential coefficient of A (5), &c. Every one of these operations

may now be performed by the rule given in the last article.

To prove this, we replace the root m by m + h where h is to be afterwards put

equal to zero. We then find

The first a terms of this series in each co-ordinate, though infinite, may be

absorbed into the complementary function, see Art. 2C6. The solution is therefore
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expressed by the (a + l)th term. This, by the theorem of Leibnitz to find the ath

differential coefficient of a product, reduces to the operator given above.

329. Ex. A particle, say the earth, describes a nearly circular orbit about

a centre of force whose attraction varies inversely as the square of the distance. It

is also acted on by two disturbing forces represented by P sin \t and Q sin \t acting

respectively along and perpendicular to the radius vector. If the polar co-ordinates

r, $ be given by r = a + x, d= nt + y, prove that the equations of motion are

(5
2 - 3?i2

)
x - 2anSy=P sin

\t\

show also that the forced vibrations are given by

P 2nQ 2nP (3n
2 + X2

) Q .x= -
TJ sm \t -

.,

-- cos \t, y = -r-r-i
-

.
,.
cos \t + -

97 sin \t.
?i
2 - X2 X

(
n2 - X2

)
a\ (n

2 - X2
)

aX2
(n

2 - X2
)

330. Smooth and Tremulous Motion. We have supposed
the system to be capable of moving in some state of steady
motion, just as a hoop rolls on the ground in a vertical plane.
But owing to some small disturbances the system really oscillates

on each side of this steady motion, the amount of disturbance

being always represented for each co-ordinate by the sum of

the natural and forced oscillations. When the period of one
of these is small the system rapidly changes from one side to

the other of its mean or steady motion. The mean motion
then appears to the eye to be tremulous. WT

hen the periods of

all the oscillations are very long the changes from one side of the

mean motion to the other takes place so slowly that it is hardly

perceived to be an oscillation. The mean motion is then said

to be smooth.

331. Disappearance of the Free Vibrations. When a

system is set in vibration by any continuous permanent disturbing
force, we have seen that two kinds of vibration are excited in

the system, viz. the free and the forced vibrations. If there are

no forces of resistance both these continue to coexist throughout
the motion. But if there are any forces of resistance an ex

ponential is introduced into the free vibration which causes its

amplitude to decrease continually so that finally the free vibration

becomes insensible (Art. 319). The amplitude however of the

forced vibration is not similarly decreased. Thus the oscillation

of the system is ultimately independent of the initial conditions

and depends only on the forced vibrations. The forced vibration

produced by a permanent disturbing force is therefore sometimes
called the permanent vibration.

332. It is sometimes important to compare the rates at which
the different free oscillations tend to become extinct under the

influence of the resisting forces. It is clear that this depends
on the magnitude of the negative quantity r in the exponential
factor e

rt introduced by these resistances. Since this factor is not

necessarily the same in all the terms, it follows that all the free
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vibrations do not diminish at the same rate. Some may become

insensible before the magnitudes of others have been much

impaired.

When the initial amplitudes of any one principal oscillation are known in all

the co-ordinates, the value of r for that oscillation can be deduced from the equations

given in Art. 318. But when the system is oscillating about a position of equilibrium

and the forces of resistance are small the expression for r takes the very simple

form given in Art. 322. If Xlt Y
1 ,

&c. be the amplitudes in the co-ordinates x, y,

&c. of any one free principal oscillation, this expression is

where the vis viva and twice the dissipation function are given by

2A = Aux 2 + 2A lzx y + . . . ,
2B =Bux ~ + 2Bl2

x y +....

The use of this expression for r will be best shown by a few examples.

333. Ex. 1. Let us regard a homogeneous tight chain as constructed of a series

of equal very small particles, each of mass m, connected by very short strings each

of length I and without mass. Let x, y, &c. be the displacements of the particles of

such a string vibrating, say, transversely. Then the vis viva is given by 2?/i.T
2

.

Suppose the resistance of the atmosphere to be represented by a retarding force on

each particle which varies as its actual velocity. Prove that the dissipation func

tion B may be represented by 2B = ?,Kmx 2
. Taking K to be the same for all the

particles it immediately follows that r= -\K, so that the proportional effect of the

resistance of the air on all the free vibrations is the same.

Ex. 2. If the particles of the chain vibrate longitudinally instead of transversely

the effects of the resistance of the air will be less than before while the effects of

viscosity or imperfect elasticity will be more apparent. Let us suppose that these

may be represented by a series of forces resisting compression or extension between

adjacent particles, each force being proportional to the relative velocities of the two

particles between which it acts and reacts. Prove that the dissipation function B

may be represented by 2B = 2/cm (x
-
y )

2
.

Speaking in general terms, we infer that r is greatest for that kind of oscillation

in which the differences of the amplitudes of the oscillations of adjacent particles

are greatest. Oscillations of this kind disappear the soonest, while those in which

the adjacent particles move nearly together may remain perceptible for a long

time after. This is sometimes briefly expressed by saying that the effect of viscosity

is to extinguish the shorter waves before the longer ones.

Ex. 3. If the co-ordinates are so chosen that the dissipation function and the

vis viva take the forms 2B = Bux z + B^y 2+ ... 2T= Anx
2 + A 22y

* + ...

then the value of r for every principal vibration lies between the greatest and least

of the fractions Bu/2An , B^ftA^, &c. It may be noticed that these limits are

independent of the force function and are therefore the same ivltatever the forces

may be.

Ex. 4. The membrane which forms a drum-head vibrates transversely when

struck. If the resistance of the air be slight and vary as the actual velocity of each

particle, show that all the free vibrations have the same real exponential factor.

Ex. 5. When successive notes are sounded on a musical instrument the

terminal motion of one note is the initial motion of the next. Explain why each

note is not sensibly affected by the preceding one. See Art. 331.
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334. Herschel s Theorem on the period of the Forced
Vibration. On comparing the terms in Art. 327 which con

stitute the forced vibration with that which forms the disturbing
force, we notice that the period of the forced vibration is the same
as that of the force to which it is due. Thus if any periodical
cause of disturbance act on a system of vibrating particles the

forced vibrations follow the period of the exciting cause. This

important theorem is due to Sir J. Herschel, who first enunciated

it in his Theory of Sound (Encyc. Met. 1830). His demonstration

however is totally different from that given here.

More generally, the disturbing force and the resulting forced

vibration have not only the same period, but have the same real

exponential also. Thus, when the fundamental determinant has

no equal roots the two have the same general form or type. A
permanent force produces a permanent vibration, an evanescent
vibration follows only from an evanescent force.

In the proof of this theorem we have assumed that the system
of vibrating particles is such that the squares of the displacements
can be neglected.

The theorem also only applies to the forced vibrations. If

therefore we wish to apply Herschel s theorem to the actual

visible motion, a time sufficient to allow the free vibrations to

die away, must have elapsed since the initial motion. See Art. 331.

335. As an example of this principle we may notice that when a sounding body

(such as a drum) excites vibrations in the air, the period or pitch of the sound

produced in the air and in the ear is the same as that of the sounding body.

336. As another example we may take one given by Herschel. Let a ray of

light fall on a refracting substance like glass. The vibrations of the incident light

must excite vibrations inside the glass. These last as long as the exciting cause

continues and therefore constitute the forced vibration. The period of the

refracted light is, by Herschel s theorem, the same as that of the incident light.

There are however some exceptions to this result. Thus in the Phil. Trans, for

1852 Sir G. Stokes has pointed out that light beyond the ultra violet by passing

through certain substances may have its period so lengthened as to become visible.

And Prof. Tyndall by means of the ultra red rays heated a platinum foil to

incandescence and thus so shortened the periods that the vibrations became visible.

See his Rede Lecture, 1865.

To understand the cause of these exceptions we must remember that the forces

of restitution have been taken proportional to the first power of the displacements, i.e.

only the first powers of x, y, &o. have been retained. Now the molecules of a body

may be compounded of smaller atoms closely packed together. When the oscilla

tions under consideration are such that only the molecules move amongst each

other these displacements may be so small compared with the distances of the

molecules from each other that the force of restitution / (), due to a displacement

of any molecule, may be replaced by the first power which occurs in MLaurin s

expansion. But when the oscillations are such that the closely packed atoms of

each molecule move amongst each other, the force of restitution may no longer

vary as the first power of the displacement. Thus the equations of Art. 324 may
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apply to the former but not to the latter kind of motion. The reader will find more

complete explanations in Sir G. Stokes paper, see pages 549, 550.

It is obvious that the motion may be very different from that described above

when the squares and cubes of the small quantities cannot be rejected. This will

be especially noticeable when the terms of the first order are absent. An elementary

example is given in Vol. i. Art. 450, where an oscillation leading to the differential

equation d2d + a&3= is discussed. It is shown that the period, so far from being

constant, varies inversely as the arc of vibration. If we represent a disturbing

force by the term PsinXZ on the right-hand side of this equation, it is clear that

the equation cannot be satisfied by a term of the form 6 QsinXf, so that the

period of the forced oscillation is not the same as that of the force.

337. How a disturbing force is magnified. In dynamical

problems as they occur in nature we often have a system oscil

lating freely about some mean position and acted on by a crowd
of small forces which tend to disturb this motion. Some of these

forces are very small in magnitude, others are greater. May we

reject the small ones as compared with the greater ? The number
of forces is perhaps too large for us to consider the effects of each.

It is evident that we require some rule to guide us in choosing
those forces which produce the most important effects. For
instance in the Planetary Theory each planet is pulled about by an

innumerable number of causes of disturbance. It would be im

possible to determine the actual motion without some principle to

enable us to reject those forces which produce insensible distur

bance.

Let a system be acted on by two permanent disturbing forced

which we may represent by the two terms P sin (\t -f a) and

Q sin
(/jut + ft) both placed in the first equation of Art. 324. The

corresponding forced vibrations in the co-ordinate x are given by

p sin (w + a) + Q sin

where / (8) is the minor of the x term in the first line of the

determinant A (S). These coefficients contain the operator 8 and
their magnitudes will therefore depend on X and

//-.
We therefore

infer that the effects of different permanent disturbing forces acting
under similar conditions on the same co-ordinate are not simply
proportional to their respective magnitudes but depend on their

338. Without however restricting ourselves to permanent
disturbing forces, let us consider the forced vibration produced by
the disturbing force Pe~Kt sin\t. Writing as before (Art. 327)
m = K + X\/ 1, the resulting forced vibration is the co

efficient of V - 1 in Pemt = P emt .

A (8) A (m)
If m is nearly equal to a root of A (8)

= the denominator of this

expression is very small. But the types of the free vibrations



ART. 341.] HOW A DISTURBING FORCE IS MAGNIFIED. 217

are given by A (m) = as shown in Art. 262. We therefore infer

that a disturbing force whose period and real exponential are

nearly the same as those of any one free vibration produces a large

forced vibration.

339. Usually a disturbing force is of the permanent type
P sin (\t + a). If there were no forces of resistance there

would be free permanent oscillations in the system of the form

A sin (pt + 0), and we have just seen that, if X were nearly equal
to any value of p, the disturbing force would produce a magnified
forced oscillation. But the resisting forces introduce real ex

ponentials as factors of the free vibrations, (Art. 319). Thus the

type of the disturbing force is no longer the same as that of any
free vibration. We conclude that one effect of the resistances on a

disturbing permanent force, which would otherwise produce a

magnified forced oscillation, is to modify that oscillation and keep
it within bounds.

340. As a simple example of this dynamical principle, let us consider how

easily a heavy swing can be set into violent oscillation by a series of little pushes

and pulls if properly timed. If we push when the swing is receding and pull when

it is approaching us, the swing is continually accelerated and the arc of oscillation

will be greater and greater at each succeeding swing. Such a series of alternations

of push and pull is practically what we have called a permanent disturbing force

whose period is the same as that of the free vibration of the swing. But if the

period is very unequal to that of the free vibration, though a few pushes and pulls

may increase the arc of vibration, yet a time comes when the effect is reversed. The

force acts opposite to the motion of the swing and the oscillations will decrease just

as they before increased.

It is well known that when a piano string is exposed to the air and is acted on

by vibrations in that medium, the string will sometimes appear to be unaffected by

the motion and at other times will sound a note. The reason is that though the

string is always set in motion, yet, unless the aerial impulses on it are properly

timed, the motion produced is too slight to be sensible. If however one of the

existing notes in the air has the same period as one of those of the string, the

pressure of the air on the string, like the impulses on the pendulum described above,

will continually tend to increase the motion.

On the other hand the intensity of this particular note in the air is weakened

by the amount communicated to the string while the intensities of the other aerial

notes appear to be unaffected. Thus a piano string, or any vibiating body, will

absorb or extract from the surrounding medium the same notes which it would

produce in the air if independently set in motion. Sir G. Stokes uses this theory

to explain on dynamical principles the discovery of Foucault and Kirchhoff, that a

body may be at the same time a source of light giving out rays of a definite period

and an absorbing medium extinguishing rays of the same period which traverse it.

[Phil. Mag., March, I860.]

341. We may take a second example from the rolling of ships at sea. The

ship has its own natural vibration together with that forced one which follows the

oscillation of the waves. If the periods of these synchronise the rolling of the

ship may become very great. Mr White hi his Manual of^Naval Architecture men-
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tions several interesting examples of this. After noticing how some vessels are

made to roll heavily by an almost imperceptible swell, he mentions the case of the

Achilles, a vessel of great reputation for steadiness, which rolled more heavily off

Portland in an almost dead calm than it did off the coast of Ireland in very heavy
weather. Again in the cruise of the combined squadrons in 1871, though the

Monarch far surpassed most of the vessels present in steadiness when the weather

was heavy, there was one occasion (possibly owing to a near agreement between the

natural period of this ship and the period of the waves) when the ship rolled more

heavily in a long swell than some of the most notorious heavy rollers.

342. A good use of this principle was made by Capt. Kater in his experi

ments to determine the length of the seconds pendulum. It icas important to

determine if the support of his pendulum was perfectly firm. He had recourse

to a delicate and simple instrument invented by Mr Hardy a clockmaker, the

sensibility of which is such that had the slighest motion taken place in the support

it must have been instantly detected. The instrument consists of a steel wire,

the lower part of which is inserted in the piece of brass which forms its support,

and is flattened so as to form a delicate spring. On the wire a small weight slides

by means of which it may be made to vibrate in the same time as the pendulum
to which it is to be applied as a test. When thus adjusted it is placed on the

material to which the pendulum is attached, and should this not be perfectly firm,

the motion will be communicated to the wire, which in a little time will accompany
the pendulum on its vibrations. This ingenious contrivance appeared fully adequate

to the purpose for which it was employed, and afforded a satisfactory proof of the

stability of the point of suspension. See Phil. Trans. 1818.

343. It has been shown in Art. 338 that a disturbing force may produce a large

vibration in x if its period is such that the denominator A (5) is small. But this

result is affected by the operator I (5) which occurs in the numerator. If for

instance the result of the operation of the minor I (5) is zero, the forced vibration

disappears.

Now these minors are just the operators used in finding the free vibrations.

Thus in Art. 262, we have x= 1(5) [type].

If then any one of the free vibrations is absent from one of the co-ordinates

though present in the others, then a disturbing force of nearly the same period does

not produce a large forced vibration in that co-ordinate. We infer that a disturbing

force can produce a large forced vibration in any co-ordinate only if there be in that

co-ordinate a free vibration of nearly the same period and containing nearly the same

real exponential.

344. If the force is nearly equal to Pe
~ Kt

sin (\t + a), it may occur that the deter

minant A (5) has a roots equal to - K + \J -
1, while the minor I (5) has none of

them. Keferring to the expressions for the forced vibrations in the co-ordinates

x, y, &c. given in Art. 326, we see that in this case the forced vibration is divided a

times by a small quantity and is said to be magnified a times. But if the minor
I (5) has /3 of these roots, the forced vibration is magnified a - /3 times. By reference

to Art. 272 we see that the co-ordinate x has in this case powers of t up to the

(a
-

18
-

l)
th in the coefficients of its free vibration. We infer that the forced

vibration in any co-ordinate is magnified once more than the highest power of t

which occurs in that co-ordinate in connexion with the free vibrations of nearly the

same period.

345. As an example let us consider the case of a planet describing a circle about
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the sun considered as fixed in the centre ;
the radius vector r is then equal to a

constant and the longitude 6 = nt + e. If slightly disturbed and acted on only by

the attraction of the sun the planet describes an ellipse of small eccentricity e. The

consequent changes in the radius vector and longitude are small and these changes

may be represented by what we have called x and y. From the theory of elliptic

motion we know these are approximately

x a-aecos (nt + a),

y = bt + c + 2esin (nt + a),

where a, &, c are small quantities and 2?r/n is the period of the planet. These are

of course the free vibrations. Comparing these with the type sin (\t + a) we see that

two free vibrations occur in x, viz. \= n and \ = 0. There are three free vibrations

in the expression for y, viz. \ = n and two equal values of X each zero. These equal

values introduce the terms with powers of t as explained in Art. 266.

We infer that any small permanent periodical force produces a magnified

disturbance both in the radius vector and longitude of a planet, if its period is

nearly equal to that of the planet or is very long. Since there are two equal free

periods in the longitude whose type is \= and only one in the radius vector, those

small disturbing forces whose periods are very long are twice magnified in their

effects on the longitude and once magnified in the radius vector. If any such forces

as these act on the planet it is necessary to examine into their effects. Small

disturbing forces, whose magnitudes are less than the standard of small quantities

to be retained, may be disregarded only if their periods are different from those

just indicated.

These rules are used in the Lunar and Planetary Theories to assist us in esti

mating the values of the disturbing forces. They enable us to separate from the

crowd of small forces those which can produce sensible effects on the motions of

the planets, see Art. 337.

346. How a disturbing force is diminished. Let us resume
the expression given in Art. 326 for the forced vibration due to

a continuous disturbing force. We remark in the first place that

the denominator of the coefficient contains higher powers of X
than the numerator. To show this it may be sufficient to notice

that the determinant of the motion A (8) has two powers of 8 more
than any of its minors. We therefore infer that, in the limit,

when X is very great, i.e. when the period of the disturbing force is

much smaller than that of any free oscillation, the forced vibration

produced is in general insignificant.

347. When the type of a continuous disturbing force f(t)
which acts directly on the co-ordinate x is such that it satisfies

the differential equation I (8)f(t)
= 0, we remark in the second

place that the forced oscillation in the co-ordinate x wholly
vanishes. Now Il (8)

= is the determinantal equation whose
roots give the free vibration when the co-ordinate x is constrained

to be zero. We infer that when the type of a disturbing force
which acts directly on any co-ordinate x is nearly the same as any
one of the modes of free vibration when x is constrained to be zero,

then the forced vibration in x is very small. See Art. 343.

348. Ex. A tight string, whose extremities A and B are fixed, is acted on
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tranversely at any point C by a permanent disturbing force. If the period of the

force is equal to any one of the periods of a string stretched with the same tension

but whose length is either AC or CB, show that the forced vibration does not

disturb the point G. If the strings AC, CB have no free period in common, show

that one string is not moved by the forced vibration.

We may also deduce this result from some elementary considerations. Let the

string be held at rest at G and let the part AC be set in motion, CB being at rest.

The pressure at C when resolved perpendicular to the string will represent a per

manent disturbing force whose period is equal to that of any one of the free vibra

tions of AC. Eeplacing the pressure by the disturbing force we have AC in

vibration and CB at rest.

349. How an Impulse is diminished. When a system of

machinery is moving in some state of steady stable motion it may
be liable to disturbance from any sudden jerks whose effects it

may be important to diminish as much as possible. Let us con

sider briefly what means we have to abate an impulse.

When the jerk has completed its work and has ceased to act,

the system is displaced from its proper state of motion. It now

begins to oscillate about this state. Thus one effect of the jerk
is to introduce a new set of free oscillations. If there be any
forces of resistance these free vibrations will begin to fade away
and the system will tend to assume a state of steady motion.

One method of correcting the effects of a disturbing impulse is there

fore to increase the resisting forces.

The resistances which are thus intentionally introduced into

the machinery should be properly arranged. They should be such
as not to affect the steady motion, but to begin to act only when
the machine deviates from its intended course. An example of

this has been given in Art. 105, where the motion of the governor
was discussed.

350. The actual effect of a jerk X on any co-ordinate such as x is easily deduced

from the equations of Art. 118. If A be the discriminant of the quadric A where

...... and Ju the minor of the constituent An ,
we have

If then it is important to lessen the effects of the impulse X, we may make
some addition to the machine or modify the arrangement of its parts so as to in

crease the discriminant A as compared with I as much as possible.

If the function A is a positive one-signed function, its discriminant A is positive.

We may then show, as in the next article, that the ratio of In to A is in general
decreased by the addition of the square of any linear function of x, y, &c. to the

function A. Now the quadric function A with accented co-ordinates is part of the

expression for the vis viva (Art. Ill) and is always a positive function. Hence if

any addition is made to the vis viva the corresponding addition to this function is

also positive and may be expressed as the sum of a number of squares of linear

functions. We may therefore in general weaken the direct effects of jerks on a

system by increasing the vis viva.

The usual method of effecting this is to attach a fly-wheel to the machine. The
vis viva of a rotating body is MkW, where Mk* is the moment of inertia of the
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body about the axis and o&amp;gt; is the angular velocity. The advantage of using a wheel

is that with a given quantity, of additional matter, the additional terms may be in

creased to any extent by increasing the radius of gyration.

351. Ex. 1. If the co-ordinates be so chosen that the square factor added to

the quadric 2A is of the form /u?/
2

,
where y is any co-ordinate other than x, show

that the ratio Jn/A becomes (In + /m.^l(^ + /aL^), where A2 is the second minor

formed by omitting the first two rows and columns, and the suffix of each I indi

cates as usual the constituent of which that I is the minor. Show also that the

second ratio is less than the first by r]S*/t/A(A+/t2j|)* Show also that this

difference is positive or zero and has a finite limit ivhen p. is infinite.

Ex. 2. If the square factor added to the quadric 2A be ft (ax + by + cz + ...)
2

,

show that the direct effect of an impulse represented by X on the co-ordinate x is

not altered by this addition to the inertia if a27n
2 + 2a&InI12 + &2/

12
2 + ... =0.

352. The interval at which any phase of effect follows

the same phase of cause. Any disturbing force tends alter

nately to increase and decrease the deviation of the system from

its undisturbed position, but it is not necessarily true that this

deviation actually increases when the force urges an increase or

decreases when the force urges a decrease. To examine into this

point we notice that by Art. 326 the forced vibration produced by
a disturbing force Pe~Kt sin (\t + ) is

Pe~Kt

[L sin (\t + a) +M cos (\t + a)}

= P ~L2 +M2e~Kt sin (\t + a + tan&quot;
1

M/L).

In this transformation it is clear that if the square root in the

coefficient be regarded as positive, the angle added to the phase
must be such that its sine has the same sign as M and its cosine

the same sign as L. . The consequence is that all the possible
values of the change of phase differ by multiples of 2?r.

Comparing the expression for the forced vibration with that

for the disturbing force we see that their maxima do not occur

simultaneously. The maximum of the oscillation occurs later than
the maximum of the force by an interval equal to (1/X) tan&quot;

1

(M/L}.
In the same way every phase of the oscillation.follows the corre

sponding phase in the force after the same interval.

The change of phase in any co-ordinate thus depends on the

values of L and M for that co-ordinate. These are easily found

by the rule given in Art. 327, where it is shown that if we write

8 /c-r-X\/ 1 in the operator / (8)/A (8) for that co-ordinate the

result is L -f M J 1.

353. If the disturbing force is permanent, i.e. is of the form P sin (\t + a),

and if the forces of resistance are neglected, the determinant A (5) contains only
even powers of 5. We infer therefore from Art. 326 that if the minor I (5) also

contains only even powers of b, the phase of the forced oscillation is the same as that

of the force or is greater by IT. If the minor I (5) contains only odd powers, the phase

of the oscillation is greater than that of the force by^ir.
If we consider the direct effect of a force on any co-ordinate the minor /

(5)
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contains only even powers of 5, as well as the determinant A (5). If the centrifugal

forces are absent as when the system oscillates ahout a position of equilibrium,

every minor contains only even powers of 5. In these cases the forced vibration is

simply a multiple positive or negative of the disturbing force without further change

ofphase.

354. Ex. A particle describes a nearly circular orbit about a centre of force

which attracts according to the Newtonian law, and is acted on by a permanent

disturbing force along the radius vector. Show that the particle at any moment is

inside the mean circular orbit when the force acts outwards and outside when the

force acts inwards, provided the period of the force is less than that of the particle

in its undisturbed orbit round the centre of the force. But the reverse of this is the

case if the period of the disturbing force is greater than that of the particle. Would

there be a similar distinction of cases if the centre of force attracted according to

some inverse power greater than 3 ? See Art. 329.

Second approximations.

355. When we try to find the oscillations of a dynamical

system we generally proceed by continued approximations. We
first reject all the squares of the small quantities and thus obtain

a set of linear differential equations. Solving these we substitute

the results in the terms of the second order and treat these

functions of t as disturbing forces. Their corresponding forced

vibrations are then found. The operation may be repeated for a

third approximation and so on.

It has been shown in Art. 337 that when the forces of resistance

are small, a permanent disturbing force whose period is nearly

equal to that of any one of the free vibrations produces a magnified

forced vibration. It follows that a small force of proper period
which would appear in the differential equations only when we
include terms of (say) the third order may produce oscillations in

the co-ordinates which are of the second or first order.

If therefore we wish to have our results correct to any given
order it will be necessary to retain, for examination, those periodic
terms of higher orders in the differential equations whose periods
are nearly equal to any of the free vibrations.

We also see the importance of proceeding to higher approxima
tion. These small terms which produce such large forced vibra

tions may not make their appearance until the terms of the higher
orders are examined. Thus some important oscillations may be
missed if we stopped at a first approximation.

356. When we substitute our first approximation in the terms of the higher

orders it sometimes happens that permanent disturbing forces make their appear

ance whose periods are exactly the same as those of some of the free vibrations

included in the first approximation. When this occurs, it has been shown in

Art. 328 that the forced vibration changes its character. The solution now con

tains terms with powers of t as factors. These terms (not being balanced by the

proper exponential factors, Art. 283) will become large, so that the system will

depart widely from the state indicated by the approximate solution.
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This is another way of saying that what we have taken as our first approxi

mation is not sufficiently near to the truth to serve as an approximation. In

most dynamical problems the disturbing forces are given as functions of the co

ordinates and then by the approximate solution expressed as functions of the time.

Thus the expressions for the forces themselves are only approximations. It may
therefore happen that if we can obtain a more correct first approximation to the

motion the small terms which indicate such a large departure from the first

approximation may not make their appearance.

To find a sufficiently correct first approximation to the motion it may not be

enough to take the solution of the differential equations when all the terms of the

higher orders are neglected. We must include in these differential equations all

those small terms of the higher orders ivhich materially affect the motion. The

solution of these modified equations (if one can be found) is to be taken as our first

approximation.

Let us repeat the argument in a slightly different form. The first approximation

comprises all the largest terms in the expressions for the co-ordinates and may
generally be taken to represent the visible motion of the system. If now a disturb

ing force, such as that we have just described, act on the system, it greatly modifies

the visible motion and in turn its own period is modified by the change of motion.

Thus the system takes up some new state of steady motion with oscillations about

that steady motion. This obliges us to abandon the former first approximation in

order to use one which may be a permanent representation of the new visible motion.

When we examine this new first approximation, as in the following examples,

we find that it sometimes has the same general character as the former, but with

the important exception that the free vibration whose period was the same as that

of the force has been modified. We therefore infer that when a small disturbing

force is wholly or in part a function of the co-ordinates and has the same period as a

free oscillation of the system, it may have the effect of removing that type of free

oscillation from the system and replacing it by some other type of a different period.

357. Before proceeding to the general theory we shall illustrate the method of

proceeding by a simple example.

A particle oscillates in a straight line about a centre offorce ichose attraction at a

distance x is represented by p*x + p.x
3

. Find the time of a small oscillation.

The equation of motion is clearly

x+p*x=-pj* (1),

where dots represent differentiations with regard to t.

As a first approximation we reject the term on the right-hand side as being of

the third order of small quantities. We then find

x =M sm(pt + a) (2).

Proceeding to a second approximation we substitute this in the term previously

rejected. We have x+p2x = -
/3J/

3
(3 sin (pt + a)

- sin 3 (pt + a)} (3).

The first trigonometrical term on the right-hand side has the same period as the

oscillation which represents the first approximation and therefore modifies that

approximation (Art. 356). To include its effects we must alter equation (2). This

modified solution when substituted in the differential equation must make the left-

hand side, not equal to zero as before, but equal to a very small quantity, viz. the

small disturbing force. As a trial solution we shall therefore retain the same

general form. The letters M and a, being undetermined, will still serve for general

symbols, but we shall replace p by p + p where
//,

is some small quantity to be
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determined by the disturbing force. We shall therefore write the first approxima
tion in the form x =M sin

{ (p + p) t + a} ................................. (4).

Proceeding to a second approximation we have

x + p*x= -|j8Jl/
s sin {(p + AC)

t + a} .

If our correction is successful, this equation must be satisfied by our amended first

approximation. Substituting we find the equation is satisfied provided

. .
j&quot;

=tiV 2
nearly.

Thus the oscillations of the particle about the centre of force are very nearly

represented by equation (4). The effect of the disturbing force -fix* is to shorten

the time of oscillation by a quantity which depends on the square of the arc.

358. If the force of attraction had been p*x + p (dxjdt)
3 instead of that given

above, we may show that this process would have failed.

Taking the first approximation as before and substituting in the differential

equation we obtain

x +p2x = -
I/31P {3 cos (pt + a) + cos 3 (pt + a)}.

Neglecting the second trigonometrical term as before, let us try to include the other

in our first approximation. Taking the amended form (4) and substituting we find

that we should have

But this equation cannot be satisfied by any constant value of
/j..

The effect of this

disturbing force is therefore not merely to alter the time of oscillation.

359. Ex. A particle describes a nearly circular orbit about a centre of force

whose attraction at a distance r is represented by ^(w
2 + /3tt

n
)
where u is the re

ciprocal of r. If j8 is very small show that the path is nearly represented by

u= a (1 + ecos (c0-a)|,

where c= l-^an~ 2
(n-2) {l + (

n -3) (n-4) e2 + &c.},

provided the square of /3 can be neglected. This example is a modification of a case

which occurs in the Lunar Theory.

360. General Theory. Having illustrated the method of treating the terms of

the higher orders by several examples, we shall now consider the subject more

generally. Our object is to so modify the first approximate solution as to include

in it (when such a thing is possible) the effects of small forces whose periods are the

same as those of the free vibrations (Art. 356). The general result arrived at will

be given in the summary at the end of the argument.
We shall suppose the left-hand sides of the differential equations to contain

all the first powers of the small co-ordinates x, y, z, &c. These therefore take the

form given in Art. 324 or more generally Art. 262. The disturbing forces are placed

on the right hand sides and contain powers and products higher than the first of

the co-ordinates x, y, &c., and their differential coefficients. Thus all these dis

turbing forces would be neglected if we took into account only the terms of the

first order. We shall also suppose that these disturbing forces are not explicit

functions of the time. If this condition is not satisfied, the following analysis

must be slightly modified.

361. To avoid a complication of symbols let us resume the exponential values

of the sine and cosine. Let then the first approximation obtained by neglecting in

the differential equation all terms beyond the first order be

+..., &c. = &c., ......... (1),
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where m
1 ,
m

2 ,
&c. are the roots real or imaginary of the determinant A (8) (Art. 262).

On proceeding to a second approximation we substitute these values of x, y, &c. in

the several small terms which were before neglected. Taking some term which

contains the products and powers of the variables the result of the substitution

produces disturbing forces of the form

2pe (fm l +gm2+...)t
...(2),

where the order of the term is f+g+ ... If these quantities /, g, &c. are such that

any number of relations hold of the form

fml + gm2 + ...=m1 .................................... (3),

there are just so many of these disturbing forces which take the type Pe 1*. The

forced vibrations derived from these are obtained by using the operator I (5)/A (5)

and are evidently infinite. To include these in the first approximation we replace

the equations (1) by

x=M
l
enit +M3e

n
^+... y =Nl

e
nJ + N2e

n*t + ... &C.=&G.......... (4),

where the M a N s, &c. are not necessarily the same as before, and each n only
differs slightly from the corresponding in. Substituting as before we of course

obtain a disturbing force of the form (2) but with n s written for the m s. If we

assume the same relations to hold as before between the exponents, viz.

fn1 + gnz +... = n
1 .................................... (5),

this force takes the type Penit . There may also be other relations similar to (5)

but with w2 or w3 , &c. written for n
x
on the right-hand side and these introduce

other disturbing forces whose effects have also to be included in the new first

approximation.

Including these forces we may write the differential equations in the form

/ii (*) *+/M (5) y+ ... =P
1
e* lt + P*

n*+ ...
|

f*(*)*+f*(*)y+... = Qi
*lt + Q*

n
*+... Y .................. (6),

&c. = &c. J

where the functional symbols /n (5) &c. have been used for the sake of brevity. If

we have been successful in including the effects of these disturbing forces in our

new first approximation, these differential equations must be satisfied by the values

of x, y, &c. given in (4). Substituting we have

(7),

&c.=&c.

with similar equations for each of the other disturbing forces.

In these equations the M s are to be regarded as arbitrary, their values being
reserved to satisfy the initial conditions of the motion. Our object is to find the

values of the remaining coefficients, viz., the N s and also the values of the n s in

terms of the M s. These values of the n s must also satisfy the relations (5).

mtppoting this test to be satisfied we have found values of the co-ordinates which

satisfy the differential equations to the first order, and include the disturbing forces

which appeared to threaten the stability of the system.

362. The forces P, Q, &G. may each consist of several terms of different orders

of smallness. But the lowest is supposed to be of a higher order than the coefficients

M, N &G. Taking only the lowest powers which occur in P, Q &e., we may easily
find a first approximation to the values of n

a ,
nz &c. Solving the equations (7) we

find
jj/jA (nj) m Pjlu K) + QJu (n,) + &c.,

R. D. II. 15
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where 7n (n) &c. are as usual the minors of the determinant A (n). Let n
l
=m

l + [jil ,

n.,=m + /j.
&c. Since all the terms on the right-hand side are smaller than M

l
we

may in these terms write ?i
a =7?^ , n2

=m
2
&c. Eemembering that A (w^rrO, we have

In the same way we have

(m2 ) + Ac.

The forces P
l
&c. are functions of Hlt N-^ &c., M2 , N% &c. But looking at equa

tions (7) we see that the ratios of ML , ^ &c. ,
differ from the ratios of the minors

In (m-j), Ij (wij) &c. by quantities of the order PjM. We may therefore in calcu

lating the values of P
l &c., substitute for iv^ &e., N2 &c. by the help of these ratios.

Thus the right-hand sides of the equations (8) are all known functions of the

arbitrary M s and of the roots of the determinantal equation A (5)
= 0.

The quantities/, g &c. are usually positive integers. In this case the orders of

the quantities P &c. are not less than /+ g + &c. It follows that the corrections

fJi.l , ^4 &c. are of the order f+g + &c. - 1 at least.

363. Summary of results. We may embody the results of equations (8) in a

rule.

Taking the first approximation viz. x =M
l
e
m lt + &c. found by rejecting all terms

of the higher orders in the differential equations, we proceed to a second approxi

mation. Suppose that in consequence of some relations such as

we arrive at disturbing forces P^ 1
,
P2e

w &c. These would produce infinite

terms in the co-ordinate x, if we employed the operators 7(5)/A(5), &c. as usual

(Art. 326). Instead of these let us employ the operators I (5)/A (5), &c. simply

replacing A (5) by A (5). Let the result be x= Hemit + Kem*t + &G., where H and K
contain powers of Mlt A/2 , &c. above the first. Then the effects of these disturbing

forces may be taken account of to the next approximation by replacing the first

approximation by x =M1e
(mi +^)t +M2e

(m *+I**}t where f^= HfMlt ^=K/M2 &c.,

provided that these new indices satisfy the relations //^ +g^ + &c. =fji.l , &c.

Supposing this condition to be satisfied, we see that a disturbing force of the

same type and period as a free vibration has the effect of removing that type from

the system and replacing it by some other type of vibration which is more and more

remote from the original type the greater the amplitude of the vibration.

364. Examples. A pendulum swings in a very rare medium, resisting partly as

the velocity and partly as the square of the velocity, to find the motion.

Let 6 be the angle the straight line joining the point O of support to the centre

of gravity G of the pendulum makes with the vertical. Let g = ln? where I is the

length of the simple equivalent pendulum. Then the equation of motion is

6&amp;gt; + n2 sin0= -2*0-/i0
2
................................. (1),

where 2/c and
/j.

are the coefficients of the resistance divided by the moment of

inertia of the pendulum about the axis of suspension. Since 6 is small we may
write the equation in the form

9+iift!s-2tf-/iP+ift0-..,
Since K and are very small, we might at first suppose that it would be

sufficient as a first approximation to reject all the terms on the right-hand side.
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This gives 6= asinnt, the origin of measurement of t heing so chosen that t and

vanish together. If we substitute this in the small terms we get

8 + n?0= -2i&amp;lt;n . acosnt + ^ri
2a?smnt + &c.,

which gives = asin nt-nat sin nt + -^ na?t cos nt + &c.

These additional terms contain t as a factor, and show that our first approximation

was not sufficiently near the truth to represent the motion except for a short

time. To obtain a sufficiently near first approximation we must include in it the

small term lucid[dl (Art. 356). We have therefore

This gives = ae~ Kt
. sin mt, where for the sake of brevity we have put w

2 - K2=m2
.

In our second approximation we reject all terms of the order a3 or a2
/c unless

they are such that after integration they rise in importance in the manner explained
in Art. 344. We thus get

+ 2*0 + ii-d = -
\ yua

2 2 e
~ ~Kt

(1 + cos 2mt) +^ n 2a*e
&quot; ***

(3 sin mt - sin 3m*)

-
1 /xa

2
/ce

~ 2Kt
(
- K + K cos 2mt + 2m sin 2mt),

where all the terms on the right-hand side after the first are of the third order, and

are to be rejected unless they rise in importance. To solve this, let us first consider

the general case

B + 2K6 + n26 = e~ pict
. (A sin rmt + B cos rmt).

Put 0=e~ pllt
(L sin rmt +H cos rmt). Substituting we get

L {(p- l)V +w2
(l -r2

)} + 2 (p
-

1) KrmM=A
M{(p- I)

2*2 + m2
(1

- r2
) }

- 2 (p
-

1) urmL --=B

Now K is very small
;

if then r be not equal to unity, we have L = ^
-

.m2
(1 -r2

)
Tl _ T&amp;gt;

A

-nearly; but if r=l, we have L= --r
,
M= - nearly.- --^^-- -

m2
(l-r

2
)

The case of p = 1 does not occur in our problem. It appears that those terms only
in the differential equation which have r = l give rise to terms in the value of x

which have the small quantity K in the denominator. Hence in the differential

equation the only term of the third order which should be retained is the first.

We thus find, putting successively r=0, r= 2, r=l,

2 o

This equation determines the motion only during any one swing of the pendu
lum

;
when the pendulum turns to go back /* changes sign. Let us suppose the

pendulum to be moving from left to right, and let us find the lengths of the arcs of

descent and ascent. To do this, we must put deidt-Q. Let the equation be written

in the form e=f(t), then if we neglect all the small terms, dO/dt vanishes when
mt= |TT, say when t= -T. Put then t= -T + x where # is a small quantity, we

have

f (t)=f (-T)+f&quot;(-T)x= 0.

Now

**
(IH cos mt - K sin mt) -

^-
e

2*M - 2* + ~ cos 2m* +
-^-

sin 2i
J

+ ~- e
~ Sltt

(
- m sin mt - 3* cos mt).

A sufficiently near approximation to the value of
/&quot; (t) may be found by

differentiating the first term of f (t). We thus find m?x= - K -$pent-

152
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the second of these terms being smaller than the other two might be neglected.

We also find as the arc of descent

e=f(-T) +f (

-
T) x= -

{ae*
T+ $na?e

2lcT - mx
(i&amp;lt;ae

KT+ ^nza?ec*TlKm)}.

To find the arc of ascent we put t=T+ y. This gives m2y= - K - ^nV/K and

the arc of ascent is

In these expressions for the arcs of descent and ascent the terms containing x

and y are very small, and assuming K not to be extremely small, these terms will be

neglected *.

Now a is different for every swing of the pendulum, we must therefore eliminate

a. Let un and un+1 be two successive arcs of descent and ascent, and let \= e~*T,

so that X is a little less than unity. Then we have

1 2 1 2

=X + 3/^i +1 = aX-- Ma
2
X-;

eliminating a we have very nearly ----
\-
- =

(
--1--),un+l c X2

\un cj
3 1-X2 SKIT . , _ 7T

where c= ^- , ^ = .-- nearly, and T= -
.

2fj. 1 + X2
4/j.m 2m

The successive arcs, are, therefore, such that l/wn +l/c is the general term of a

geometrical series whose ratio is e*nlm
. The ratio of any arc un to the following arc

un+l is

lohich continually decreases with the arc. In any series of oscillations the ratio is

at first greater and afterwards less than its mean value. This result is found to

agree with experiment.

To find the time of oscillation. Let tlt t.2 be the times at which the pendulum is

at the extreme left and right of its arc of oscillation. Then

The time of oscillation from one extreme position to the other is t2
- ^ which is

equal to ir/m. This result is independent of the arc, so that the time of oscillation

remains constant throughout the motion. The time is however not exactly the

same as in vacuo, but is a little longer ;
the difference depending on the square of

the small quantity K. See Art. 321.

Ex. 2. A rigid body is suspended by two equal and parallel threads attached

to it at two points symmetrically situated with respect to a principal axis through

the centre of gravity which is vertical, and being turned round that axis through a

small angle is left to perform small finite oscillations. Investigate the reduction to

infinitely small oscillations. [Smith s Prize.]

*
If these terms are not neglected the equation connecting the successive arcs of

, 1 X2 2
.,

n*x 1-X4
XT , ZKTT

descent and ascent becomes = - -
it(l + X2

) + . Nowl-X4=
un 7Wi 3 32Km X m

nearly, so that this additional term is very small compared with that retained.



CHAPTER VIII.

DETERMINATION OF THE CONSTANTS OF INTEGRATION IN TERMS
OF THE INITIAL CONDITIONS.

Method of Isolation.

365. OUR object in this chapter may be very briefly stated.

Given any number of simultaneous differential equations with

constant coefficients, it is known that the dependent variables

x
) y, z, &c. can be expressed in terms of the independent variable t,

by means of a series of exponentials real or imaginary. Let one
of these exponentials be x = Memt

,
then M is a function of the

initial values of the variables as, y, &c. and of their differential

coefficients. It is here proposed to exhibit this function. Thus
without solving the equations, any one term of the solution, if its

exponent be known, can be separated from the others and have its

value written down, without finding those other terms.

When the differential equations are not of a high order we
can generally solve the determinantal equation and find all the

possible values of ra. In such a case it is merely a question of

algebra to find the constants in terms of the initial values of the

variables. We may, however, effect this more briefly and simply
by using the rule here given. Sometimes it is impossible to

solve the determinantal equation. We may find one or more

roots, but the rest remain unknown. In such a case we could

not proceed by the processes of common algebra, for the equations
cannot be written down. Our object is to find the constants which

accompany these known terms without the knowledge of the re

maining ones.

This method is very simple and easy of application when the

exponential to be separated from the others is connected with a

solitary root of the fundamental determinant. But it may be
used even though the root is repeated several times. The com

plication arises from the fact that the exponential is then accom

panied by as many constants as there are equal roots. Each of

these requires a separate operation to find its value.



230 DETERMINATION OF THE CONSTANTS. [CHAP. VIII.

The method is generally applicable whatever be the order of

the equations, but there is considerable simplification when the

order is not higher than the second. This is of course the most

interesting case, as the equations may then be such as occur in

dynamics.
In some cases the rule can be put into another form, which

may possibly be thought simpler. In these cases it takes the

form of the Method of Multipliers. When the number of de

pendent variables is infinite, we have an example in Fourier s rule

to expand any function in a series of sines or cosines.

366. The Determinant of Isolation. Resuming the no

tation of Art. 262, we let the n equations to find x, y, z, &c. be

written in the form

/n (8) x +/ia (8) y -f/13 (8) z + . . .
= 01

where 8 as before stands for d/dt. In dynamical applications
these functions of 8 are all of the second degree, but at present we
make no restriction of that kind.

To solve these we proceed as explained in Art. 262 and
form the determinant

A (8)- /n (8), /12 (8), /13 (8)..

If we equate this determinant to zero, we have an equation to

find 8. Let its roots be m, m.2) &c. omitting the suffix of the first

for the sake of brevity. Then we know that

It is our present object to find any one of these coefficients, say M,
without finding any of the others.

To effect this we deduce from the determinant A (8) another

determinant, which we write

U(m) = 8-ra ^(m) &c.

We form this determinant by the following rule. Erase any
column of the determinant A (8), say the first column. To replace
it we divide the first equation by 8 m, and rejecting the remainder

place the quotient in the first row of the erased column. We divide

the second equation by 8 m and place the quotient in the second

row, and so on. Finally we put B = w in the remaining columns.
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If we erase the second column of the determinant A (8) or

A (m) we obtain a slightly different determinant, which we may
write n 2 (m), the suffix indicating which column of A (ra) we erase.

The determinant II (m) is evidently a function of x
t y, &c.,

So;, %, &c., fe, 82

y, &c., up to one less than the highest power 8

in the given differential equations. For all these we write their

given initial values. We then have

M- n
~

where A (m) means as usual the differential coefficient of A (m)
with regard to m. In the same way if Nemt be the corresponding

, r II 2 (m)
term in the value of y, we have N =

,^
,
and so on.

367. Examples. Before proceeding to the demonstration of this theorem let

us consider some examples.

Ex. 1. Taking the equations

we see that the fundamental determinant

A(m)=|m
2 -4m, -(m-1) =m*-5m3 +5i a + 5m-6.

|m + 6, m?-m

Equating this to zero, we find that one value of m is m= - 1. Let us find the

coefficient of e~* in the value of x.

Dividing the equations by 5 + 1 and rejecting the remainders, we form at once

H(m)= (d-5)x-y, 21,
the second determinant, viz.

v
. _

a

the second column being obtained by putting m= 1 in the second column of A (m).

Expanding, and noticing that A (m) = - 24 when m= -
1, we find

- 12M= dx - dy
- Qx + y,

where M is the required coefficient. Here x, y, dx, dy are supposed to have their

known initial values.

We may show in the same way that there is a term M e* in the value of x

where - 3M = 25z + dy-Bx-y.

Ex. 2. Let us take another example, in which the differential coefficients rise

to a higher order, but let us still restrict ourselves to two dependent variables to

save space. Taking the equations

(

we see by inspection that the determinantal equation is satisfied by w=l. Thus

x= Me* is a part of the solution. Let it be required to find M when the initial

values of dx, d2x, dy, d2
i/, d*y are all zero, and the initial values of x and y unity.

Constructing the function II by dividing each equation by 5-1, and putting 5 =

, , ll(m) =as we proceed, we have
,
4

4

But, differentiating the determinant without expanding it, and putting m=l, we

have A (m) = 16. Hence, putting x and y each equal to unity, we immediately find
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368. We now proceed to the proof of the rule.

Let p be some quantity which we shall write for m in the

definition of the determinant IT (m) in order to call attention to

the fact that p is not necessarily a root of A (S)
= 0.

Taking the general expression for the determinant II (p) given
in Art. 366, we may resolve it into the difference of two determi

nants, the first rows of each of which may be written as follows.

n &c -

Consider the first determinant, the first column is occupied by the

functions which form the differential equations. Hence this deter

minant vanishes whenever x, y, &c. have values which satisfy the

differential equations.
Consider the second determinant, it may be made into the

sum of as many determinants as there are terms in the leading
constituent. All these determinants have two columns the same

except the first determinant. This first determinant is clearly
A ( p) x. It immediately follows that

Solving this linear differential equation in the usual way, we have

n(p)+A(p)4**fy-#*dt**Ce* ............ (1).

Here p is any quantity at our disposal and x, y, &c. have any
values which satisfy the differential equations

To find the value of the constant (7, we put t = 0. The second
term on the left-hand side is then zero because the limits coincide.

It follows that C is the value of H
( p) when we write for x, y, &c.,

&c, ?/,
&c. their initial values.

Since p is arbitrary we may differentiate the equation partially
with respect to p. Differentiating and putting p = m, where m is

a solitary root of the equation A ( p) = 0, we find

+ A (m) e&quot; &amp;lt;r

&amp;lt; adt = Cie* + f*.

Let us now substitute x = Memt + M2e
m* + &c. with the corre

sponding values of y, z
y &c. in the left-hand side of this equation

and let us search for terms of the form te
mt

. The operator
dH (m)/drn is a linear function of x, y, &c., &e, &c., and can

clearly give rise to no term of the required form. The re

maining portion of the left-hand side gives only the single term
A (m) Mtemt of the required form. Equating this to the corre

sponding term on the right-hand side we have A x

(m) M = C. Since
C is the initial value of H

( p), this equation is exactly equivalent
to that given in Art. 366.
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369. On Repeated Roots. When the root p =m is a repeated root of the equa

tion A (p)
= 0, the demonstration just given no longer applies. Since p is arbitrary

we may differentiate the equation (1) as often as we please, and after each differen

tiation we may write p m. Since A(w) = 0, A (m) &c. the successive left-hand

sides reduce to II (m), dH (m)ldm, &c. On the successive right-hand sides we have

only terms which contain the exponential emt .

It follows that if A (p)-0 have a roots each equal to m, the operators

_. . dH(m) dzn(m) d
a~ ln (m)

11 (wi),
- _

, -j

-

) ......
--

,dm dm2

dm

all produce zero ivhen we substitute for x, y, &c. any solutions of the differential

equations which do not contain the exponential emt .

Thus it appears that if we calculate the results of these operations by substitu-

ing the particular parts of the values of x, y, &c. which depend on the root m of

the equation A (5)
= 0, the results will be general, i.e., will be the same as if we had

substituted the complete values of x, y, &c.

Without using any further rule, therefore, we may find the a constants which

depend on the repeated root^ =w by substituting in these a operators the particular

terms in x, y, &c. which contain the exponential emt . Thus we obtain a expressions

for the operators which contain the a constants. At the same time the values

of the operators themselves may be found by giving the variables x, y, &c. their

initial values.

This, however, requires that we should use all the co-ordinates, but if we wish to

find the values of the constants which occur in one co-ordinate only, we may use

the results of the following theorem.

370. It is required to find in terms of the initial conditions the values of the

constants which enter into the expression for any one of the co-ordinates when the

fundamental determinant A (p) has a roots each equal to m.

In this case the value of x contains powers of t, but how many will depend

on whether the minors of the determinant A (6) are zero or not. Since, however

the highest power of t cannot exceed a - 1 we may take as the general value of x

+M1t+... + -

,-

a
,J

ta~ l
\ emt + 2Nt l

e&amp;lt;*,

L(a-L) /

where the terms included in the 2 stand for those portions of the value of x which

do not depend on the root m and L (a
-

1)
= 1 .2 . 3...(a-l). There are similar

expressions for y, z, &c. also containing powers of t not higher than the (a-l)
th

,

but it will be unnecessary to write these down.

We now proceed to differentiate equation (1) of Art. 368 r times with regard

to_p, and after substitution for
,-r, ?/, &c., we shall search for the terms containing

t
Ke* where r and K are any integers we may find convenient to use. The rth differ

ential coefficient is clearly

where P= e^tf
t

(&amp;gt;

e-Pt xdt.

We notice that the first of the two terms on the left-hand side is a linear

function of x, y, &c. and their differential coefficients with regard to t. Hence no

term of the form searched for can enter unless with powers of t less than a. If

then we restrict ourselves to values of K greater than a -
1, we may pay no further

attention to this term.
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This second term on the left-hand side of (2) may by Leibnitz s theorem be

writ,

Iii this series all the differential coefficients of A (p) below the ath have been omitted

because the equation A (p)
= has been supposed to have a roots each equal to m.

If we substitute in the expression for P any such term as Ntfe** we find after

integration only one term which is free from the exponential e^, and this one term

is of the form He?*. Hence d*Pldp
s contains no power of t higher than the s

th
.

In this series therefore, when we put p =m and search for the terms of the

form t
K
e mt ,

if we restrict ourselves to values of K greater than r - a, we may pay no

further attention to such terms as Ntfe *.

We have next to find the value of ds
Pjdp

s when we substitute for x any term of

KL .

the form -
. t*

L
emt . Now whatever x may be we have

where Ls = l . 2 . B...S as usual. Substituting for x and writing p = m, we may
effect the integrations represented by 5~ s without difficulty. The exponential

disappears and we find at once = -. M ,t
K+s

emt .

dp* L(K + S)
*-l

No correction is necessary to the integration since this vanishes with t.

Supposing then K to be greater than both a - 1 and r -a we find for the coeffi

cient of t* emt on the left-hand side of the equation (2)

_ .

On the right-hand side we find the coefficient of t
K
emt to be .

--r .
-

LKL(r- K
) dmr-&amp;lt;

Equating these two we have

Lr -l L(r-l) *-2 La -r+-l- L(r- K) dmr-*

Since the letter C stands for the initial value of II (m), it will be more conve

nient to replace it by the latter symbol, with the understanding that all the co

ordinates have their initial values.

Since K must be greater than a-1 and Ma
= 0, the only useful value of K is

/c=a. Since K must be greater than r-a, the only possible values of r are r= a,

a + 1, ... 2a - 1. Writing these in succession for r, we obtain

a+1 A* dH(m
(a + T)

M -l + La
M -*

=
-dm

a+1 a^
--2 + -3~i72 -^JT

&c. = &c.

7; (aTl) sjj-jj -51=-
We have here just the right number of equations to find the a arbitrary con-
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stants which occur in the value of x without requiring the corresponding values of

the other co-ordinates.

If all the first minors of the determinant A () have
/3

roots equal to m, the first

operators on the right-hand side vanish whatever x, y, &c. may be. In this case

therefore the coefficients Ma _^...Ma_^ are all zero. Thus the expression for x (as

already explained in Art. 272) loses /3 of its highest powers of t.

In the same way we may find the constants which occur in y by using the

operator called II2 in Art. 366 instead of IT.

37 I . Another form of the determinant. There is another

form in which the operator n (m) can be written and which is

particularly useful when the differential equations are of the

second order. Returning to the proof given in Art. 368, we see

that the determinant II (p) may be written as the difference

between two determinants, the second of which is zero when
A ( p) = 0. Looking at the first determinant, we may divide all

the constituents of the first column by any power of 8 we please,

provided we finally multiply the determinant by the same power
of B. But these constituents are the functions which form the

differential equations. We may therefore modify the rule given
in Art. 366 as follows. First divide the equations by any power of
8 we please. Then form IT (m) from these modified equations by
the rule already given in Art. 366 and finally multiply the constitu

ents of the first column by the same power of 8. If this modified

operator be called IT (m), we see that II (m) and IT (m) differ by
some multiple of A (m). If A (S)

= have a roots each equal to m,
it follows that all the differential coefficients of 11 (m) and IT (m)

up to the (a l)th are equal each to each.

372. Thus let the equations be

+ C13) y = 0)

+ C*)y = 0)

taking only two variables to shorten the results. We divide each

equation by S

the remainder

n (m) =
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87, E,X.

The fundamental determinant is

A (m) = I m2 - 3i + 2 w-1 = (m- l)
2
(m-3)

2

-(m-1) w2 -5m+ 4

The equation A (w) = has therefore two roots each equal to 2 and the corresponding

terms in the value of x will be x = (MQ + M^) e9t .

It is required to find M and M in terms of the initial values of the co-ordinates.

We form the operator II (w) by the rule given in Art. 372, copying the columns

from the equations given above

-
,
m2 -5ro + 4

This gives when m= 3, II (m)= -2{dx + Sy-x-y}, = dx-8y -x + y.

Also when m= 3 we have A (m)= 0, A (m) = 0, A&quot; (m)= 8, A
&quot;

(w)= 24. Hence by the

rule given ^,370

where the quantities on the right-hand side have their initial values.

E..2. Let the equations be

Find the constants in x=(M +

The result is 2J/2= 8x + dy + x + y, 2^ +M2
= 2dx-x + y, 2M +Ml

-dx + x.

374. The following examples illustrate the application of the preceding theorems

when the differential equation has but one dependent variable.

Ex. 1. The differential equation (5
s - 252 - 5 + 2)a; = is satisfied by x =Met

.

If the initial values of
, 8x, d-x are a, a

, a&quot;, prove that 21/&quot;=2a + a /

-a&quot;.

Ex. 2. Let the differential equation be/()o;= and let/ (5) contain only even

powers of 5. If the terms of the solution depending on the pair of solitary roots

m= *J
- 1 of/ (m) = be x=F cos kt + Gsinkt, prove that

Ff (m)_ f(d) ,&/&amp;gt;*)_

2 m~~d2 + fc
2 2 7/i ~52+F A;

Ex. 3. Let An5
nx + ... +A 1

dx + A x=:Q be a differential equation. Kepresenting
this by/(5)o:=:0, let m be a real solitary root of /(5) = 0, and let Memt be the corre

sponding term in the value of x. Prove that a superior limit to the value of

Mf (m) is the sum of those terms in the series A^^xi- ... +A 2Sx + A l
which have

the same sign as/ (m). Here of course x, 5x, &c. are all supposed to have their

known initial values.

375. The following examples indicate another method of investigating the

theorems of this section.

Ex. 1. Let the first minors of the determinant A (5) be represented by the

letter I, the suffix indicating the constituent of which it is the minor. If / be any
root of A (5)

= we know that a solution of the differential equations is

where G is an arbitrary constant. Let us however suppose that q is unrestricted
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in value and is not necessarily a root of A(5) = 0. Prove that the result of the

substitution of these values of x, ?/, &c. in II (p) is

where p also is unrestricted in value.

This result may be proved by resolving IT (p) into the difference between two

determinants as in Art. 368, and then substituting in each.

Ex. 2. Deduce from the last example that if p and q be unequal solitary roots

of A (d)
= 0, then II (v)

= 0. But if p and q be the same solitary root then

Ex. 3. If the equation A(3)=0 have roots each equal to q, the form of the

solution is indicated by x = G In (q) &amp;lt;& + . . . + G^_^ (djdqf~
l
{Iu (q) } ,

with similar expressions for the other co-ordinates. If the equation A(5)=0 have

also a roots each equal to p, prove that the result of the substitution of these

values of the co-ordinates in any one of the determinants 11(2?), (dldp)H(p)...

(dldp)
a~ ln (p) is zero if p and q be unequal. If p and q be equal, we obtain the

results given in Art. 366.

This may be proved by using Leibnitz s theorem to differentiate the equation of

Ex. 1, i times with regard to 4?, and j times with regard to q, where i is less than a

and j than /3.

Ex. 4. When all the first minors of A (8) vanish for any particular value of 5,

the solution depends on a double type , 77 so that x=JK (S), y =JK (
s
) V &c - where

J
12 (8) is the second minor of A (5) formed by omitting the first two rows and

columns as in Art. 273. Prove that if we write ^=Ge^*, T)
= He t

,
where G and

H are two arbitrary constants which run through all the values of the other

co-ordinates, then

i(l&amp;gt;). Jiifa)

Herep and q are unrestricted in value and do not necessarily satisfy A (8)=0.

Ex. 5. Deduce from the result of Ex. 4, that if A (5) have two roots each equal

to r/i one of which makes all the first minors zero, so that x= Memt
, y= Nemt are

parts of the solution where M, N are independent constants, then

* A
&quot;W&quot;=S-

*A &quot;&amp;lt;&quot;&amp;gt;

W=^
where II2 is obtained from A (m) by erasing the second column instead of the first

(see Art. 366). Here the co-ordinates on the right-hand side are supposed to have

their initial values.

Ex. 6. Let the equation A(5)=0 have a roots each equal to m, and let all the

first minors have (3 roots also equal to m. Let us form from II (m) a new determi

nant IT (m) by omitting any row we please and any column except the first. Prove

that if we substitute in the determinants (dldm)U (m) t
&c.

(d/dm)^&quot;

1
!! (TO) any

values of the co-ordinates which satisfy the differential equations and which do not

involve the exponential e w&amp;lt;

,
the results are all zero.

Method of Multipliers.

376. In the last section we showed how the constant belonging
to any one oscillation could be determined when the differential

equations were of any order. We now propose to consider what
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simplifications can be made in the rule when the differential

equations are of the second order and of that simpler kind which

usually occurs in dynamics.

Referring to Art. 310, we find the equations of the second

order written at length. But forms so general as these seldom

make their appearance. The two most important problems which
occur in dynamics are those in which we have

(1) Oscillations about a position of equilibrium, whether with

forces of resistance or not.

(2) Oscillations about a state of steady motion.

In the first of these cases the terms depending on D, E, F are

absent from the equations so that the fundamental determinant is

therefore symmetrical. In the second the terms depending on
D and F are absent, but those depending on the centrifugal forces

E are present. In this case the forces of resistance B are generally
absent.

377. We may therefore simplify these equations of motion
and write them in the form

Cu) X + y + &c. = (

+ &c. = 0,

&c. +&c.

The solution of these equations has been already expressed in

Arts. 313 and 317 in the following forms. If ml} m2 ,
&c. be

real roots of the fundamental determinant, we have

x = x&mt -f #06** +
&C.J dxjdt = a^e 1* + x2

myt +
&c.]

y= yjp* + y#& + &c .
I

dyfdt
=

ft ePS +y^ + &c. I

&c. = &c.
j &c. = &c. I

Here xl} yl} zlt &c., /, y/, &c. contain as a common factor one
constant of integration, x2 ,

y&amp;gt;
2 , &c., x2 , y% , &c., another constant and

so on. These are the constants called Zl5 L2 &c., in Arts. 261, 268
&c. Also a?/ = xlml , y^ = y1m1 and so on.

378. If there be a pair of imaginary roots in the fundamental
determinant of the form m1

= r-\-p^/-l )
m2
= r-p^ l, the

preceding solution takes the form

a; = X^rt cos pt + X2e
rt sin pt + xze

m^ + &cc.}

y = Yj&amp;gt;n Cos pt + Y2e
rt sin pt + yse

m^ + &c. i

&c. - &c.
j

dxjdt = X^ert

cospt +X2 e
rt
smpt + x^e

m^ + &c.)
dy/dt = Y^ert

cospt + Y2 e
rt sin pt + y^t

m^ + &c. I

&c. = &c.
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where X
l
=xl + x.1 ,

X.2 = (X #2) V 1 and Xi^rX^ + pXt
X 2 pXl + rX&amp;gt;2 . There are of course similar expressions for

the F s, &c. Here we notice that all the coefficients in the first

two columns are linear functions of two constants of integration,
the coefficients of the third column are multiples of a third

constant and so on.

379. If we examine the form of the solution given in the

last article we see that the columns are arranged according to

the roots of the fundamental determinant. Each column contains

one or two arbitrary constants which have to be determined from

the initial values of as, y, &c. If the whole solution is known
we may therefore find the constants by common algebra, though
if there are many unknown constants the process may be very

long. But if the whole solution is not known the processes of

common algebra fail.

380. Thus suppose we have found only one root of the funda

mental determinant, then we know the terms which occur in one

column only. The other columns depend on the other roots

which have not yet been investigated. We may yet wish to find

the value of the constant which occurs in this column in terms of

the initial values of the variables. We should then be able to

find the magnitude of any one oscillation without finding the others.

To effect this we use the method of multipliers, our object is to

find some multipliers for the equations which express the values

of x, y, &c., dx/dt, dy/dt, &c. such that on adding together the

products all the columns will disappear except the one we wish

to retain. Supposing this done we have one equation containing
the constant to be found and the initial values of x, y, &c. This

equation will be sufficient to determine the value of the constant.

There is this point of difference between the method of isolation and that of

multipliers. In the former we find the constant connected with any one term in

any column without caring for the other terms in that or any other column. In

the latter we require to use all the terms in that column to find the one constant.

In the former method we isolate any one term, in the latter we isolate any one

column.

381. The proper multipliers may be deduced from the determinant II (m).

Taking the form given in Art. 371 as the best adapted for equations of the second

order, we have by expansion

H (m) = Px + Qy + &c. + P dx + Q Sy + &c.,

where P, Q, Ac. stand for the coefficients in the expanded determinant. Now it has

been proved in Art. 369 that II (i) is zero when we write for x, y, &c., the terms of

any column of the solution in Art. 377 depending on a root other than m. It

follows at once that the proper multipliers to separate the column depending on the

root m from the other columns are P, Q, &c., P , Q ,
&c.

These multipliers are really determinants, and when there are many co-ordinates

it may be very troublesome to calculate their values. The coefficients of the
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column which is to be separated from the others are also determinants. Both these

sets of determinants are connected with the minors of the fundamental determi

nant ; the former with the minors of some column, the latter with the minors of

some row. When the differential equations are of the simpler kind which occurs

in dynamics (Art. 377), the fundamental determinant has a certain symmetry
about the leading diagonal. In this case the two sets of determinants are con

nected together so that the required multipliers can be expressed as simple functions

of the coefficients of the column we wish to separate.

Instead of making the transformation from one set of determinants to the other,

it will be simpler to adopt an independent mode of proof. The required multipliers

follow at once from the two equations which have been made the foundation of the

theorems in the first section of Chap. vn. (see Art. 316). As the equations now
under consideration are simpler than those treated of in the section just referred

to, the proofs of these two theorems will be briefly summed up in the next article.

The definitions of the functions A, B, C (Art. 311) will also be adapted to the

special use which we now intend to make of them.

382. If we substitute the terms in the first column of the

expressions for a?, yy
&c. given in Art. 377 in the differential

equations we obtain a set of equations which differs from the

differential equations only in having mj written for 8 and xlt

2/j,
&c. for x, y, &c. First multiply these respectively by xlt ylt &c.

and add the results together, the sum may be briefly written,

A (#!#!) mf + B (#i#i) mj -4 (7 (#i#i)
= 0-

Next, multiply these respectively by x
2&amp;gt; y2) &c. and add the results

together. The sum may be briefly written

A (a^a) m* + B (a^Ca) rax + C (x&J) = E (^y2) m^
The functional symbols A, B, C when not followed by the

subject of the functions all represent functions of the co-ordinates

x, y, z, &c. which have been defined in Art. 311. Thus
A =

When the differential equations are given the following rule
to find A, B, C will be useful : Multiply the equations by x,

y, z, &amp;lt;&c. and add the products, treating the operator B as an al

gebraic factor. The halves of the coefficients of the powers of 8 are
the functions A, B, C.

When we wish to substitute for the variables a?, yy z, &c. any
quantities we affix as usual those quantities to the functional

symbol and write

A
with similar expressions for B (a^) and G

^

We then generalize these expressions and for the sake of brevity
write

A
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383. PROP. A. To determine the multipliers when the funda
mental determinant is symmetrical and the forces of resistance not

absent.

Let mlm2 be any two roots of this determinant. Then, by
Art. (382), since the terms depending on E are absent,

A (r r}m*4-R(x r\m + C(KX\ (f\A- \^\^) &quot;-i T &amp;gt; v^M s/ &quot;*i T -* V^i^s/ Vf /-f \

A / \ 2 I 7? / \ I /&quot;Y / \ /&quot;i I

Eliminating J5 and (7 in turn from these equations, we have

^
(2 )&amp;gt;

except when 7^ and m2 are the same root.

Either of these equations may be used to find the required

multipliers. We thus find two sets of multipliers. We shall

choose the first equation, as giving the simpler results.

If there be a pair of imaginary roots in the fundamental de

terminant, say 7?ij
= r + p J 1, m_&amp;gt;

= r p ^ 1, and if m3 be any
other root, the first of equations (2) gives

I

A (x^ (r+pJ-l)ms
= G (a?^)] .

A (#2#3) (r -p V - 1) m3
= C(av0s)J

Remembering that A and are linear functions, we see that

these give by addition and subtraction

A (X^s) ms
=

where Xl} X\ ;
JT2 ,

X2 have the meaning given to them in Art. 378.

The function A (a?^) may obviously be deduced from the

potential A (x^ by the process

where of course A (a^) (Art. 382) represents the value of A (sex},

or A when a^, y^ &c. have been written for x, y, &c. The functions

5 and C may be treated in a similar manner.

We may now immediately deduce the proper multipliers.

Taking the solutions written down in Art. 377, let us multiply
the expressions for x, y, &c. by dCfdx, dCjdy, &c., after writing
#1,

2/i&amp;gt;

&C. in these multipliers for x, y, &c.
;
also let us multiply

the expressions for dxjdt, &c. by dAjdx, &c., after writing a?/,

2//, &c., for a?, y, &c., in these multipliers. Finally, let us add
the products ; then, by virtue of the first of equations (2), the sum
of every column except the first is zero.

If we have imaginary roots in the fundamental determinant,
we take the solution given in Art. 378. Treating it in the same

way, we see by equations (4) that all the columns disappear except

R. D. II. 16
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the two first. Kepeating the process for the second column, we

again find that all the columns except the two first disappear.

384. The rule may be summed up as follows:

Let the fundamental determinant be symmetrical, and the

forces of resistance not absent. Let it be required to separate

by the method of multipliers any given column from the others.

The proper multipliers for the co-ordinates are the values of dC/dx,

dC/dy, &c., after we have substituted for x, y, &amp;lt;&c.,
in these mul

tipliers the corresponding coefficients in the column we wish to

preserve. The proper multipliers for the velocities are the values of

dAjdx, dA/dy, &c., after we have substituted for x
t y, &c. in

these multipliers the corresponding coefficients in the column of
velocities we wish to preserve. Finally, we add the products

together.

In this way we can find an equation connecting the initial

values of the co-ordinates with the constant which accompanies

any one column. Since these initial values are arbitrary, neither

side of this equation can wholly vanish unless all the multipliers
themselves vanish. Hence the coefficient of the exponential on

the right-hand side cannot be zero, except in this one case.

The multipliers cannot all vanish unless the quadric functions

C and A also vanish for some finite values of the co-ordinates. In

dynamics the function A is such a function of the co-ordinates as

the vis viva is of the velocities. It is therefore impossible that A
could vanish for any finite values of the co-ordinates.

385. Example. Let us consider the equations

i (*-!)*+(*-*+*) f
It is easily seen that the determinant of the solution reduces to ?/i

4
-j^r= 0.

We therefore have, if m now stand for | */o,

x- x
l
emt + x.2 e~

mt + X3 cos mt + X sin mt\

y = yi emt + y2 e~
mt + F3 cos mt + F4 sin mt]

dxjdt= mxl
e* - mx.

2
e~mt +mX4 cos mt

- mX3 sin mt\

dyjdt= my l
emt - my2 e~

mt + wF4 cos mt - mY3 sin mt}

Also multiplying the equations by x and y, and taking the halves of the coefficients

of the powers of d, we have

Suppose we wish to find the coefficients x
lt yl

in terms of the initial conditions.

Following the rule, we multiply x and y by the differential coefficients of C after we
have written x

lt y 1
for x, y in the multipliers. We multiply the velocities by minus

the differential coefficients of A, writing in the multipliers mxl
and my 1

for x and y.

Finally, we add the results. Thus we have

ti

w+ifl I
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Putting t= 0, and giving x, y and their velpcities their known initial values, we

have one equation to find the constants x
l , ylm Their ratio,

11 -. m2 +m + 1

5 TF=ir
m=^

being known from the first equation, we easily find both x
l
and yr

If we wish to find the coefficients of the trigonometrical terms, we use two sets

of multipliers, because the two imaginary exponentials have become mixed up to

gether in the trigonometrical term
;
or we may replace them by their imaginary

exponentials, and find the coefficients of either by one set of multipliers. Taking

the first alternative, one set of multipliers will be respectively

The other set will be Z4 -|74 , -p&quot;4+ir4 , +mX3 , +mY3 .

386. PROP. B. To determine the multipliers when the funda
mental determinant is symmetrical and the forces of resistance

are absent.

This proposition is really included in the last. But as the

absence of the function B introduces great simplification, it is

worth while to consider this case separately.

Since the forces of resistance are absent, only even powers
of 8 enter into the equations. Hence for every root of the funda

mental determinant there is another equal in magnitude but con

trary in sign. If A and C are one-signed functions, and have the

same sign, these roots are of the form p\/l. Choosing this as

the type, we may write the equations of Art. 378 in the form

x XL cos pt + Xz sin pt + ayi** -4- ... &c. = &c.,

dx/dt = XS cos pt +Xz
. sin pt + x^e

3* + . . . &c. = &c.

Here, unless there are equal roots, we haveXV Y V
2 -* 2 o 1 1 V TT

*;
=
rr &c -

=^r-rr &c- =jff

because the ratios of the coefficients of any exponential are ex

pressed by the minors of the fundamental determinant, and these,

containing only even powers of m, are the same when the exponents
are equal in magnitude but contrary in sign.

Here H will stand for the constant in the second column on
the right-hand side of the equations, the constant in the first

column being included as a factor in Xl} Y1} &c., X^t
Y2 ,

&c.

Since the function B is zero, the equations (2) of Art. 383
reduce to A (av&j)

= 0, C(x^ =
0,

except when m1 m2 . For a pair of imaginary roots such as

mt
= r-\- p \J 1, ra2 r p *J 1, combined with a third root w3 ,

we have (exactly as in that article)

387. We may use either the function A or the function C to

162
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supply the proper multipliers. We thus find two sets of multipliers.
Which we should choose depends on the forms of A. and C.

If either of these functions contain only the squares of the

co-ordinates, i.e. if it be of the form

a#2
4- by

2 + cz2 + . . .
,

it is clear that its differential coefficients will be much simpler
than if the terms containing the products of the co-ordinates

were also present. The multipliers are indicated by these dif

ferential coefficients, and will therefore also be simpler. That
function is therefore to be chosen which has the fewest terms

containing the products of the co-ordinates.

Choosing the function A, we have the following rule to find

the multipliers. Let it be required to separate from the others

any particular oscillation say the two columns containing the

phase pt. The proper multipliers for the co-ordinates x, y, &c. are

the values of -y- ,
-, , &c., after we have substituted for x, y, &c.

in these multipliers the coefficients of either of the columns contain

ing the phase pt. Adding these products, we have one equation

from which all the oscillations except the one to be preserved have

disappeared. The same multipliers may now be used for the velo

cities, and thus by a second addition we obtain another equation of
the same kind.

The two equations thus obtained may be written thus :

cospt + Hsmpt},

&amp;gt; i
_
^at a^L i

Putting = either before or after using the multipliers, we
have two equations to determine H and the other constant in

cluded in X1 ,
Yl} &c.

388. A rule to find the functions A and C when the differential

equations are known has already been given in Art. 382. But
in using Lagrange s method it is sometimes more convenient to

refer to the expression for the vis viva and the force function

from which these equations have been derived. Referring to

Vol. i. we see that the vis viva is

2T= Aux
2 + 2A l2x v + ...

Thus the function A is derived from T by merely dropping the

accents from the co-ordinates. The function G is of course the

same as the function U U defined in Vol. I.

389. PROP. C. To determine the multipliers when the forces of
resistance are absent but the determinant is skewed by the centrifugal

forces,
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Referring to the equations of motion in Art. 377, we form the

determinant which we have called the fundamental determinant.

It is unnecessary to write this determinant, as its form is evident

from the merest inspection of the equations. It is also given at

length in Art. 112.

If in this determinant we write S for 8, the rows of the new
determinant are the same as the columns of the old, so that the

determinant is unaltered. When expanded, the determinant will

contain only even powers of S, and therefore its roots enter in

pairs. We shall therefore take as our standard form of solution,

instead of that in Art. 378, the expressions

x =Xl cospt + Xz sinpt + ayj

&c. = &c.

dxjdt =X/cospt+X2 sin pt +

dy/dt
=

&c. - &c.

Here the first two columns represent the most common form
of a principal oscillation, and the third column represents any
other form. When the centrifugal forces (i.e. the terms depending
on E) are present, the minors of the fundamental determinant do
not contain only even powers of B. It follows that the coefficients

in the second column do not necessarily bear a uniform ratio to

those in the first column.

Since the function B is absent, we have by Art. 382, the equa

tions A (#!#) m1 + G (#!#.,)
= E (##)

7 ............ (3).

A (X#2) m.2 + G (#!#2)
= E (#i2/2)

T/C 2 /

Adding these to eliminate the functional symbol E, we find

A (#i#2) wvtts + G (#id?2)
= .................. (4),

except when m^ = m z .

We notice also that, by Art. 382,

A (X#i) mj
2 + G (#i#i)

=
0]

We. might also eliminate the function A or C from the equations

(3) instead of the function E, and in each case we may deduce a
rule to find the multipliers ; but the simplest rule is found by

eliminating the function E.

The formula (4) resembles that used in Art. 383, and there

called (2), except in the sign of A. Proceeding therefore exactly
as in that article, we shall deduce the corresponding rule for the

multipliers.
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Instead of equations (3) of Art. 383, we now have (since r = 0)

A (^w3)pms V - 1 + (X^) = 0)
- A (x,xs) pm, J-l + C (x&) = Of

&quot; W
Remembering that A and G are linear functions of the letters of

any one suffix, these give by addition and subtraction

where as before Xao^-^x.^ X2=(xl x,2) \/l, X^=pX^ y
X2 =pXl .

Also writing m^ = p \/ 1, m.2 = p \f 1 in equations (5), we
find by subtraction A (X/X/) + G (X&) =

(8).

390. From these formulae we now deduce the following rule

to find the multipliers.

Let the forces of resistance be absent, and let the fundamental
determinant be skewed by the centrifugal forces only. Let it be

required to separate any principal oscillation from the others.

Selecting one of the two columns which form the oscillation, the

proper multipliers for the co-ordinates x
y y, &amp;lt;&c. are the values of

y- , -y-, &c., after we have substituted for x, y, &G. in these multi-
ax ay
pliers the corresponding coefficients in the column selected. The

proper multipliers for ike velocities are the values of --?- ,

-

,
, &c. t

after we have substituted for x, y, &c. in these multipliers the co

efficients corresponding to these velocities in the column selected.

Finally, we add all these products together. We then repeat the

process with the coefficients of the other of the two columns which

form the oscillation.

By virtue of equations (5) and (8) it will be found that in each

of these processes every column except one will disappear from the

final summation. But we may notice a curious difference between
the columns which contain real exponentials and those which con
tain trigonometrical expressions. If we operate with the coeffi

cients of one of the former introduced into the multipliers, it is

the companion column which does not disappear; but if we operate
with the coefficients of one of the latter, it is the column whose

coefficients we have used which does not disappear.

391. Example. Consider the equations
v

It is easily seen that the fundamental determinant reduces to m4 -16= 0. Hence

we have
X=X

*
COS 2t + X* sin ** + *J* + **-*\

y=Y^ cos 2t + F
2 sin 2t + y3

e-f +y^f
dx/dt = 2X2 cos 2t - 2A\ sin 2t + 2x3e

2t - 2.x4e~
2t

}

dyjdt =2Y2 cos 2t - 2 Y
l
sin 2t + 2y3e

2t -
2y4e~* \

where
&quot;3

~ v &quot;v
*\

&quot;

1
~ v v &quot; 2l

2.^= ^GT/J I
2
= ^HAJ
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Also multiplying the equations (Art. 382) by x, y, adding and taking the halves of

the coefficients of the powers of 5,

,4 =

The proper multipliers are indicated (Art. 390) by the formula

dC dO dxdA dy dA
X
dx +y ~dy

+
~dt~dx

+
dt dy

dC dC
t

dA dA
Now -j- =-^8x,

-
r

- = 2y,
-- =x, %--= .

dx dy dx dy

Having chosen the column whose coefficients are to be used in the multipliers, we
see by Art. 390 that the proper multiplier for the first equation is minus eight times

the coefficient of the column in that equation ; the proper multiplier for the second

equation is twice the coefficient in that equation ; the proper multipliers for the

third and fourth equations are the coefficients themselves in those equations.

Suppose first we wish to find #4 , y4 , then, because the fourth column con

tains a real exponential, we operate with the coefficients of the companion column.

The multipliers are therefore = - 8x
3 , ^

= 2y3 ,
-
^
= 2.r

3 ,

-^
= 2y3 .

Hence we find - 8x3x + 1y.Ay + 2x
3
~ + 2y3 -J

= 16ysy4 e~
2&amp;lt;

;

substituting for x
s in terms of ys and putting t = 0, we find

which determines y in terms of the initial values of the co-ordinates and their

initial velocities.

Suppose next we wish to find Xlt X.2 . Taking the coefficients of the first

column, the multipliers are
d
?-=-8Xlt =87,, ^= 2X

2 ,

d
/=2F2 .

dx dy dx dy
Since these columns contain trigonometrical expressions, we know that when we

operate with the coefficients of either column in the multipliers, the other column

disappears. Hence, paying no attention to any column except the first, we have

- 8Xt
x + 2 Yfl + 2X.2 dx/dt + 2F2 dyjdt = 16 (Xf + A 2

2
)
cos 2t

;

substituting for Yl
and Y2 and putting t = 0, we find

- SX& - 2 JQXtfj + 2Xzdx/dt + 2 iJQXi dy/dt = 16 (X* + X/).

Operating in the same way with the coefficients of the second column, we have

- 8Xzx + 2Y2y- 2Xl dxjdt
- 2 Fx dyjdt = 16 (Xf + X2

2
)
sin 2t ;

substituting as before, we have

- 8X2.r + 2 vftAtf
-
2A\ dx{dt + 2 JQXZ dy/dt= 0.

These equations determine A^ and Xz in terms of the initial values of x, y, and

their differential coefficients.

392. PROP. D. To consider the effect of equal roots on the

rules already given.

When there are equal roots in the fundamental determinant,
we require only some slight modification of our rules. Referring
to the general solution exhibited in Art. 377, let us suppose, for

example, that there are three roots equal to in^ Regarding these
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as the limits of the unequal roots, mlf m^ + h, rax + k, we may write

that solution in the form

&amp;lt;
e
mi

*) + xje
1**

4-

&c. = &c.,

&c. = &c.
;

where #/ xjn^, #/ = x4m4) &c., and G, H are the two constants

in addition to the one included in aslt yl} &c.

Two questions now present themselves : (1) When we use

certain multipliers to separate a column which depends on a

solitary root such as m4 ,
will the columns which depend on other

equal roots such as m^ (and therefore contain powers of t as

factors) still disappear ?

(2) What multipliers must we use to separate the three

columns which depend on the three equal roots from the re

maining columns ?

393. Taking the first of these questions, suppose we wish

to separate the fourth column of the equations of Art. 392 from

the others. Let us use the same multipliers as if there were
no equal roots. It is obvious that, since the three first columns

disappear in the general case in which h and k have any values,

these columns must also disappear when h and k are indefinitely
small. We therefore infer that any column which depends on a

solitary root may be separated by the same rules as before.

As an example, take the rule given in Prop. A, Art. 383. To

separate the fourth column, we multiply the equations by

dC(xtX4)/d%t, &c., dA (x^x^)jdx^ &c.,

and add the products. Since the three first columns must dis

appear, we have G (avc4) A (x^x^) =-

n vC -.

The last two of these equations also follow from the first by an
evident process.

394. Taking the second question, we wish to find what
multipliers will separate the three first columns from the others.
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But these are supplied by the equations just written down.

Since m4 is any other root, and

we have merely to use the multipliers indicated by the coefficients

of a?4 , y4 ,
&c. in these equations. The rule may be enunciated as

follows :

Multiply the equations by the proper factors for the first column,

treating x^, ?/1} &amp;lt;&c., #/, y-!, &c. as the coefficients, and add the

products. We thus have one of the three required equations. Mul

tiply the equations by the proper factors for the second column as if
dxl dy-L p dxL p

~ . 777-7
7 , -r .

&amp;lt;KC., -, -i , &c. were the coefficients, ana aaa the

products. We thus obtain the second equation. Lastly, multiply
the equation by the proper factors for the third column as if
d*x d~x
7
-~

, e&c., -T~ , &amp;lt;&c.,
were the coefficients, and add the products.

We thus have, on the whole, three equations to find the three

constants which enter into the three first columns.

The proper factors just mentioned are those calculated from
the coefficients by the rules of Prop. A or Prop. C.

395. In some cases of equal roots it is known that some of

the terms with t as a factor fail to introduce themselves into the

solution. The number of constants is then made up by a greater
indeterminateness in the coefficients which accompany the ex

ponential. Regarding these equal roots as the limits of unequal
roots, as in Art. 393, it follows that we can still use the same rules

to find the multipliers. We arrange our solution in columns
with one constant in each column. Then using the proper mul

tipliers, as described above, we can separate any solitary root

at once. To determine the constants which accompany the equal
roots, we shall require as many sets of multipliers as there are

columns with that root or its companion root.

396. Example. Consider the equations x + (5
2 -

I) y + z =
= Q}
=

&amp;gt; .

= Q)

It is easily seen that the fundamental determinant reduces to (w
2 -

2)
2
(m

2
+l) = 0.

Putting a = *J2, we write the solution in the form

x= Eeat + Ge~ at
H-TTsin t + L cos t\

z=- Eeat - Feat - Ge~ at - He~ at +K sin t + L cos * )

where E, F, G, H, K, L are the six constants to be determined.

Looking at the equations to be solved, we see that the potential functions .4 and
G are given by 2C = - x~ - y-

- z2 + 2xy + 2yz + 2zx
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Following the rule indicated in Art. 387, we choose the function A to operate with,

because this function will supply the simplest multipliers. The proper multipliers

will therefore be dA/dx = x, dA]dy = y, dA/dz = z,

where we write for x, y, z the coefficients of the column under consideration. The

proper multipliers are therefore the coefficients of the columns in succession.

Suppose we wish to find K and L. The coefficients in either of these two

columns are all equal. The multipliers are therefore equal. We therefore obtain,

by adding the equations and putting t= 0,

Treating the differential coefficients in the same way (Art. 387), we have

dx + Sy + 8z = 3K.

If we wish to find the four constants E, F, G, H which are all connected with

the companion roots a, we must find four equations. According to the rule, the

multipliers are the coefficients of the several columns. We thus obtain, when t= Q,

)

-H)\
08x + Fdy -Fdz =Fa(E-G + 2F- 2H)\

This simple and obvious example sufficiently illustrates the method of proceeding

when the proper multipliers could not be otherwise found.

397. Ex. If the differential equations are such that the fundamental deter

minant is symmetrical about the leading diagonal whether the forces of resistance

are present or not, we have by Art. 262, x^I^ (ml)=y-LII12 (ml)=&c. = G, where G is

an arbitrary constant. There will be similar equations for the other roots of the

fundamental determinant. Thence show that the operator II (m) on expansion

takes the form

Gn (m) *dj33) te + &quot;(*..)
t, + 40. _ 1MW , _ _L *?

(*ifi) y _ 40.

Thence deduce the forms of the multipliers given in Prop. A, Art. 383.

Fourier s Rule.

398. Of the two important problems which occur in dynamics
(Art. 376) the most common is that in which the system is oscil

lating about a position of equilibrium free from any forces of

resistance. This of course, is Lagrange s problem and the solution

has been discussed in Chapter II.

It often happens that the co-ordinates chosen are such that

the vis viva 2T can be written in the form

without any terms containing the products of the velocities. In

other cases when the vis viva contains products, it may happen
that the force function U can be written in the form

without any terms containing the products of the co-ordinates.

In either of these two cases if we follow the same line of argu
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ment as in Art. 386 we arrive at a simple rule. Taking the first

case, Lagrange s equations are

(1),

&C.-OJ
As in Art. 386 the solutions of these may be written in the form

x = X cos pt + X.2 sin pt + Xs cos qt + X4 sin qt + &c.

y = Yl cos pt + F2 sin pt + F3 cos gtf + F4 sin gtf + &c.

&c. = &c.

. . .(2),

where the coefficients of any one column are in the ratio of the

minors of Lagrange s determinant and are therefore known mul

tiples of the same undetermined constant
;
see Vol. I. Art. 457.

The constants in the several columns are those represented in

Art. 53 of this volume by L-^ cos alt L sin j ;
L2 cos 2 ,

L 2 sin 2 ;

&c. respectively. Our object is to find these constants.

Since the equations (1) are analytically satisfied by the values of

x, y, &c. expressed by any one column, let us substitute for x, y, &c.

the terms in the first column and multiply the resulting equations

by X s ,
F3 ,

&c. respectively. Adding these results we find, after

division by cos pt,

p&quot;-(X1
X3 + F.F.+ ...)

= CuZ1Z,+ C^(Z1

Since the right-hand side is a symmetrical function of the co

efficients of the first and third columns, we have

f (X,X3 + &c.) = q
2

(X,X3 + &c.).

It immediately follows that unless p = q we must have

X1Z,+ riF8 + &c. = ..................... (3).

An exactly similar proof applies in the case in which the products
are absent from the force function.

In either of these cases any column, say the first, may be

separated by using as multipliers the coefficients Xlt Pi, &c. of

that column. Putting t = 0, so that the co-ordinates x, y, &c. have
their initial values, the second, fourth, and all the even columns

disappear from (2). Then multiplying by Xlt Yl} &c. wre have

#X1 + 2/F1 + &c. =X1-+F1

2 + &c................ (4).

In the same way by differentiating the equations (2) we turn the
sines into cosines so that the first, third and all the odd columns

disappear when = 0. Multiplying by X.2 ,
F2 ,

&c. we have

(das/dt) X, + (dy/dt) F2 + &c. =p (X/ + F2
2 + &c. . . .(5).

We therefore have two equations to find the two constants
which accompany the principal oscillation whose period is 2?r/p.
These may be put into the form of a rule which when applied to

some problems in heat or sound is usually called Fourier s Rule.
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This may be stated as follows. Multiply each co-ordinate by the

coefficient of the cosine in the column we wish to separate, add the

results together and put t = 0. All the other columns will disappear

from this sum, leaving one equation to find the constant of integra

tion which accompanies that cosine.

To find the constant of integration which accompanies the sine

which occurs in any column, we differentiate the co-ordinates and

thus turn sines into cosines. Repeating the same process as before
we have an equation to find the constant. These rules are simple
corollaries from that given in Art. 387.

399. It sometimes happens that the vis viva 2 1
7
can be written

in the form 2T= raX2 + m^y
2 +

where m^ ,
m2 ,

&c. are the constants connected with the co-ordinates

x, y, &c. In such a case the rule requires only a slight modifica

tion. By the same reasoning as before, we show that

Thus the multipliers necessary to separate the first column of the

values of x
t y, &c. from the other columns are m^X^, m2Ylf &c.

It will often happen that the coefficients ml} ra2 ,
&c. are the masses

of some particles connected with the co-ordinates x
t y, &c. Using

this phraseology we have the following rule. To separate any
column we multiply the co-ordinates of the several particles as before

by the coefficients in that column and by the masses of the several

particles. We then add these results and proceed as before.

400. The investigation we have here given of Fourier s rule

is purely analytical. All we have assumed is that the values of
x, y, &c. satisfy certain differential equations. But we may also

give a physical meaning to the process and show that we have

really been using the principle of Virtual Velocities.

It has been shown in the first volume that that general prin

ciple may be analytically represented by the equation

fddT dm,. /ddT dU\
(jn-rj- )?+(-7i-7-&amp;gt;--7-)
\dtdx dxj* \dtdy dy J

where f, 77, &c. are any small arbitrary variations of the co-ordinates

x, y, &c. consistent with the geometrical conditions.

Let us suppose the system to be performing any principal
oscillation, say the one represented by the first column in the

values of x, y, &c. Let us take as the arbitrary variation of the

co-ordinates, a displacement along any other principal oscillation,

say the one represented by the third column in the expressions
for x, y, &c. This variation is consistent with the geometrical
conditions since the two oscillations might coexist in the same
motion.

In this case f, 77, &c. are proportional to X3 ,
Y3 ,

&c. After
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substituting for x, y, &c. their values as given by the terms in the

first column and dividing by cos pt, the equation becomes

-p* (X,X, + Y, Y. + ...)
= CnX.X, + Gw (X,Y3 + XSYJ + &c.

Since the right-hand side is a symmetrical function of the co

efficients of the first and third columns, we immediately have, as

before, X1X*+Y1 Y,+ ...=0,

except when p and q are numerically equal.

Lagrange shows how to find the constants of integration in certain cases in

Sect. vi. of the second part of his Mecanique Analytique. Poisson devotes

Chapters vn. and viu. of his Theorie de la Chaleur to an explanation of the method

of expressing arbitrary functions in a series of sines and cosines. Another treat

ment of Fourier s rule is given in Arts. 93 and 94 of Lord Rayleigh s Theory of

Sound.

The reader may consult two papers by the author on the several subjects dis

cussed in this Chapter. The first is in No. 75 of the Quarterly Journal of Pure and

Applied Mathematics, 1883. The second may be found in the Proceedings of the

London Mathematical Society for the same year. The solutions also of many of

the examples given in this Chapter may be found in these two papers.



CHAPTER IX.

APPLICATIONS OF THE CALCULUS OF FINITE DIFFERENCES.

Solution of Problems.

401. IN the first section of this chapter we propose, by the

consideration of some examples, to show how the Calculus of Finite

Differences may be applied to the solution of dynamical problems.
In the second section we shall examine a few remarkable points
in the theory of such oscillations.

The calculus of finite differences may be used when the system
contains a great many oscillatory bodies arranged in some order.

Perhaps there are so many that to write down all their equations
of motion individually would be impossible. If however there be

a sufficient amount of similarity between the motions of successive

bodies taken in order, it may be possible by writing down a few

equations of differences to include all the equations of motion.

To show how this can be done we shall begin with the following

problem.

402. Oscillations of a chain of particles connected by
strings. Ex. A string of length (n + 1) I, an insensible mass,
stretched between two fixed points with a force T, is loaded at

intervals I with n equal masses m not under the influence of gravity
and is slightly disturbed ; if T/lm = c

2
, prove that the periodic times

of the simple transversal vibrations which in general coexist are

given by theformula (TT/C) cosec ITT/2 (n + 1) on putting in succession

Let A, B be the fixed points ; ylt y,...yn the ordinates at time

t of the n particles. The motion of the particles parallel to AB
is of the second order, and hence the tensions of all the strings
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must be equal, and in the small terms we may put this tension

equal to T. Consider the motion of the particle whose ordinate

is
y-k.

The equation of motion *
is

tfyk _ yt+i -Vk T Vk- Vk-i T .mW T~ ~T~

Now the motion of each particle is vibratory, we may therefore

expand yk in a series of the form

yk = $Lsiv(pt + co) ........................ (2),

where 5 implies summation for all values of p.

As there may be a term of the argument pt in every y, let

Ll} L2 ,... be their respective coefficients. Then substituting, we

have L^-^L^Lk_^
= --Lk .......... . .......... (3).

o

To solve this linear equation of differences we follow the usual

rule. Putting Lk
= Aak

,
where A and a are two constants, we get

after substitution and reduction a 2 + I/a = (p/c)
2

,
or

Let these values of a be called a and /3, then

Lk
= Aak + B{3

k

is a solution, and since it contains two arbitrary constants it is the

general solution.

The constants A, B, a, fi are the same for all the particles, but
not necessarily the same for all the trigonometrical terms denned

by the different values of p. When we wish to discuss the pro

perties of any particular A and B we write as a suffix the letter p
by which they are distinguished.

* This equation might also be deduced from Lagrange s general equations of

motion. If U be the force function, the position of equilibrium being the position

of reference, we have 2U= -
j y*

-
j (y2

-
ytf

- &c. -
y (yn

-
yn^ - ~

7/n
2

.

The vis viva is evidently my{
2 + my!? +...+ my^2 .

Substituting these in Lagrange s equations of motion we obtain the equations

represented by (1).

This problem is discussed by Lagrange in his Mecanique Analytique. He
deduces the solution from his own equations of motion. He also determines the

oscillations of an inextensible string charged with any number of weights and

suspended by both ends or by one only. Though several solutions of these

problems had been given before his time, he considers that they were all more or

less incomplete.



256 CALCULUS OF FINITE DIFFERENCES. [CHAP. IX.

The term distinguished by p requires some further con

sideration. In this term the two values of a viz. a and /3 are

each equal to unity, and the solution of equation (3) loses one of

its arbitrary constants. But this defect is easily cured by follow

ing the usual rules for treating equations of differences. Just as

in differential equations, when t is the independent variable, the

presence of equal roots indicates that there are powers of t in the

solution, (Art. 266), so in equations of differences powers of the

independent variable k make their appearance under similar

circumstances. We therefore have

Lk
= A + BQk.

The term distinguished by p 2c also presents some peculiarity.
In this term the two values of a are each equal to 1. We have

therefore Lk
= (A^ + B2ck) (

-
l)

k
.

Summing up, the solution of equation (1) may be written

at length

yk = AQ + BJc + (A 2C -f- B2ck) ( ~L)
k sin (2ct + a)2c)

where the S implies summation for all existing values of p. We
know from the theory of equations of differences that the first

four terms in this expression are really included in the last as

the limiting case of the terms distinguished by p = and p = 2c.

Unless therefore we wish to call attention to these terms, they may
be omitted in the expression for yk .

403. The equation (1) represents the motion of every particle

except the first and last. In order that it may represent these

also it is necessary to suppose that y and yn+l are both zero

though there are no particles corresponding to the values of k

equal to and n+1. With this understanding the solution (4)

represents the motion of every particle from k = 1 to k = n.

404. Since y = when k = for all values of t every term
in the series (4) must vanish

;
.-. A 0, A 2C

= and Ap + Bp = 0.

Also y = when k = n + l for all values of t, . . B = 0, B2C
= and

Apa.
n+l + Bp@n+l = 0. These equations give a.

n+l =
/3
n+1

. If p be

greater than 2c the ratio of a to is real and different from unity.
Hence we must have p less than 2c. Let then

p/2c = sin#, .-. a = cos 20 + sin 20 V 1.

Hence by what has been proved before

(cos 2(9 + sin 2(9 V - !)+ =
(cos 2(9 - sin 2(9 V - l)

n+1
;

and the complete period of any term is P =
2ir/p

=
Trc/sin 6. The

letter i indicates any integer, but since p = 2c sin 0, we see that it

is necessary to consider only the integers from i=l to i = n. The
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values i = Q and i = n -f 1 are excluded because they make p =
and p 2c which have been already taken account of.

The periods thus determined are those of the principal oscilla

tions. Taking any one of these values of p
2
,
the corresponding

values of yl , y^. . . yn are given by the equation (4) which reduces to

yk G sin 2&0 sin (pt + &&amp;gt;).

The oscillations indicated by the several values of p are very
different from each other. When 6 has its least value, the sign of

sin 2kd is the same for all values of k from k = 1 to n, so that the

chain oscillates in the form of a single loop. When 6 has its next

least value the first half of the terms ylf y.2) ... have the same sign
and this sign is opposite to that of the second half, so that the

chain always oscillates in the form of a double loop. When has

its next value the chain oscillates with three loops and so on. The
several kinds of motion are easily distinguished from each other by
tracing the curves whose ordinate is y^ and abscissa k, the time t

having any given value. They also follow at once from Sturm s

Theorems given a little further on, where it is proved that similar

distinctions exist whenever the connected system of particles is

such that the equation of differences takes a certain standard form.

405. In forming the differential equation (1) we have sup
posed the distance / between any two successive particles to be
unaltered. This will practically be the case if yk yk-i is small

compared with the distance I. This limitation however does not

prevent us from enquiring what would be the effect of reducing
the masses of all the particles and placing them proportionally
closer, so that the total mass per unit of length is unaltered.

The restriction is that the inclinations of the strings must still

be sufficiently small. The interest of this change is that the

closer the particles are placed the more nearly does the system
approach to that of a uniform string stretched between the two
fixed points A and B.

Let us represent by p the mass per unit of length, then

c2 2 = Tl/m = T/p. Put a = cl, then a is equal to the square root

of the ratio of the tension to the mass of a unit of length. Thus
a is unaltered by any of these changes of the particles.

If the length of the string AB be L we have L = (n+l)l.
If n be very great we find p = 2c sin 6 = a ITT/L very nearly.

Thus the notes sounded by a string loaded with small particles
at short intervals are such that their periods are given by
P = 2L/ai. The note given by i = 1 is called the fundamental

note, those given by the higher integer values of i are called the

harmonics.

406. Determination of Constants. If we express a and /3
in terms of 6 and

substitute these in equation (4) we find the typical equation

y fc =SEsin2fc0cos(2cfsin0) + SF f sin2A;0ffln(2ceBin0) (5),

R. D. II. 17
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where E
t
and Ft have been written for 2AP sin wp J - 1 and 2AP cos tap j-l. As be

fore 9 = iTT/2 (n + 1) and the symbol S implies summation for all values of i from i = 1

to i = n. This equation has ?z terms and thus we have 2n arbitrary constants, viz.

Elt E.,...En and F
l ,
F2 ...Fn . These have to be determined from the known initial

values of the n co-ordinates y v y.2 ...yn and of their initial velocities ?//, y*...yn .

Since k may have any value from k = l to k = n the typical equation (5) represents

as many equations as there are particles. We may imagine these to be written

down, one under another, exactly as described in Chap. vm. Art. 379. To find the

constant Et which runs through all the terms in any one column we use the

multiplier to separate that column from the others. To find this multiplier we

write down the vis viva of the system which in our case is 2T= 2,myk
t

*. According

to the rule given in Chap. vm. Art. 387 or Art. 399, the proper multiplier for

the equation giving yk is found by differentiating T with regard to yk and substitut

ing for yk the coefficient of the oscillation we wish to separate. The differentiation

in our case is myk . The proper multipliers to separate the two columns dis

tinguished by any value of i are therefore mEt sin 2k0 and mFt
sin 2kd. Thus we

find after division by common factors

S {yk sin 2k8} = \Et (n + 1) |

S {yk
f

sin 2k6} = %Ft (n + 1) 2e sin 6 }

Here we have written on the right-hand side for S (sin 2/c0)
2
its value \ (n + 1) which

is easily found by ordinary trigonometrical processes.

These equations determine the values of E
t
and F$ for any particular value of i.

On the left-hand side the co-ordinates ylt y2 , &c. and the velocities ?//, y 2

f

, &c. are

supposed to have their initial values, and the symbol S implies summation for all

values of k from k=l to k= n, the value of i included in being given.

407. Ex. 1. A string of length 2 (n + 1) Us stretched between two fixed points

A and B as before and loaded with 2n + l particles at distances apart each equal

to I. Taking the origin at the middle particle, let the particles from k= -e to

k=+e be initially displaced so that yk= G sin
fc?r/e. Let all tbe other particles be in

their undisturbed positions in the straight line AB, so that ?/
= () for all values of k

not comprised between the limits e . Let also the system start from rest. Then

by proceeding as explained in the last article, we find that the motion is given by

yk=2Ei sin 2kd cos (2ct sin 0),

, ITT _ G cos ITT sin 2ed sin TTC~ *~
2(n + l)

~
2(w+l) sin2

7r/2e-sin
2

Ex. 2. A string of length (n + 1) I is stretched between two fixed points A and B
and loaded with n particles at distances each equal to I. The extremity A, defined

by k = 0, is suddenly moved a small space equal to y at right angles to the original

position of the string and is there kept fixed. The motion of the &th particle is

given by yk=yJ 1 - ~
-y J

- 2 - cot sin 2&0 cos (2ct sin 0),

where =
i?r/2 (?t + l), and the symbol S implies summation for all values of i from

i = lton.
To prove this we have the following conditions

; (1) for all values of t we have

yk= y when &= 0, and y k= Q when k= n + l. Thesegive B =
i/ and A (n + l)= -y ,

(2) when t=0 we have ^=0 for all values of k except &= 0.

408. Agitation of one extremity. When one extremity
of the string of particles is agitated according to any given law,
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a slight modification of the solution given in Art. 402 will enable

us to find the motion. Let us suppose that the extremity A., defined

by fc 0, is agitated so that its motion is continuously given by
2/o
= (7 sin

/j,t ; it is required to find the motion of the particles.

We may notice that it is sufficient for our present purpose
that the law of agitation, however complicated, can be represented

by a finite series of terms of this form. The resultant motion
of any particle is then found by compounding together the motions
due to the several terms of the series.

The motion of the string of particles may be regarded as made

up of two separate oscillatory motions. There are (1) the forced

oscillation whose period is the same as that of the agitating force,

and (2) the free oscillations whose periods are the same as those

found in Art. 404 when the two extremities of the string were
fixed. Our present object is to find the former of these.

Proceeding as before, we have by equation (4)

yk= A + B k + (A^ + B.^k) (
-

1)* sin (2ct + w2t.) + S (^a* + Bpfi*) sin (pt + wp}.

Since y^G sin fit when k = we have p = //.,
cop
= in the forced

vibration. Also unless
//,
= or 2c we have A 0, A 2C

= 0.

Again, 2/fc
= when k = n + 1, hence B = 0, B2C

= and the forced

vibration is given by

Ap + B^C, A a?l+1 + B^n+1 = 0,

where a and ft are the two values of a given by

409. If fibe greater than 2c, let
//,
=

2c/sin 0, and all possible
cases are included if we suppose &amp;lt; to lie between and JTT, so that
tan &amp;lt; is less than unity. Making the necessary substitutions we
find for the forced oscillation

If the string is very long we have n infinite, and this ex

pression takes the simpler form
- VfC sin^.................. (2).

The first of these two expressions applies to a finite string
of particles and is clearly made up of two expressions like the

latter, the coefficients being such that the displacements of A and
B are respectively C sin fit and zero. The motion has therefore
been analysed as the resultant of two motions each of which is

represented by equation (2).

410. If fi be less than 2c, let
//,
= 2c sin

i/r,
the forced vibra

tion then becomes
sn

172



260 CALCULUS OF FINITE DIFFERENCES. [CHAP, IX.

This can be written in the form

_ Ocos [^ -J (n + 1 -&X] _ C cos

2 sin 2 O + 1) i/r
2 sin 2 (w + 1) ^

Taking the first of these two terms by itself, we see that

after a time T given by fiT= 2&amp;lt;\|r,

the term is unaltered if we write

k 1 for k. This term therefore represents a wave which travels

the space between one particle and the next in the time T. In

the same way the second term represents a wave which travels

with the same velocity in the opposite direction.

We may notice that the denominator of either of the terms in (4) is very email

when
/j.

is nearly equal to 2c sin tTr/2 (n+ 1), i.e. the forced vibration is magnified

when the period of the agitating force is nearly equal to one of the periods of the

free vibrations of the string, both ends being fixed.

411. Two kinds of possible motion. Attention should

be particularly directed to the great difference between the two
kinds of oscillatory motions. If the period of the agitating force,

viz. 27r//z is long enough to make (JL &amp;lt; 2c, the forced oscillation

transmitted to the string of particles is formed by the superposition
of two waves which travel in opposite directions without change
of magnitude. Thus the particles near the further extremity B
of the string may be as greatly agitated as those near the point
of application of the force. Suppose ty

=
7r/2q, where q is some

integer, then by (3) every qih particle counting from the further

extremity B is permanently at rest and forms a node. The

strings of particles between these successive nodes form equal

loops which are alternately on one side and the other of the

straight line AB.
Let us now compare this state of motion with that which

results from the agitating force when its period is so short that

//-
&amp;gt; 2c. In this case no motion in the nature of a wave is trans

mitted along the string. Taking the case of a very long string,
the particles are alternately on opposite sides of AB, while their

displacements form a series in geometrical progression. Thus
the displacements of the particles are less and less the more remote

they are from the agitating force.

412. The transition from the one kind of motion to the other

is easily understood by supposing the period of the agitating force

to grow gradually less and less until it passes the critical value.

It is clear that sin ^r will increase, but it cannot become greater
than unity. The number of particles, viz. q 1, between two
successive nodes decreases and finally vanishes when ^T

=
^TT.

But since no further decrease is possible the motion changes its

character.

The expressions (1) and (3) both assume the form 0/0 when
(f)
=

-\jr= J?r. The motion in the transitional state may be deduced
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from either of these expressions by the usual rules in the dif

ferential calculus. But we see independently by Art. 402 that it

is given by Vk
= (A +Bk)( l)*sin 2ct.

Since yic G sin 2ct when k = and
;?/&
= when k = n + I, we

easily find yk = {1
-
k/(n + !)}(- 1)* G sin 2ct.

413. Discontinuous agitating force. When the agitation communicated to

the extremity A is not continuous, but acts for a short time only, the resulting

motion may be found by the method of the superposition of small motions.

Thus if the extremity A be suddenly moved at the time t= Q a short distance

t/ at right angles to AB, the resulting motion has been found in Ex. 2, Art. 407.

Let us represent this motion by ym= y f(k, t). After a time t= u has elapsed, let

the extremity A receive another displacement F
, the rest of the string being undis

turbed. If we superimpose these two motions we obtain

At the time t= u, the second function and its differential coefficient with regard to t

both vanish for all values of k from k = l to k = n + l. Thus the initial conditions

of motion at this time are expressed by the first function. This equation therefore

represents the motion produced by these two disturbances for all time from t u to

t=oo.

Generalizing this, we see that if the extremity A be moved according to any law

say y =F
(t)

for a time extending from t= Q to t= y, then the motion of the string

is given by yk=^F (u)f(k, t - u) du

for all time extending from t= y to t oo .

Since the agitating force ceases to act after the time t = y it is clear that the

motion of the string after this time is made up of the free vibrations belonging to

a string of particles having each end fixed. Accordingly, if we substitute for the

function / (k, t- u) its value given in Art. 407, we see that this expression for yk con

sists of n oscillations whose periods are the same as those already found in Art. 404.

Their phases and magnitudes depend on the action of the agitating force.

414. Ex. Let the extremity A of the string of particles already described be

moved so that yQ
= C sin fit for a time extending from t = to t= TT//A. Supposing

the extremities to remain at rest for all subsequent time, prove that the motion of

the kth
particle is given by

. sin 2c sin 6 ( t -
)

cos sin 6

_ 1Cn GOB sin 2kd [_ \ 2/x/J [_/* _J
1

n + 1 ^2 -4c2 sin2

where 6 = i?r/2 (71 + 1) and the S implies summation for all integer values of i from

f=lton+ l.

If the string is very long, n is infinite and we may write dd = ir/2 (?i + l). The

expression then becomes

= ggg d8 cos e sin 2M sin sin et -

The subject of integration is not infinite when 8in0 = /j./2c, for the last factor then

becomes ?r/4/i
2

.

415. Analysis by Waves. There is another method of arranging the solution

of the equation of motion given in Art. 402 which has the advantage of enabling
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us to analyse the motion by waves instead of by Lagrangian elements, see Art. 85.

Writing 5 for d/dt as usual the equation of motion becomes

Treating the operator on the right-hand side as a constant, we proceed to solve

the equation of differences in the manner already explained in Art. 402. The two

constants A and B are now functions of t. Hence if we put

-^ we have yt = Q**f(t) + Qr**F(t) ...... (2).

This is a symbolical solution of the equation of differences with its two arbitrary

functions f(t) and F(t). When the forms of these functions are given, the opera

tion represented by ft can be performed and a solution of the equations of differences

will be found.

410. To obtain one interpretation of this symbolical solution let us suppose that

the functions f(t) and F(t) can be expressed in a series whose general term is

A cos (2c sin 6t + u)), where is the parameter whose value distinguishes any term

of the series from another. All cases are clearly included if we suppose 6 to lie

between the limits and ?r.

Since the radical in the operator ft contains only even powers of 5, we obtain the

result of its operation by writing
-

(2c sin 0)
2 for 52

,
see Art. 265. We therefore find

ft cos (2c sin 0t + w) = cos (2c sin dt + w-0).

Repeating this process 2k times we have

yk= 24 cos (2c sin 6t + w -
2kd) + *LB cos (2c sin dt + u + 2k0).

If we take by itself any one term of the first series we see that if we write for k,

k + 1 and for t, t + T, where T is given by c sin OT= 0, the term is unaltered. Hence

(exactly as in Art. 87) any one term represents a wave which travels the space

between one particle and the next in the time T. In the same way the correspond

ing term of the second series represents a wave which travels in the opposite direc

tion with the same velocity. See Art. 410.

Each term of either series represents a wave. Each wave travels with a uniform

velocity but the different waves have different velocities. Consider the wave defined

by any given value of 8, and let a= cl. If v be the velocity, X the length of the

wave measured from ridge to ridge, and P the period of oscillation of any one

sin 6 irl irl

particle, we have v = a
,

A= _, P=-^j.
Since lies between and ^?r, we see that the velocities of all these waves lie

between a and 2a/?r ; the length of every wave is greater than 21
;
the period of

oscillation of every particle is greater than irlja. The longer the waves are the

more nearly do they travel with the same velocity.

If we suppose I to decrease the particles become closer together, and if each

particle have proportionally less mass the quantity a is unchanged. Considering
then all waves whose lengths have a given inferior limit, we see that the closer the

particles are together, the mass of a unit of length being unchanged, tJie more nearly
do waves of all lengths travel with the same velocity.

Other interpretations of the symbolical solution given in Art. 415 may be

obtained by substituting other forms for the arbitrary functions f(t) and . ().

Thus we may have tf^a*i&amp;lt;y
rf^~1+Q-|C- 1*^-1.

If /* be greater than 2c we may introduce the subsidiary angle as in Art. 409.

This expression then reduces to
2//t
=

(
-

1)* (tan
1
0)

2* C cos /* .
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417. Ex. If we write x=kl and make the interval I between the particles

indefinitely small, the operation represented by fi
2* takes the singular form I

00
.

Show by finding the limit in the usual manner that ^k=e~ (x/a )
8 and thence deduce

418. Examples. Ex. 1. A long row of particles, each of mass m, is placed on

a smooth horizontal table. Each is connected with the two adjacent ones by similar

light elastic stretched strings of natural length I. They receive small longitudinal

disturbances such that each of them proceeds to perform a harmonic oscillation :

prove that there will be two waves of vibrations in opposite directions with the

same velocity, viz. I /
^

- sin -
, where I is the average distance between two

successive particles, q the number of intervals between two particles in the same

phase, and E the modulus of elasticity. [Math. Tripos, 1873.

Ex. 2. A light elastic string of length nl and coefficient of elasticity E is loaded

with n particles each of mass m ranged at intervals I along it, beginning at one

extremity. If it be suspended by the other prove that the periods of its vertical

oscillations are given by the formula IT A/-g
c sec

L

^ ,
where i - 0, 1, 2. . .n - 1

successively. Hence show that the periods of the vertical oscillations of a heavy

elastic string are given by the formula - I
1--

,
where L is the length of the

string, M its mass, and i is zero or any positive integer. [Math. Tripos, 1871.

Ex. 3. A railway engine is drawing a train of equal carriages connected by

spring couplings of strength /*, and the driving power is so adjusted that the velocity

is A+Bsinqt. Show that if g
2
{(M+ 4wi)6

2 + 4wA;2
}

be nearly equal to 2/ib
2 the

couplings will probably break, M being the mass of a carriage which is supported
on four equal wheels of mass m, radius 6 and radius of gyration k. Are there any
other values of q for which the couplings will probably break? [Coll. Exam. 1880.

Ex. 4. Equal uniform rods, n in number, and each of mass m, are smoothly

hinged together at their ends and are suspended by light elastic strings which are

fastened to the joints and the free ends. The other extremities of the strings are

attached to n + 1 points in a horizontal line whose distance apart is equal to the

length of a rod. The strings are all of a natural length I and modulus E, except

the extreme ones whose modulus is ^E. The system rests in equilibrium under the

action of gravity and the rods are in a horizontal straight line and all the strings

vertical. Show that the periods of the small co-existent oscillations about this

position of equilibrium are _ \ml (
2 + cos )! ,

where i is zero or any integer,

f^SE ( \ */J
the joints and ends being supposed to move approximately in vertical straight lines.

[Coll. Exam. 1881.

Ex. 5. A number of uniform circular discs of radius a but of any masses

are freely moveable in a vertical plane about their centres which are fixed in a

horizontal line at distances 4a apart. A fine rough string of indefinite length

having two equal particles of mass m at its extremities is laid over these circles,

and uniform circular discs each of radius a and mass 2m are laid on the string

so as to hang between the other circles, the parts of the string not in contact with

a circle being vertical. Show that if the system be in motion under the action

of gravity, all its parts will move uniformly so long as the centres of all the discs

2 MI are below the line of fixed centres. [Cull. Exam. 1880.
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It will be seen on writing down a few of the equations of motion that both the

dynamical and geometrical equations are all linear with constant coefficients.

When this is the case the reactions are all constant, being independent both of

the time and of the initial conditions, see Vol. i. Chap. iv. Arts. 135136. The

system is initially in equilibrium and only moves because it is disturbed
; hence the

reactions throughout the motion retain their equilibrium values. The tension

therefore of every portion of the string is equal to mg. It easily follows that the

motion is uniform.

Ex. 6. From the same sheet of indefinitely thin metal of uniform width are

made n cylinders of radii a lt a2 ,...an (in descending order of magnitude). They are

placed one inside the other, and the whole are then placed inside a fixed cylinder of

radius a whose axis is horizontal, so that the axes of all the cylinders are parallel.

Show that if wr be the angle turned through by the cylinder of radius ar , and if Mr

denote the sum an + an_l + ...ar ,
the equations giving the small motions of the

system are of the form 2ar
2

(d?&amp;lt;arjdt
z
)+g (Mrxr ~ -^r-iXr+i) =

where ar (ur + Xr]
= ar-i K-i + Xr)- [Co11 - Exam. 1880.

419. OscUlations of a chain made of rods or gyrostats
* connected by

strings. Ex. 1. The links of a chain are alternately uniform rods each of length

2, and inelastic strings each of length 2Z; the number of rods being equal to that

of the strings. The system is stretched with the rods and strings in one straight

line, the extremity of the first string being attached to a fixed point A and the

extremity of the last rod to another fixed point B. The system being slightly

displaced in one plane, it is required to find the small oscillations.

Let n be the number of rods, ylt y%...yn the ordinates of their centres of gravity;

&amp;lt;7i&amp;gt; ?2---&amp;lt;7n
their inclinations to AB. Let sl5 *

2 ...*n be the inclinations of the strings
to the same straight line. Let m be the mass of each rod, mA the moment of
inertia about the centre of gravity. Let mT be the tension of the chain.

The equations of motion of the fcth rod are

yk&quot;=T(sk+l -sk ) (1),

Aqk&quot;=Ta(sk + sk+l -2qk ) (2),

where accents denote differential coefficients with regard to the time. Besides
these we have the geometrical equation

yk+i-yk= a(qk + qk+i) + 2lsk+l (3).

These equations, when solved, give the motion of the chain however long it may
be. We have to find a solution adapted to the condition that at two points A
and B

y + aq = 0, yn + aqn= Q
(4),

throughout the motion. These being satisfied we may suppose the points A and B
to be fixed and all the chain except the portion between A and B removed.

* In April 1875, Sir W. Thomson made a communication to the London
Mathematical Society on vibrations and waves in a stretched uniform chain of

symmetrical gyrostats connected together by universal flexure joints ; see questions
4 and 5. In the Mathematical Tripos 1889, Part n. Prof. Burnside set a question
on the motion of an endless train of waves on a chain of gyrostats connected by
ball and socket joints; see question G. Questions 1, 2, 3 of the above series have
been constructed with the view of showing how the conditions at the extremities of
a finite chain of connected rigid bodies are to be treated.
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To solve these we use the method already explained in Art. 402. We put

yk-Ypk
siu(pt + a), qk = Qp

k sin (pt + a), sk= Sp
k sm (pt + a).

Substituting, the equations (1), (2), (3) become

~p*Y=T(p-l)S ............................................. (5),

(6),

(7).

Eliminating the ratios Y, Q, S by a determinant we find

2N

......... (8).

For each value of p we have a quadratic to find p whose roots p, p1
are such that

ppl
= l. Putting therefore

&amp;lt;f&amp;gt;=pt
+ a, we have

Referring to equations (4) we find by putting k = and k n

(Y+Qa) + (Yl + Qla) = 0, (7+Qa)p*+(r1 + Q1o)/ l
= ......... (10).

These show that either

P
n=

Pl
n
......... (11), orboth Y+Qa= Q, Y

1+Q1
a= ......... (12).

Taking first the alternative (11) we see that, since p/)j
= l, we may put

p= cos + sin 0^-1, sinn0= ........................... (13).

Since p
2 + 1 = 2p cos 0, the determinantal equation (8) becomes

(4p
2 -2ra){^2

-T(l-cos0)} -Ta?p*(l + eoa0) = ............... (14).

This quadratic gives two positive values of p2
, separated by p2= (1

- cos 6) Tjl. The

values of cos 6 are given by cos cos iir/n, where i has all integer values from i = 1

to i n-\. The values i = Q and i= n are excluded because they make p= pl
and

when this happens the solution (9) changes its character and contains integer

powers of k.

Considering next the second alternative (12), we find by putting Y= -aQ in

(5) and (7)

{PH+T(p-l)}S= Q ................................. (15),

with a similar equation obtained by writing p^ and S
l
for p and S. We thus find

from (15) and (8) that

p=I-lp*IT, (A + a?)lp*= 2Ta(a + l) ..................... (16).

Since pL
is the reciprocal of p and cannot also have the same value as p, we must

have S
1
= Q. Substituting these values of p and S: in (9), the solution adapted to

the second alternative has been found.

The peculiarity of the motion given by the second alternative is that Tfa + ag^O
for all values of k, so that the second extremity of each rod is at rest throughout the

motion.

We have yet to examine the portion of the solution due to the equal roots of

equation (8). Since ^= 1, these are p= 1. In this case we have

with similar expressions for q and s obtained by writing Qlt Q.2 and Slt Sa for

Y2. The relations between these six coefficients may be found by substituting in

the equations of motion and equating to zero the several powers of k. Also equa-
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tions(4) give Y-^ + aQ^O, Y2 + aQ2
= Q. These eight equations cannot be satisfied

by finite values of the coefficients except in one case which is included in (16) by

putting p= - 1 and A = aL We therefore infer that when the extremities A and B

of the chain are fixed, terms with k as a factor do not appear in the solution.

The system has 3n co-ordinates, viz. yv ..yn , ?!...#, i...sn and w- 1 geometrical

equations given by (3) with two more given by (4). By Lagrange s rule for the

oscillations of a system about a position of equilibrium we should have 2n - 1 values

of p*. Of these periods 2(n-l) are given by the n-1 values of cos0 = i?r/n, each

value leading to a quadratic for p
2 with unequal roots, viz. equation (14). One more

period is given by equation (16).

Ex. 2. The links of a chain are alternately uniform rods each of length 2a, and

inelastic strings each of length 21, the number of the rods being equal to that of the

strings. Each rod has attached to its middle point a fly wheel which rotates freely

in a plane perpendicular to the rod. The system is stretched with the rods and

strings in one straight line, the extremity of a string being attached to a fixed

point A and the extremity of the last rod to another fixed point B. The system

being slightly displaced it is required to find the small oscillations.

In consequence of the presence of the fly wheels the motion cannot be analysed

into two independent oscillations in perpendicular planes. It is therefore necessary

to treat the problem as one in three dimensions.

Let AB be the axis of z, and let the axes of x and y be fixed in space. Let

(xk , yk) be the co-ordinates of the centre of gravity of the &th rod, (pk , qk , 1) its

direction cosines, (rk ,
sk , 1) those of the preceding string. Let the mass of each

rod and fly wheel be m, let mC, mA be the moments of inertia about the rod and a

perpendicular to it at the centre of gravity. Let n be the angular velocity of any

fly wheel about its axis, then n is constant throughout the motion. Let mT be

the tension. Let v be the number of rods.

The equations of motion of the fcth rod are

a^r^-rt), yk
&quot; = T(sk+l -sk), ....................... (1),

-Aqk
&quot; + Cnpk = -Ta(sk + sk+1 -2qk

&amp;lt;

)
\

Apk&quot;+Cnqk =Ta(rk + rk+l -2pk) j

Besides these we have the geometrical equations

#*+i
-

*= a (Pk +PK+I) + 2Zrt+1|

yk+l -ytc=a (q !c +
q&amp;gt;c+l ) + 2hk+l l

There are also the conditions at the ends A and B of the chain

=
Q\

x
v+ apv

=
Q\

= 0\ yv + aqv
= Q)

In these equations accents denote differentiation with regard to the time.

The equations (2) may be obtained by the rule given in Vol. i. Art. 265, viz. the

angular momentum of a uniaxal body about any line through its centre of gravity
is the same as that of two particles of equal mass, viz. ^in placed on the axis at a

distance b= fJAjm from the centre of gravity together with the angular momentum
Cn about the axis. We therefore have

hx= m (Ttf
-
ft ) + mCnp, hy=m (& -

tf) + mCnq,
where (, 17, f) are the co-ordinates of either particle referred to the centre of gravity
as origin. In our case = bp, r)

= bq, =b. The equations of motion are then

given by dhxldt-L &c. see Vol. i. Art. 261. The moments on the right hand sides

are formed by the usual rules of statics, viz. L = 2(yZ-zY) &c. Another method
of forming these equations is given in Art. 15 of this volume.
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To solve these equations we proceed as in the last example. We put

x= Xp* sin 0, p=Ppk sin 0, r Rpk sin 0,

y= Ypk cos&amp;lt;p, q = Qp
k

cos&amp;lt;j&amp;gt;,
s = Sp

k
co$(p,

where
&amp;lt;p=pt + a. Substituting in the equations (1), (2), (3) and eliminating the

ratios of X, Y, P, Q, E, S, we find

(P
2 + l) {Ap*+Cnp-2aT-a?p*}=2p l(Ap* + Cnp- 2aT)(l-

l

^\ +&amp;lt;&\ ...(8).

Since this equation gives two values of p for each value of p, it follows that each

term in sin 6 or cos is accompanied by two exponents. Let
/&amp;gt;, p1

be the roots of

equations (8), then pp:
= l.

Substituting next in equations (4), we find that there are two alternatives, viz.

(1) p
n=

Pl
n or (2) both X+ aP= Q, Y+ aQ = 0.

Taking the first alternative we find as before that, since pp^l,

p= cos0 + sin 0*J-1, sin 910 = ................................. (13).

The determinantal equation (8) then becomes

{Ap*+Cnp-2aT} [Ip*
- T (1

- cos 0)}
- ^a2^2

(1 + cos 0) = ......... (14).

This biquadratic leads to two real positive and two real negative values of p, each

pair of values being separated by a root of the quadratic Zj;
2=T(l -cos0). The

values of cos are given by cos cos iir\v where i has all integer values from i 1

toi= v-l, and v is the number of rods.

Considering next the second alternative, we find by treating equations (1) and (3)

exactly as in the last example
p= I-lp*IT }

(Apt+ Clip + V) l= 2Ta(a + l)t&quot;

The peculiarity of this motion is that one extremity of every rod is at rest throughout
the motion.

The system has 6i/ co-ordinates and 2 (/-!) +4 geometrical conditions, we
therefore should have 2 (2v

-
1) values of p, Art. 111. Of these periods 4 (v

-
1) are

given by the v 1 values of cos 0, each value leading to a biquadratic with unequal
roots. Two more periods are given by the quadratic (16).

Ex. 3. The links of a chain are formed of heavy uniform rods each of length

2a freely hinged together at their extremities. These are stretched out in a hori

zontal straight line with one end of the chain hinged to a point fixed in space. If

the system starts from rest, show that the initial reaction at the kih hinge is

(-l)
k
mg_ (2 + J3)&quot;*

1-* -
(2
-

^3)&quot;+^*

2&amp;gt;/3

If the links are made of rods with rotating fly wheels, such that the moment of

inertia of each link about a perpendicular axis through its centre of gravity is

|wa2
,
show that the initial reactions at the hinges are also given by the above

formula.

Ex. 4. A chain consists of alternate gyrostats each of length 2a and massless

connecting links each of length 21, the connection being by universal flexure joints

at the ends of the axis of each gyrostat. A finite length of such a chain being placed

with its links forming an open plane polygon with its extremities A, B held fixed by

universal flexure joints, the system is so set in motion that it rotates with angular

velocity /* round AB as if it were a rigid polygon. It is required to form the

equations of steady motion.
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A gyrostat is a rapidly rotating fly wheel, angular velocity ?i, pivoted without

friction on a stiff moveable framework or within a containing case.

[Math. Soc. 1875.

Taking AB as the axis of z, let the plane xz rotate round AB with angular

velocity /* so that it always contains the chain. Let pk ,
sk be the inclinations of

the fcth rod and string to AB. Let mP be the resolved tension parallel to AB,

which is therefore the same for every rod. The required equations are then

xk+1
- xk= a (sin p*+l + sin pk) + 21 sin sk+l

-
fi?xk=P (tan sk+l

- tan sk) ,

n{-Cyp(l- cospk) + 6&amp;gt;}
sin pk

-
Afj? sin pk cos pk

= Pa
{ (tan s*+1 + tan sk)

cospk
- 2 sin pk } ,

where mCj and mCa are the moments of inertia of the fly wheel and the case about

the axis, and mA that of both about a perpendicular axis.

To obtain the equation of moments, we notice that by the geometry of the

universal joint each gyrostatic link moves as if its axis were produced to and joined

to the fixed axis AB by a universal flexure joint. Thus each case has an angular

velocity -/* about its axis and an angular velocity + /* about a parallel to AB

drawn through its centre of gravity, Art. 33. By resolutions we find the angular

momenta about the axes of C and A and thence the angular momenta about the

co-ordinate axes x, y, z. Substituting in the equations of Art. 10 and remembering

that in steady motion the angular momenta are constant we obtain the three

equations of moments. Two are identically satisfied and the third is given

above.

Ex. 5. Supposing the polygon in the last question to be so nearly straight that

the cubes of p and s can be neglected, show that the centres of gravity of the

gyrostats lie on the harmonic curve x=A cos (dzjb)+B sin (dz/b), where b = 2a+ 2l

and is given by (C-jan
- Atf + 2Pa) (1

- cos -
J/*

2
/P) = /At

2
(1 + cos 6).

If the polygon, instead of being fixed at A and B, is produced indefinitely in

each direction in the form of the above curve, then in the time ir/j* the polygon

makes a half turn round the axis of z and the harmonic curve appears to advance

a distance ?r&/0 along that axis. Thus the velocity V of propagation is given by

V=fj.bjd. [Math. Soc. 1875.

Ex. 6. A chain, whose tension is T, consists of alternate links of lengths 2a

and 2b connected by smooth ball-and-socket joints; those of length 2a being

massless connecting rods and the others symmetric gyrostats. The mass of each

gyrostat is unity and its moments of inertia about its axis and a perpendicular to it

are C and A, while its angular velocity about its axis is w. Investigate the general

equations for the small motions of such a chain ; and show that an endless train of

waves of period 2ir/p will be propagated along it with velocity V given by the

equations

[Math. Tripos, 1889.

Ex. 7. Equal balls, n in number, connected by flexible springs, are constrained

to move in a circular groove into which the springs are also placed, the system of

balls and springs forming a closed chain. If the mass of the springs be very small

compared with that of the balls, and if the distance between the balls measured

along the circular groove is initially equal to the unstretched length of any one of

the springs, prove that the times of vibration of the system are tr (m/ufi cosec iir/n

where 771 is the mass of one of the balls, /j. the force required to increase the length
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of any one of the springs by unity and i an integer which may have any value from

1 to n. With what physical problem does this coincide when n is infinite and

what are then the times of vibration? [Math. Tripos, 1887.

Ex. 8. 2n equal uniform rods each of mass m are hinged together and are held

so that they are alternately vertical and horizontal, thus forming a figure resembling

a set of steps, each vertical rod being lower than the preceding one
;
the highest

rod is horizontal and is capable of turning freely round its end which is fixed
;

prove that, when the rods are let go, the horizontal component X2r and the vertical

component F
2J

. of the initial action between the 2rth and the 2r + 1 the rods are

given by X^=B (
- 5 + 2N/6)

r+ C (
- 5 - 2N/6)

r
,

Y^=B (_5 + 2N/6)
r+ C (- 5 -2N/6r,

the constants B, C, B
,
C being determined by the equations, X2n=0, Y2n=0 t

X2 -!-2X = 0, 2ra+16F -5m0 = 0. [Math.&quot; Tripos, 1889.

420. Network of Particles. Let columns of threads in one plane be cut at

right angles by rows of threads. Let a particle of mass m be attached to them at

each intersection. Let the interval between two adjacent columns be I and the

interval between two adjacent rows be I . Let the tensions of the rows and columns

be respectively T and T . Let the particles vibrate perpendicularly to the plane of

the threads, and let the whole system be removed from the action of gravity.

Ex. 1. If w be the displacement of the particle in the hih column and /c
th row

and T/wiZ= c2
,
T jml ^c *, prove that the equation of motion is

Ex. 2. Prove that the motion of the particles may be represented by the series

whose general term is

w = -2{a*(Abk + Bb-*) + a-h
(A bK + B b-x)}sinpt ............... (1),

where the S implies summation for all values of a and b connected by the equation

Show that if a and b are both real, one at least is negative. Show also that if

the circumstances of the problem permit &=1 the corresponding coefficient of

sin pt becomes (l)*{a*(A + Bk) + a-h (A +B k)} ....................... (2).

If a and b are both = 1 the corresponding coefficient is

(l)*(l)*(A+Bh+Ck + Dhk) ........................... (3).

What is the general form of the solution, when one of the two a and b is

imaginary and the other real ? When both are imaginary with unity for modulus,
w= SP sin (pt- 2h6 -

i&amp;gt;

2= c2 (2sin0)
2 + c 2

(2

Ex. 3. Show that the solution (4) of the last example represents a wave

motion. If X be the length of the wave, v its velocity, and a the angle the direction

in which it travels makes with the rows of thread, prove that

Ex. 4. If the network is so constituted that cle l
t prove that there are two

directions in which a wave of given length travels with the greatest velocity, and

that in these cases the fronts are the diagonals of the openings between the threads.

The two directions of least velocity are those in which the fronts are along the

threads.

Ex, 5. If cl=c U and if the intervals between the threads are very small, prove
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that the network becomes a membrane which is equally stretched in all directions.

In this case waves of all finite length and all directions of front travel with the same

velocity.

Ex. 6. A network, otherwise infinite, is bounded by a rod which runs along the

diagonals of the openings. The rod is agitated according to the law w =P sin pt.

Prove that two distinct motions result according as the period of agitation is

greater or less than ?r/(c
2 + c 2

)^. In the former case waves travel over the network,

in the latter the motion resembles that described in Art. 411.

421. Network with Quadrilateral openings. To bring these particles into

order we regard them as arranged in rows and columns, as in rectangular networks,

though these are no longer straight lines. If the network be so stretched that the

tension of every thread is proportional to the length of the thread along which it

acts, the ratio being equal to c2
,
the equation of motion may be proved to be

52 whk= c2 (A
2 wh_ lt fc + A 2 wh

, *_!),

where A operates on h and A on fc. This is exactly the same equation as that

which determines the motion of a rectangular network when c = c . Thus the

motions of the two networks will be the same when the central and boundary con

ditions are made to correspond.

In this way we may deduce the motion of one kind of network from another

just as in Hydrodynamics we change one fluid motion into another by the method
of conjugate functions.

Ex. 1. Show that the geometrical peculiarity of this quadrilateral network is

that each particle is the centre of gravity of the four adjacent particles to which it

is connected by strings.

Ex. 2. If (x, y) be the Cartesian co-ordinates of the particle (hk), prove that

x and y both satisfy the equation of differences A2 xh_lt k + A 2 x
h&amp;lt;
^= 0. Show also

that the values of x and y may be written in the compendious form

x +yJ-l = 2Ae2ah+Wk\f- 1
, (_-) = =t

sin/3.
Other forms of the solution may be deduced as in Art. 420. For example, we

may have x=A + Bh+Ck + Dhk.
In all these solutions the directions of the threads which form the sides of the

quadrilateral openings are defined (1) by making h constant and k variable, (2) by
making k constant and h variable. Thus taking a single exponential, we find

x = Ae2ah cos2pk, y = Ae2ah siu2pk. These lead to x* + y*=A%4!ah
, ylx= ta,n2pk,

The quadrilateral openings are therefore formed by concentric circles and radii

vectores from their centre.

Ex. 3. When the openings of the network are indefinitely small, the result of
the last example becomes x + yJ-l=f(h+k,J-l), so that that result may be

regarded as an extension to Finite Differences of the theory of conjugate functions.

Ex. 4. If in Ex. (2) the values of h and k are not restricted to be integral,

prove that A*^ ,= A y
h&amp;gt;

ft _j,
A^^= ^y

Ine analogy of these results to some well-known theorems in conjugate functions
is obvious.

Ex. 5. The Cartesian co-ordinates of the particles of a triangular network are

given by x= h
t y = hk, where h, k are any integers. The equations to the three fixed

boundaries are x= n, y = 0, y = n x. Following the rule given in Ex. 2, show that
the quadrilateral openings are formed by radii vectores from the origin and ordi-
nates parallel to the axis of y. Prove that the period of vibration, viz. 27r/p, is

P2
lc*= sin2 (tV/2n) + sin2 (tir/2n

;

).
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Theory of Equations of Differences.

422. General Equations of Motion. Let a series of n particles of masses

Wj, w2 ... be arranged in a straight row at intervals equal to l
lf

1.2 ... and be in

equilibrium under the action of external forces and their mutual attractions. Let

these particles be now displaced from their positions of equilibrium either all at

right angles to the axis of the row, or all along its length. Let the displacements

at the time t be y l , y%...yn . Our object is to find these ?/ s as functions of the time.

The forces which act on the particles are of several kinds. (1) There are the

external forces of restitution which are functions of the displacements of the

particle acted on from its position of equilibrium. These must supply terms to the

force function of the form -^akyk
2

; all the higher powers of the displacements

being rejected. (2) There are the forces of restitution which depend on the action

of the adjacent particles on each side of the particle under consideration. These

must supply terms to the force function which contain squares of the y B and pro

ducts of T/ S with adjacent suffixes. But since 2ykyk+1 = yk
2 + yk+l

2 -
(yk+l

- yk)
2

,
the

only additional terms thus introduced into the force function will be of the form

-
^S&A; (l/Jt+i

~
2//fc)

2&amp;gt; (3) There are the forces of restitution which depend on the

action of the two adjacent particles on each side of the particle under considera

tion. These supply terms to the force function containing squares and products of

?/ s whose suffixes differ at most by 2. But since ^ykyk+^ (2/*+2~ 22/*+i + 2/*)
2 + &c.,

where the &c. indicates squares of y s and products of
?/

s whose suffixes differ by

unity, it is clear that the only additional terms introduced into the force function

are of the form - JSc* (yk+2
-
2yk+l + yk)

2
.

The forces which depend on the action of the three adjacent particles may be

treated in the same way.

Besides these forces there may be some external forces of constraint acting on

the two extremities of the row. These are functions respectively of yl
and yn and

therefore supply terms to the force function of the form - %\yf and - %nyn
2

. If

the forces of constraint act on the two last particles at each end we must add to

these the terms - \2 (y2
-

y-tf and - ^-i (y
-

2/n-i)
2

-

Let U be the force function and let the position of equilibrium be the position of

reference. To simplify the argument let us in the first instance restrict ourselves

to the following terms

2U=-\y^-wJ - ZtffcT/*
2 - S&* (yk+1

-
yk)

2
.

If 2T be the vis viva, we have 2T=2mkyk
2

.

The Lagrangian equations of motion may therefore be written in the typical form

mkyk
&quot;= - akyk+ [bk {y^.1

-
yk )

- b^ (yk
-
yk^)],

= - akyk+ A (&*_! tyk-i),

where A has the usual meaning given to it in the calculus of differences.

The case in which a=0 and b is a constant has been solved in Art. 402.

423. The Boundary Conditions. This typical equation represents the motion

of all the particles except the first and last. It does not include the case k = l,

because the term - b (y^
- y Q)

2 is missing from 2 U, and the term - X^2 has not been

taken account of. If the differential coefficients of these with regard to y l
were

equal, the errors would correct each other. This gives

M&amp;lt;/i-2/o)
= x2/i-

Treating the other extremity in the same way, we find
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There are no particles corresponding to the values k = and k= n + l, but the n

equations of motion corresponding to fc= l to k= n are all truly represented by the

same equation of differences if we suppose y and yn+l to stand for their values as

given by these two conditions.

424. In the same way we may show that, if we take the more general value for

U, Viz. 2U= -
Xji/j

2

the typical equation of motion becomes

mkyk&quot;= - akyk+ & (b^ Ay*^)

The terminal conditions at one extremity are

6 A?/
- A (c_x A2

?/.!) =\yv - c A2
i/
= X2Ay1

.

There are similar conditions at the other extremity.

425. Method of Solution. To solve the typical equation of motion

mkyk
&quot;= - akyk + A (b^ Ay^),

we follow the method of Lagrange. To find a principal oscillation we put

We thus have akLk
- A (&*_! AL^_a) =p*mkLk.

This equation can also be written in the form

If we wrote down at length the n equations given by fc = l, 2... w we could by

successive substitutions express the value of Lk as a linear function of L and Lr
But since the ratio of LQ to L

t
is given by one of the equations at the limits, we can

find Lk in the form Lk= C(f&amp;gt; (k, p), where C is either L or L
x
at our pleasure or any

function of L and Lr See Art. 423.

If we make a few of the substitutions indicated it will be at once evident that

&amp;lt;f&amp;gt;
(k, p) is an integral rational function of _p

2 of the (k
-

l)
th

degree. We must now

substitute this result in the equation of condition at the other limit. We thus have

after division by C bn { &amp;lt;f&amp;gt; (n + 1, p)
-

&amp;lt;j&amp;gt; (n, p) } + fj^ (n, p) = 0,

This equation will be shortly represented by \f/ (p)
= 0. We may notice that this

reasoning is perfectly general, so that no value of Lk not included in this solution

can satisfy the equation of differences.

This process is strictly Lagrange s method of finding the principal oscillations,

and the final equation \f/(p)
= Q is merely Lagrange s determinantal equation in an

expanded form. Accordingly we see that it is an equation of the wth
degree to find

the 71 values of p
2

,

But if n be considerable this method of elimination cannot always be employed.
The Calculus of Finite Differences sometimes enables us (as in Art. 402) to arrive at

a solution in a simpler manner. But whatever method is adopted the solution

obtained, whether partial or complete, must be included in that indicated above.

426. If the given function bk is such that 6 = 0, 6n=0 and X, /j.
are also zero, there

are no conditions at the limits. In this case the equation of differences defined by
k = Q only contains Lj and L2 , the term - b (y l

-
yn) being now absent. This equa

tion therefore determines the ratio of Lj to L and the argument proceeds as before.

It is however more convenient to regard this case as included in the former with

the condition that y , ylt yn_j, yn are not to be infinite. With this proviso the

terms - 6 (y,
-
y ) and bn (yn+l

-
yn)

cannot become finite.
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427. The corresponding Differential Equation. The limiting case of this

equation of differences is peculiarly interesting. Let us make all the intervals

llt
Z2 , &c. between the particles equal to each other and each equal to I

;
and let us

write x= kl. Then in the limit when I is indefinitely small we have dx= l, and all

the various functions of k may therefore be regarded as continuous functions of x.

Writing mk=mxdx, ak= axdx, and bk= bx/dx the equation of differences becomes in

the limit axyx -^ (bx ^|j
=p*mxyx .

This equation is to hold for all values of x between certain limits, say x= to

x = L. The conditions at the limits are

In the same way we may find the differential equation which corresponds to the

equation of differences given in Art. 424.

In this equation it is not necessary to suppose y to be small, for since the

equation is linear we may multiply y by any constant quantity we please. It is

necessary however that all the functions and as many of their differential coeffi

cients as enter into the equation should be finite.

Suppose that the function bx=Q at each limit and that X and /A are both zero.

The conditions at the limit disappear for a differential equation of the second order.

We thus have no equation to find p. But in the following theorems, the condition

that the solutions chosen for y must be finite between the limits remains in full

force. In some cases this one condition will limit the values of p.

428. Ex. If the differential equation is - ~
|(1

- a;
2
) ^|l =p*y and the limits

are# and#= l, show that no solution can be finite at both limits unless p~=i(i+l)
where i is any positive integer.

429. This equation of differences and its limiting case the differential equation
are of considerable importance in other besides dynamical investigations. It is

therefore useful to notice that though the equation presented itself with a dynamical

meaning, yet the results in this section are perfectly general. We may regard the

equations of motion as simply so many differential equations to find yl , ?/2 , &c.

derived, as explained in Chap, vn., from the two auxiliary functions A and C, the

other auxiliary functions, B, D, E, F being all zero. The functions A and C are

here called T and - U and the symbol m is here replaced by p,J
- 1.

430. Three Propositions. We immediately infer the following theorems

concerning the values of p.

Prop. 1. If the function mk or mx is positive between the limits, the function T
is a one-signed positive function. It therefore follows from Art. 319, that all the

values of p&quot;
are real.

This also follows from the theorem that all the roots of Lagrange s determinant

are real*.

* Another proof that all the values of p
2 are real is given by Poisson in Art. 90

of his Theorie Mathematique de la Chaleur. He there shows that if p2 could

have a pair of imaginary values of the form / g*J
-

1, the integral J
mxXx Yxdx

could not be zero (see Art. 432). The argument is as follows. Since, by Art. 435,

Lit is a function of p
2
,

it follows that the corresponding values of Xx and Yx may be

written F+GJ-l. This leads to the result l*m*(F*+G*)dsc=0,
which is an

R. D. II. 18
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431. Prop. 2. If the functions ak ,
bk) &c. or ax ,

bx ,
&c. as well as mk or mx are

positive between the limits, and if X, /* are also positive, the function C^-U
is a one-signed positive function. It therefore follows from Art. 315, that all the

values ofp
2 are positive.

This also follows from the theorem in Vol. i. that when the force function U is

a maximum in the position of equilibrium, that position of equilibrium is stable.

432. Prop. 3. Let p and q be two unequal possible values of the parameter p,

and let the corresponding solutions be indicated by the typical equations

yk=Xk sinpt, and yk= F^sin qt.

Then we may use the method of multipliers as explained in Chap. viu. Art. 399, and

assert that 2mkXkYk=ml
X

l
Y

l + ... +mnXnYn Q.

In the case of the differential equation this becomes
j*mx

XxYx dx= Q.

By referring to the standard example Art. 402 we may perceive the separate uses

of these three propositions. The values of p- there found are all real and positive

and the third proposition was used in Art. 406 to determine the constants of

integration when the initial conditions are known.

433. Sturm s Theorems. Restricting ourselves to the case in which the

equation of differences has the form

akyk - A (fcjt-iA?/*-!) =p2mkyk)

let us compare the different kinds of motion indicated by different values ofpz
.

In order to realize the motions of the several particles more easily, let an

ordinate be drawn perpendicular to the length of the row at the position of each

particle when in equilibrium. Let the length of this ordinate be equal to the dis

placement of that particle at the time t. The curve traced out by the extremities

of these ordinates will exhibit to the eye the nature of the motion. The inter

sections of this curve with the axis of the row are called nodes, the maxima and

minima ordinates are called loops.

In the example of Art. 402 these ordinates are the actual displacements of the

several particles. In the general case we are now considering this curve is merely

a conventional method of exhibiting to the eye the varying state of the system
but in that particular case it is suggested by the visible motion.

Let all the possible values of p be arranged in ascending order beginning with

the least.

In the solution given by the least value of p, it will be shown that at any one

moment all these ordinates have the same sign. Thus throughout the motion the

indicating curve forms an arc with a single loop which oscillates from one side to

the other of the axis of x.

In the solution given by the next smallest value of p, it will be shown that at any
instant there is one change of sign among the ordinates, as ive travel from one

extremity of the row to the other. Thus throughout the motion the indicating curve

forms a double arc with two loops separated by a node.

In the solution given by the third smallest root there are at any instant two

changes of sign among the ordinates. Thus the indicating curve forms three loops

separated by two nodes, and so on through all the values of p.

impossible equation if mx keep one sign between the limits. Poisson applies his

argument to the case of a differential equation of the second order, but it may
evidently be extended to the general case of a differential equation or an equation of

differences of any order,
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In all these cases the nodes which belong to any value of p are separated by the

nodes which belong to the next value ofp in the series.

434. The Lemma. To prove these theorems we require the following lemma.

Let p and q be two values of p, and let the corresponding motions be given by

yk=Xk sin pt and yk= Yk sin qt. We have therefore

AX*^) =jX**l

Eliminating the function ak we find

(q*-jP) mkXkYk
= bk (Xk+lYk - XkY^ - bk_, (Xtf^

This gives by summation from k = a, to k= k

( 3
2 - p2

) {maXaYa + . . . + mkXkYk ]
= bk (Xk+lYk - XkYk+l )

- 6a_i

The right-hand side may also be written

In the limiting case in which the equation of differences becomes the differential

equation (Art. 427), this lemma takes the form

435. Cor. 1. Consider the full series of values Xlt Xz ...Xn arranged in order.

We have ranges of positive and negative values succeeding each other. Let Xa ...Xk
be one of these ranges in which all the constituents have one sign, while those on

each side, viz. Xa_1 and Xk+l , have the opposite sign. We shall prove that if q&amp;gt;p

there is one change of sign at least in the corresponding range of Y s extending from
ya-1 to

Fjfc+i
both inclusive.

For if possible let all these F s have one sign, then every one of the four terms

on the right-hand side of the equality in the lemma has the sign opposite to that of

the product XkYk . Hence the lemma could not be true.

We have made no assumption about the function of ak ,
but bk and mk have been

supposed to have the same sign, and to keep that sign from one limit to the other.

436. Cor. 2. Consider next a double range of values, say Xa ...Xp...Xk , such that

all the constituents from Xa to Xp^ have one sign, say negative, and from Xp to Xk

have the other sign, while (to make the double range complete) X^^ and Xk+l have

opposite signs to their adjacent constituents. Then by Cor. 1, if q &amp;gt;p,
Y must cliange

sign between Fa_j and Yp and also between Y^_l
and Yjt+i- We shall now prove

that a single change of sign between Y^_l and Yp ivill not suffice for both these

requirements.

For if it did, the products XaYa,...,XkYk would all have the same sign : but every
one of the four terms on the right-hand side of the equality in the lemma has the

sign opposite to that of the product X Yk . Thus again the lemma could not be

true.

In the same way if we consider a triple range of values Xa . . . Xp . . . Xy . . . Xk so

that X changes sign twice as k varies from one limit to the other, then, by Cor. 1,

Y must change sign between Fa_! and Yp, F^_j
and Yy , Yy^ and Yk+1 . But it follows

exactly as before that two changes of sign will not suffice for all three requirements.

437. Cor. 3. Consider the range of values Xlt
X2 ...Xk all of one sign begin

ning at one extremity of the complete series and such that Xk+l has the opposite

sign. We shall prove that if q &amp;gt;p
there is one change of sign at least in the cor

responding range of F s extending from Y
l
to r*+1 .

182
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In this case the range begins at one extremity, we have therefore the conditions

6 (Xl
- X )

=
X.Y! and 6 (^i

~ F
o)
= XYi which hold at that extremity. The equality

in the lemma becomes therefore

(2
2

-J&amp;gt;

2
) (ml

X1Yl +...mkXkY1c)
= bk (Xk+l Yk -Xk Yk+1).

If then all the Ps from Y
1
to Yk+l had the same sign, every term on the left-

hand side would have the same sign, and the two terms on the right-hand side

would have the opposite sign, and thus the equality could not exist.

Similar remarks apply to a range terminating at the other extremity.

438. Cor. 4. Lastly consider all the n series X
1 ...XW Y

l ... Yn , &c., &c., cor

responding to the n values of p, q, &c. arranged in order of magnitude beginning at

the least. By the preceding corollaries, each of these series must have at least one

more change of sign than any series before it. As there are but n terms in each

series, the last, i.e. the ??
th

,
can have but n - 1 changes of sign. Hence the first

series has no changes of sign, the second has one change, the third has only tivo and

so on. Also the changes of sign in each series alternate, in the manner already

explained, with the changes of sign in any series next to it.

439. It should be noticed that in Cor. 1 and 2 no use has been made of the

conditions at the limits. In these propositions therefore p and q are any arbitrary

quantities except that q must be greater than p. In Cor. 3 the conditions at one

limit are introduced, so that all three corollaries are true if only XJX^Y^Y^ at

one limit. Finally in Cor. 4 the conditions at both limits are supposed to be

satisfied and therefore p and q must now be different roots of the equation repre

sented in Art. 425 by ^ (p) = Q.

440. The fourth proposition. To shoiv that no two values of p
2 are equal.

Let us suppose that the conditions of constraint at one limit are satisfied as in

Cor. 3. We may therefore write the lemma of Art. 434 in the form

(qt-p^ZmXY^b^X^Y - XnYn+l),

where the summation extends from fc= l to k=n. Since p and q are now arbitrary

quantities, we may put q
2
=2? + dp*. We therefore have to the first order of small

quantities dp^mX2 = bn (Xn+1 dXn - XndXn+l )
.

This equation may be written in the form

- Xn {bn (Xn+l
- Xn ) +fJ.Xn }.

But the quantity in brackets is the left-hand side of the equation ^ (p)
= arrived

at in Art. 425 as the equation to find all the possible values of p when the condi

tions of constraint at both extremities are taken account of. We therefore infer that

It immediately follows from this equation that no value of p can make both

V/ (p) = and y (p) = 0. The equation \f/(p)
= Q cannot therefore have equal roots.

441. Ex. 1. If n particles of any masses at any intervals are arranged in a

straight row, as already explained, and oscillate transversely with the motion indi

cated by any one value of the parameter p, prove that the straight lino joining

any two particles cuts the axis of the row in a point which is fixed throughout the

motion.

Ex. 2. If yk=Xk sin pt represent the principal oscillation corresponding to

the value p, prove that

27&amp;gt;jt (Xk+l
- A *)

2 + \Xf
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The two first 2 s imply summation extending from k = l to k=n, and the third

from k=l to k = n-l.

Ex. 3. If a&, bk and mk are all positive and 2wlp is the longest period of a

principal oscillation, prove that p2 is less than the greatest value of (ak + bjc + &jfc_i)/w#

and greater than the least value of aklmk .

If 27T/p is the shortest period of a principal oscillation, prove that
p&quot;

is greater

than the least value of (ak+ bk + bk-i)lmk and less than the greatest value of

(ajc + 2bk + 2bk_1)lmk . In this example b and bn are to be taken equal respectively

to \ and
/j,.

Ex. 4. If the function ak and bk keep one and the same sign or are zero, show

that no value of p can be zero unless X and ^ are both zero.

Ex. 5. Let yii
=Xk srnpt, yk=Yk smpt represent two principal oscillatory

motions such that q is greater than p. If a range of values be taken, say Xa ...Xk,

which are all of one sign and such that Xk is at a loop and that a node lies between

Xa^l
and Xa , prove that either a node or a loop lies within the range Ya_l ... Yk .

Thence show that either a node or a loop of the shorter-timed oscillation must

lie within (or at the boundaries of) the space joining any node to any loop of the

longer-timed oscillation.

Ex. 6. In the equation P -
| + Qj + Ey pSy t

where P, Q, R, S are given

functions of x, let y =X and y = Y be two solutions corresponding to different

values of p, and let
/j.
be the integrating factor of the first two terms on the left-

hand side. Prove that foSXYdx= Q for any limits between which X, Fand their

differential coefficients are finite, provided that at each limit either

Ex. 7. Let additional external forces be applied to the system (Art. 422) so

that a* is changed to ak where ak -ak is positive between the limits k = l and k = n,

then if mk is also positive prove that every value of p2 is increased. On the other

hand, if the inertia is increased so that mk becomes mk , then, if both mk
- mk and

mk are positive between the limits, prove that all the values ofp
2 are decreased.

These results follow from Art. 76 and Art. 77, Ex. 1. They may also be

deduced from the lemma.

Ex. 8. Let the equation of motion of a dynamical system be

d

where the values of p2 are deduced from the conditions at x = Q and x=L given in

Art. 427. Let some change be made in the system so that ax is altered to ax where

ax - ax is positive for all values of x between the limits. Then if mx be also

positive between the limits, prove that the values of p* are also increased.

The differential equation of the second order mentioned in Art. 427 is discussed

by C. Sturm in the first volume of Liouville s Journal. He there establishes the

theorems given in Art. 433 which we have called after his name. The extension of

these to equations of finite differences will be found in a paper by the author in

the eleventh volume of the Proceedings of the Mathematical Society, 1880. The

theorems on a network of particles are taken from a paper by the author in the

fifteenth volume of the same Proceedings, 1884.



CHAPTER X.

APPLICATIONS OF THE CALCULUS OF VARIATIONS.

Principles of Least Action and Varying Action.

442. Two fundamental equations. Let (qlt q.2 , q3 , &c.)
be the co-ordinates of a system of bodies, and let q stand for

any one of these. Let 21
7 be the vis viva of the whole system

and U the force-function, and let L T + U. As before let accents

denote differential coefficients with regard to the time.

Let us imagine the system to be moving in some manner,
which we will call the actual motion or course. Then ql , q.2&amp;gt;

&c. are all functions of t, and it is generally our object to find the

form of these functions. Let us suppose the system to move in

some slightly different manner, i.e. let qlt q2 , &c. be functions of t

slightly different from their actual forms. Let us call the motion
thus represented a neighbouring motion or course. We may pass,
in our minds, from the actual motion to any neighbouring motion

by the process called variation in the calculus of that name. By
the fundamental theorem in that calculus

where the letter S implies summation for all the co-ordinates

qit qa ,
&c. and it is implied by the square brackets that the terms

outside the integral sign are to be taken between limits.

The co-ordinates being independent of each other, each sepa
rate term under the integral sign vanishes by Lagrange s equations,
and we have therefore

where H is the reciprocal function of L, as explained in the first

volume of this treatise.
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rti

The integral I Ldt has been called by Sir W. R. Hamilton
J

to^

the principal function, and is usually represented by the letter S.

If the geometrical equations do not contain the time explicitly,

T will be a quadratic homogeneous function of the velocities
;

we have therefore 2 (dT/dq) q = 2T. In this case H=T-U. The

equation of vis viva will now hold and therefore T U=-h, where h

is a constant which represents the energy of the system. The
Hamiltonian equation just proved now takes the simpler form

443. Other functions may be used instead of S. Let us put

The function Fis called the characteristic function.

444. If the geometrical equations do not contain the time

explicitly, we have H h, where h is a constant which may be
used to represent the whole energy of the system. In this case

to

The function V therefore expresses the whole accumulation of the

vis viva, i.e. the action of the system in passing from its position
at the time t to its position at the time ^ .

For the sake of simplicity it will be generally assumed in this

section that the geometrical equations do not contain the time

explicitly.

445. In the proof of these theorems we have supposed that all the forces are

conservative. If in addition to the impressed forces there are any reactions, such

as rolling friction, which cannot be taken account of by reducing the number of

independent co-ordinates, we must use Lagrange s equation in the form

*dL dL-
dt dq dq

~

where, as explained in Vol. i., Pdq is the virtual moment of these reactions corre

sponding to a displacement dq. In this case the quantity under the integral sign

will not vanish unless the variations are such that

Now q being the value of any co-ordinate in the actual motion at the time t,

q + Sq is its value in a neighbouring motion at the time t + dt. But q dt is the

change of q in the time 5t, hence q + dq
-
q 8t is the value of the co-ordinate in the

neighbouring motion at the time t. The neighbouring motions must therefore be
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such that the virtual moment of the reactions corresponding to a displacement of

the system from any position in the actual motion into its position in a neighbour

ing motion at the same time is zero. With this restriction on the variations, the

two equations which express the variations of S and V will still be true.

446. Another Proof. We may also establish these theorems without the use

of Lagrange s equations. Let x, y, z be the Cartesian co-ordinates of any particle,

and let m be the mass of this particle. Let U be such a function that dU/dx,

dU/dy, dUjdz are the components of the impressed forces on this particle in the

directions of the axes. We may write mX, mY, mZ as usual for these components.

Then L = T+ U=&m (x
2 +

y&quot;

2 +
z&quot;&amp;gt;)

+ U.

By the fundamental theorem in the Calculus of Variations, we have

.-jlJ^}(te-x to)dt,

where the variations 5x, &c. are connected together by the geometrical relations of

the system. If we substitute for L and remember that T is a homogeneous quad

ratic function of x
, y ,

z
,
this becomes

5 ft Ldt = \_(U-T)5t + 2mx 8x ]
* +^ 2m (X - x&quot;) (dx

- x dt) dt.

Now dx - x dt is the projection on the axis of x of the displacement of the particle

m from its position in the actual motion at the time t to its position in a neigh-

bouring motion at the same time. Hence the part under the integral sign vanishes

by the principle of virtual velocities.

The term Enix Sx is clearly the virtual moment of the momenta. If the co

ordinates be expressed as functions of any independent quantities qlt q2 , &c., it has

been proved in the first volume that this is equal to 2 (dT/dq
1

) 8q. Putting

T - U=H we have as before

t Ldt= -H8t + 2 (dTjdq
1

) 8q* .

447. Principle of Least Action. Let us call the positions
of the system at the times t and ^ the initial and terminal posi
tions. Let us suppose these fixed so that the actual motion and all

its neighbouring motions are to have the same initial and terminal

positions. In this case Bq vanishes at each limit and the two
fundamental equations giving the values of B8 and 8V take the

simpler forms

Ldt = -h (Bt,
- Bt ),

8F = 28 f Teft = (ft
-Q Bh,

to J to

where it has been supposed that the geometrical equations do riot

contain the time explicitly.

If the time of transit of the system from its initial to its terminal

position is also given, we have 8^ = Bt0) and therefore

If the constant h is given, or which is the same thing, if the

energy of the system is given, we have Bh = 0, and therefore
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448. Since S V = 0, it follows that for the actual motion V is a
maximum or minimum, or at least that the change it undergoes in

passing to any neighbouring motion is of the second order of small

quantities. It cannot be a maximum since by causing the bodies to

take circuitous paths we may make V as large as we please. Again,
since the vis viva cannot be negative there must be some mode
of motion from one given position to another for which the action

is the least possible. When therefore the equations supplied by
the Calculus of Variations lead to but one possible motion that

motion must make V a minimum. But when there are several

possible modes of motion, though none can be a maximum some

may be neither maxima rior minima. With this understanding
we may infer the two following theorems.

449. Let any two positions of a dynamical system be given,
the actual motion is such that j Tdt is less than if the system
were constrained, without violating any geometrical conditions, to

move in some other manner from the one position to the other

with the same energy; these other motions being such that,

throughout, T is the same function of the co-ordinates and their

differential coefficients. This particular inference from the general

equations in Art. 447 is usually called the Principle of Least

Action.

In the same way, if the system move in the varied course not

with the same energy, but in the same time, from the one given

position to the other, then / Ldt is a minimum.

Maupertuis conceived that he could establish a priori by theological arguments

that all mechanical changes must take place in the world so as to occasion the least

possible quantity of action. In asserting this it was proposed to measure the action

by the product of the velocity and space ;
and this measure being adopted, mathe

maticians, though they did not generally assent to Maupertuis
1

reasonings, found

that his principle expressed a remarkable and useful truth, which might be established

on known mechanical grounds. Whewell s History of the Inductive Sciences, Vol.

n. p. 119.

Euler, at the end of his Traite des Isoperimetres, 1744, established the truth of

the principle for isolated particles describing orbits about centres of force. This was

afterwards extended by Lagrange to the motion of any system of bodies acting in

any manner on each other. In deducing conversely the equations of motion from

the principle of Least Action, Lagrange seems to have fallen into some errors which

were pointed out by Ostrogradsky in his Memoire sur les equations differentielles

relatives auprobleme des Isoperimetres published in the Memoirs of the Academy of

Sciences at St Petersburgh in 1850. The theorem jLdt is a minimum when the

time is constant was first given in this treatise 1877.

450. If some of the co-ordinates appear in the Lagrangian function L only

through their velocities (i.e. their differential coefficients with regard to f) their

corresponding momenta are constant throughout the motion. As explained in Vol. i.

Art. 422, it is then sometimes convenient to eliminate these velocities by modifying

the Lagrangian function and using it thus changed in the ordinary Lagraugian
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equations. Supposing that the co-ordinates qlt q% appear only through &amp;lt;//, q2 we

write L^L- Zpq where S implies summation for the co-ordinates glf q.2 ,
then L

l

is the modified L. The general expression for Lj after the elimination of q^, g2 ig

given in Vol. i., Art. 421. In the same way 2T
1
= 2T - 2pq ;

where Tj is the modi

fied T.

If as supposed above the momenta p1
and p% are constant throughout the motion,

we have 8jpq dt=p5jq dt=p (5^ - 5g ),

provided the variations are limited to those in which p retains its constant value.

Since the initial and final positions are supposed to be fixed in the principle of least

action it follows that djpq dt = 0. We therefore infer that JL^U and JT^t, retain

the max-min property under the same conditions as before provided the variations are

restricted to be such as do not disturb the constancy of the momenta. This theorem

is given by Larmor, Math. Soc. 1884.

451. Motion deduced from the Calculus of Variations,

By making the first variation of either V or S equal to zero (under
the given conditions) according to the rules of the Calculus of

Variations, we may conversely find the co-ordinates qlt q, &c.

as functions of t. Amongst these functions of the time we shall

certainly find the motions given by Lagrange s equations, because

we have just proved that these make the first variations equal to

zero. But it is possible that there may exist other courses or

modes of conducting the system from the initial to the terminal

position which (though contrary to mechanical laws) may make
V or S a minimum. It is easy to see that some other courses

must exist, for the two positions may be so placed that it is

impossible to project the system from the initial position with a

given energy so as to pass through the terminal position. Thus

suppose it is required to project a particle under the action of

gravity from an initial position with a given velocity so as to pass

through a position B on the horizontal line through A, but beyond
the maximum range. We know that this cannot be done with
real conditions of projection in a real time. Yet some course of

minimum action from A to B must exist. We shall now show,

(1) that the ordinary processes of the Calculus of Variations,
which are founded on the supposition that the variations of the

independent co-ordinates may have any sign, lead only to La-

grange s equations; (2) that there are certain other modes of

motion which are so situated that the co-ordinates (along some

part at least of the course) cannot be made to vary on one side

without introducing imaginary quantities, and that when these

impossible variations are omitted such courses may give a maxi
mum or minimum.

452. Continuous Motions. Beginning with the first of these two proposi-

sitions, let us make 8S and 8V equal to zero according to the rules of the Calculus

of Variations.

Taking djLdt= Q where the time of transit is given, we immediately have,

Art. 442, ff -*J to \dq dtdq
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for all variations. Since the dq s are all arbitrary and independent, it follows that

each coefficient under the integral sign must vanish separately. In this manner we

are led directly to Lagrange s equations of motion.

453. If the action is to be a minimum some further considerations are necessary

because the condition that the energy T - U should be constant may act as a limit

to the variations which can be given to the co-ordinates. Let h be this constant,

then following Lagrange s rule in the Calculus of Variations we put

W=T+\(T-U-h), and make djWdt= Q,

without regard to the given condition. Afterwards we choose the arbitrary quantity

X so that the given condition is satisfied. Then 5$Wdt being zero for all variations

of the co-ordinates, it immediately follows that 5JTdt is also zero for all variations

which do not violate the given condition. With the same notation as before

we have, Art. 442,

where the integrals and the quantities in square brackets are to be taken between

the given limits, which are omitted for the sake of brevity.

First, let us consider the part outside the integral sign. The initial and final

positions being given, each 8q = Q. We therefore have

{W-2(dWldq )q }5t = 0.

This equation is satisfied by 5t= Q, but since the time of transit is not to be the

same in the actual and varied motions this factor is to be rejected. Also T is a

homogeneous quadratic function of the
g&quot;s,

hence S (dT/dq
r

) q = 2T. Substituting

for W its value and using this equation we find (1 + X) T + \(U+h) = Q. But X is

such that T-U=h. Hence (1 + 2X) T=Q, and therefore X= -
.

Next, consider the part under the integral sign. By the rules of the Calculus of

Variations we have (since the 8q s are all arbitrary) the typical equation

dW_d_ dW^
dq dt dq

f
~

Substituting for W and giving X its value just found, we have the typical

Lagrange s equation.

454. Ex. If we add to the conditions used in the principle of Least Action the

condition that the time of transit as well as the energy is to be the same in all the

varied motions, show that the minimum does not in general lead to Lagrange s

equations. Following the same notation as in the last article, show that the mini

mum for a given time (not necessarily equal to the time of free transit), leads to

\= -% + AjT, where A is a constant to be so chosen that the energy has its given

value. Show also that when the time of transit is given so that A = 0, the minimum
thus found is the least.

455. Discontinuous Motions. Turning now to the second proposition men
tioned in Art. 451, let us investigate if there can be any other modes of motion

besides those just found, which make the first variation of the action equal to zero.

In obtaining these equations it is assumed that all the dq s are independent ; but, if

the conditions of the question imply any boundary, this may not be true for any
actual motion which takes the system in the immediate neighbourhood of that

boundary. Thus, in our case, since T cannot be negative, all positions of the

system outside the boundary U+h= Q are excluded. In the immediate neighbour-

hoc d of this boundary the variations of the co-ordinates may not be susceptible of
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all signs*. It follows that a motion along the boundary may be a course of mini

mum action though not given by the ordinary equations of the Calculus of

Variations.

It is evident that we cannot make the system travel along the boundary whose

equation is U+h= Q because this requires all the velocities to be zero. But the

system may travel as near as we please to this boundary with a total &quot;action&quot; as

small as we please. The following discontinuous motion may therefore be a course

of minimum action. First project the system from its given initial position A

with such velocities and directions of motion, but with the given energy, that every

particle may come simultaneously to rest. Assuming the equations to give real

conditions of projection, the system, when it comes to rest, is situated on the

boundary. Let this position be called B. Next move the system close to the

boundary until it reaches such a position C that on being set free without velocity

it passes through the given terminal position D under the action of the forces

represented by U. The motions from A to B and G to D are courses of minimum

action, while the action from B to C may be made as small as we please.

456. We may show that the action along this discontinuous course is really a

minimum. To prove this, let us take any neighbouring motion beginning at A and

ending at D. Let B
,
C be any positions of the system on the neighbouring course

near B and G respectively. Since dh= 0, the action (Art. 443) along AB exceeds

that along AB by F=
^S (dTjdq ) 8qJ*.

This vanishes at the lower limit since

both courses begin at A. Since T is a quadratic function of the velocities, dTjdq
contains a velocity in every term and all these velocities vanish in the position B,

i.e. at the upper limit. We therefore have 5F=0. We infer that the difference

of the actions along AB and AB is of the order of the quantities neglected in

investigating this expression for 5F. Thus the difference of these two actions is of

the order of the squares and products of dq and dq .

Next let M be any position on the neighbouring motion B C so that the change
of place B M is finite. The velocities in every position of the system between B
and M are of the order 8q

f

,
and hence the semi vis viva T is of the order (dq )

2
.

But the time of transit from B to M varies inversely as the mean velocity, hence

the jTdt, i.e. the action from B to M
,

is of the first order of small quantities,

viz. 5q . This action is essentially positive, and we have just proved that it is

infinitely greater than the difference of actions along AB and AB . Hence the

action along AM is greater than that along AB.
In the same way if N be a position of the system properly chosen on the neigh

bouring course nearer
C&quot;,

we may show that the action along N D is greater than

that along CD. The action along M N is also greater than that along BC. It-

*
Exceptional cases, similar to these, occur in the theory of maxima and minima

in the differential calculus. When the independent variable is not capable of

unlimited increase, but is bounded in one or both directions, its value at either

boundary sometimes corresponds to a maximum or minimum value of the dependent
variable, though this is not found by making the differential coefficient equal to

zero. ,

In the calculus of variations some instances in which the variations at the

boundaries are not susceptible of every sign are given in De Morgan s Differential

Calculus, 1842, page 460, &c. These appear to have been rediscovered by Dr Tod-
hunter in his Researches in the Calculus of Variations, 1871, Art. 18. See also

Chap. viii. of his Researches &c.
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follows therefore that so long as the separation in space between the positions B
and C is finite, the action along ABCD is less than that along any neighbouring
course.

457. Ex. If we use the principle of least action in the manner explained in

Art. 453 we virtually remove the restriction on the variation of the co-ordinates.

Show that in the discontinuous course the first variation of jWdt is zero if we

regard X as a discontinuous function which is equal to -
1 along the courses AB,

CD and equal to zero along the course EG.

458. Is the Action an actual minimum ? To determine
whether an integral is a maximum or a minimum or neither,
we must examine the terms of the second order in the variation

of the integral to ascertain if their sum keeps one sign or not for

all variations of the independent variables. This is a very trouble

some process, but it is unnecessary to discuss it. It will be
sufficient to remind the reader of some remarks of Jacobi, given
in the seventeenth volume of Crelles Journal, 1837, and trans

lated in Dr Todhunter s History of the Calculus of Variations,

page 250.

Suppose a dynamical system to start from any given position
which we shall call A, and to arrive at some position B. If the
time be given, the motion is found by making SfLdt = ;

if the

energy be given, by making SJTdt 0. The constants which
occur in integrating the differential equations supplied by the

calculus of variations are to be determined by means of the

given limiting values
;
but as this involves the solution of equa

tions there will in general be several systems of values for the

arbitrary constants, so that several possible modes of motion from
A to B may be found which satisfy the same differential equation
and the same limiting conditions. Let us suppose that when B
and A are near each other there is but one mode of motion from
A to B, then by Art. 448 that mode makes jTdt a minimum.
Now let the position B recede from A so as always to be on this

one mode of motion. Suppose that when B reaches the position
C another possible mode of motion from A to B is indefinitely near
to the former motion. We deduce from Jacobi s criterion that G
determines the boundary up to which or beyond which the

integration must not extend if the integral is to be a minimum.

Jacobi illustrates his rule by considering the principle of least

action in the elliptic motion of a planet. Let $ be the sun, and
let the particle start from A towards aphelion to arrive at a point
B. The path is known to be an ellipse with S for focus. Since
we use the principle of least action, the energy of the motion is

given : hence the major axis of the ellipse is known, let this be 2.
The other focus If of the ellipse is the intersection of two circles

described with centres A and B and radii 2a SA, 2a SB re

spectively. The two intersections give two solutions which only
coincide when the circles touch, that is when the line AB passes
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through the focus H. Thus if we draw a chord AC through H
to cut the ellipse described by the particle in C, then the terminal

position B must fall between A and G if the integral which occurs

in the principle of least action is really to be a minimum for this

ellipse. If B coincide with C, then the second variation cannot

become negative, but it can become zero, so that the variation of

the integral is then of the third order, and may therefore be either

positive or negative. If B be beyond C the second variation itself

can become negative.
If the particle start from A towards perihelion, then the ex

treme point C is determined by drawing a chord AC through the

focus S to cut the ellipse in C. For if A and G are the limits we
can obtain an infinite number of solutions by the revolution of

the ellipse round A C. If in the last case the second limit B fall

beyond (7, Jacobi considered that there would be a curve of double

curvature between the two given points for which the action is

less than it is for the ellipse. But this supposition is unnecessary,
for the discontinuous course spoken of in Art. 456 supplies the

minimum for this case.

Examples. Ex. 1. A particle, under the action of a centre of force at whose

attraction varies as the distance, is projected from a given point A with a given

velocity in such a direction as to reach another given point B. If C be the first

point on the elliptic path at which the tangent is perpendicular to the direction of

projection at A, prove that the &quot;action&quot; from A to B is or is not a minimum

according as B is between A and G or beyond C.

If B lie within a certain ellipse having its centre at and one focus at A, prove
that there are two directions in which the particle can be projected from A to reach

B and that the action is a minimum for one of these and not for the other. If B
lie outside this bounding ellipse, the particle cannot reach B. If OA be produced
to D, where D is such that the velocity of projection at A is equal to that acquired

by a particle starting from rest at D and moving to A under the action of the

central force, prove that the major axis of the bounding ellipse is equal to twice the

distance OD.
If the point B be without the bounding ellipse, the particle can reach B only if

properly conducted thither by some curve of constraint. The curve of minimum
action can be found by the following construction. Produce OA, OB to meet the

auxiliary circle of the bounding ellipse in E and F. The required path is in

definitely near to AEFB.
To prove these results, let us find the direction of projection from A that the

particle may pass through B. We notice that if OD = k, the sum of the squares of

any two semi-conjugate diameters is k2
. Bisect AB in N and let ON=x,

NA=NB = y. Let the required direction of projection from A cut ON produced
in T. Then from the equation to the ellipse we have a quadratic to find OT,
showing that there are in general two elliptic paths which may be described in

passing from A to B. Let the tangents at A to these intersect ON produced in

T and U; we deduce from the quadratic that OT . OU=W and NT . NU=y*.
These equations determine T and U.

We see at once that the two directions of projection coincide when OT=k, i.e.

when the tangents at A and 7?, viz. AT and BT, are at right angles.
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Describe two circles with centres and N and radii equal to k and y respectively.

Describe a third circle on TU as diameter. Since OT . OU=k* this third circle

cuts the circle with centre at right angles. Similarly it cuts the circle with

centre N at right angles. The tangents from the centre E of this third circle are

therefore equal. The centre R is therefore on the radical axis of the circles whose

centres are and N. This gives an easy geometrical construction to find T and U.

The points T and U will be imaginary unless the radical axis lie outside the

circles. The circles must therefore not intersect. Hence ON+NA must be less

than k. Produce AO to A so that OA = OA. Then we see that AB +BA must be

less than 2k. Hence unless B lies within an ellipse whose foci are A and A and

major axis 2k, the particle cannot be projected from A to pass through B.

Ex. 2. A particle is projected from a given point A under the action of gravity

and AC is a focal chord of the parabola described. Prove that the action from A

to B is not a minimum unless B lies on the parabola between A and C. If B lies

beyond (7, find the path which makes the action a minimum.
The first result follows at once from Jacobi s example. To answer both these

questions, we notice that there are tivo directions (if any) in which a particle may
be projected from one given point A to pass through a second given point B. These

have their foci S, S one above and the other below the chord AB, so that SS and

AB bisect each other at right angles. These paths coincide when B is at (7, and

wherever B may be one of these has its focus below AB. This parabola is the

path required.

Ex. 3. A particle, projected from a given point A with a given velocity, describes

a circle about a centre of force on the circumference whose attraction varies in

versely as the fifth power of the distance. If B be any other position on this circle

through which the particle will pass before arriving at the centre of force, prove

that the action from A to B is a minimum according to Jacobi s condition.

459. The inversion of dynamical problems*. Since the equations of motion

can be deduced from the principle of least action, it is clear that, if in applying

the principle to two different problems we have to make the same expression a

minimum under the same conditions, the general integrals of these two problems

can be inferred the one from the other.

Consider the case of a single particle moving with a force function U+C along

a path APB beginning at one given point A and ending at another B. If s= AP,

and v is the velocity of the particle, the path is such that jvds is a minimum. If

we invert the curve with regard to any point 0, it follows that k2fo is a

minimum for the inverse curve from A to B f

,
where accented letters refer to the

inverse curve and k is the constant of inversion. It follows from the principle

of least action that this curve will be the path of a free particle moving with

such a force function U +C that v = /c
2
tY/

2
. We have therefore from the

principles of dynamics

r v =rv and . . r *(U + C )
= r*(U+C) (1).

Since the radial angles are equal in a curve and its inverse, the first of these

equations shows that the angular momenta about any axis through the centre of

inversion at corresponding points in the two motions are equal.

* The substance of this article is taken from a paper by Larmor in Vol. xv. of

the Proceedings of the London Mathematical Society, 1884.
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We have therefore the following theorem : if a particle describe a path APB
with a force function U+G, then a particle can describe the inverse path A P B with

a force function U + G given by (1), provided tliat at one set of corresponding points

the velocities are related to each other by the equation r v = rv.

Ex. 1. A particle, constrained to move on a smooth sphere and acted on by

no forces, is known to describe a great circle. By inverting this theorem show

that a particle, constrained to move on a smooth given sphere and acted on by a

central force varying inversely as the fifth power of the distance from a point 0,

describes a circular path. Show also that this circle is the intersection of the

given sphere with another sphere passing through and a point which is

the foot of the perpendicular from on its polar plane.

Ex. 2. Prove that in a plane field of force of which the potential referred to

polar co-ordinates is
-^ +

--
6 ,

a particle if projected in the proper direc

tion with the velocity from infinity will describe a curve of the form

(r
- a sin 0)(r-b sin 0)

= ab,

provided + ^-^ 2
+ |=0. [Math. Tripos, 1886.

Ex. 3. A particle, constrained to move on an anchor ring of evanescent

aperture, is acted on by a central force varying inversely as the fifth power
of the distance from the aperture, prove that the path cuts all the meridians

at the same angle.

We may also transform dynamical theorems by the help of conjugate functions.

This method is analogous to that used in Chap. xiv. of this treatise to deduce the

motion of a heterogeneous membrane from that of a homogeneous one. A list of

the theorems required on these functions is given in that chapter.

Let (x, y), (, 77)
be the co-ordinates of two points P, II, moving in corresponding

or conjugate planes, and so related that i- + ii*J-l=f (x + y^ -
1). If /* be the

modulus of transformation, then

^ (*i\* + (
(liV - (*?V + /*?

&quot;-(dx)
+
(dy) -\dx)

+
(dy)

Let da, do- be corresponding arcs of the paths described by the two points P, II,

then dff= /j.ds. The motion of the particle H in the plane (, -rj) being given by

8$v dff= 0, that of P in the plane xy is given by djv fj.ds
= Q. The particles P and

II therefore move freely with velocities v and v under force functions U+C and
U + C , provided

v=v fi and .*. U+ C= fjf (T7
f + C

) (II).

Ex. 4. A particle II describes a central orbit whose polar equation is f(p, 0) =0
with a velocity v such that v = F(p). Prove that a particle P can describe the

central orbit f(r
n

, w0) = with a velocity v= nrn
~ 1
F(r

n
) under a central force equal

to ^dv^jdr. Show also that the ratio of the angular momenta of P and II about the

centres of force is equal to n and that the times of describing corresponding elementary
arcs are in the ratio 1 : n2

/-
2

^-&quot;.

460. Lagrange s transformation. Lagrange has given a general view of his

transformation from Cartesian co-ordinates which seems worthy of notice. Let L
be any function of x, x

, &c., y, y , &c. and of t, not restricting ourselves to dif

ferential coefficients of the first order. Let the variables x, y, &c. be transformed

to others qlt q^, &c. by writing for x, y, &c. any functions of q1 , q, &o. and of t.

The function L is thus expressed in two ways. By comparing the two values of
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5Ldt, given by the Calculus of Variations when the time is not varied, we see that

fti fdL d dL \ [h fdL d dL
\

S
( T- ~ T T-/ + &c -

)
Sxdt ~

I S
( J-

~ T H-, + &c -

J t \dx dtdx ) Jt \dq &df
is equal to the difference of the integrated portions of the two variations. Hence the

expression under the integral sign must be a perfect differential with regard to t,

quite independently of the operation 5. But this cannot be unless the expression

is zero, because it contains only the variations Sx, 8q, &c. and not the differential

coefficients of these variations. We have therefore the general equation of trans-

v fdL d dL . \ v /dL ddL .\formation S(-5-- -=-
i,
+ &c.

} 5x= 2 [
--- + &c. ) da,

\dx dtdx ) \dq dtdq )
y

where the S implies summation for all the variables x, y, &c., ql , q2 ,
&c.

If x, y, &c. be Cartesian co-ordinates and if L be of the usual form Zma; 2 + U,

the left-hand side of this equality vanishes by virtual velocities. Hence the right-

hand side must also vanish. The # s being all independent, we are led to Lagrange s

equations.

Ex. Supposing the Lagrangian function L to be a function of the typical

variables q, q , q&quot;
and that the differential equations have the type

dL _d dL d* dL_
dq dtdq~

+
dPdq

7^
show that the corresponding Hamiltonian forms are

,
dH d dH ... dH

T
=Tq-did^

m q =^
where r=dL/dq&quot; and H is a function of q, q , r.

Let H be the reciprocal function of L with regard to
g&quot;,

then L +H =Zr&amp;lt;j&quot;. By
Vol. i., Art. 410, dLldq=-dHldq, dLldq = -dH/dq . The first result follows by
substitution in the Lagrangian equation of motion and the second follows from the

definition of a reciprocal function.

461. Cyclical Motions. When the geometrical equations do not contain the

time explicitly the symbol H or h may be used to express the energy of the system.

If we represent the energy by E, Sir W. E. Hamilton s fundamental equation may

be written 25 P Tdt= t5E + fs^ fyT ........................... (1).

This equation has been applied to the motion of a system of bodies oscillating

in such a manner that the motion repeats itself in all respects at some constant

interval. Let this interval be i. Suppose that some disturbance is given to the

system by the addition of a quantity of energy dE. Let the system be such that

the motion still recurs after a constant interval, and let this interval be now
t + Si. The symbols of variation in Hamilton s equation may be used to imply a

change from one kind of motion to the other. If the time t is taken equal to the

period i of complete recurrence, the initial and terminal states of motion are the

same and therefore the last term vanishes when taken between the limits. The

equation reduces to 25
jj

Tdt = idE. Let Tm be the mean vis viva of the system

during a period of complete recurrence of the motion, then
jjj

Tdt= iTm . We

therefore have ^-= 2-^ .

J m l^m
This equation may be put into another form. Let Pm be the mean potential

energy of the system during a period of complete recurrence
;
then we have

*

..................... (2),

R. D. II. 19
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which serve to determine the change in the mean potential and kinetic energies when

any additional energy SE is added to the system.

If the system is not performing a principal oscillation the motion does not recur

at a constant interval i. Let us suppose that the motion is compounded of several

principal oscillations or more generally let the motion be of the kind called stationary

motion in the chapter on vis viva in Vol. i. If the means are now taken for any very

long time i, the equations just arrived at are still true. To show this we recur to

Hamilton s equation (1). Dividing by t i, the last term on the right-hand side

becomes very small because the motion is such that the Sg s in that term do not

continually increase with the time. We therefore have 25 (iTm)li=8E, and the rest

of the proof is the same as before.

These or equivalent equations have been applied by Bolzman, Clausius and

Szily to the Dynamical Theory of Heat. The papers of the two latter are in

various numbers of the Philosophical Magazine extending from 1870 onwards.

The second of the equations (2) may be called Clausius equation. The reader

may also refer to a work by Prof. J. J. Thomson on the Applications of Dynamics
to Physics and Chemistry, 1888.

462. Ex. 1. If the period of complete recurrence of a dynamical system is not

altered by the addition of energy, prove that this additional energy is equally dis

tributed into potential and kinetic energy. See Art. 73.

Ex. 2. A quantity of energy dE is communicated to a system whose mean
semi vis viva during a period of complete recurrence is Tm . This is repeated

continually, so that at last the mean vis viva and the period of complete recurrence

/dP

1

,
= 0. This example is due to M. Szily,

J-m
and is important in the Dynamical Theory of Heat.

On the Solution of the General Equations of Motion.

463. Hamilton s Solution. Sir W. R. Hamilton has ap
plied his fundamental theorem expressing the variation of the

Principal and Characteristic functions to obtain a new method of

solving dynamical problems.

Let (ft, ft , ft, ft , &c.) be the values of (qlt
&amp;lt;//, q2 , q2 , &c.)

when t t
,
and let T be the same function of (ft, ft , &c.) that

T is of (ql} qS, &c.). We have then by Art. 442 when t is written
for the upper limit

SS = 2 Sq
- 2 g S/9

-mt +

SV= 2 ~
Sq
- 2

It is clear that both S and V may be regarded as functions of

the time and the initial conditions of the system of bodies, i.e. we

may regard either of these quantities as a function of t
, t, ft, ft,

&c., ft , ft ,
&c. Also the co-ordinates qlf q2 ,

&c. are functions of

t
,
t and the same initial conditions. Though these functions are

in general unknown, yet we can conceive the initial velocities

ft , ft/, &c. eliminated, so that 8 and Fare now functions of t0t t,
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and /5j, #2 , &c., qlt
q.&amp;gt;,

&c. the co-ordinates of the system at the

times t and t.

Let S be thus expressed, then, by the equation for 88, we have

the typical equations

d__dT dS__dT
dq~dq&quot; d/3~ dff&quot;&quot;

Since T is not a function of
q&quot;,

the first of these equations
contains no differential coefficient of a co-ordinate higher than the

first. This equation, therefore, represents typically all the first

integrals of the equations of motion.

Since T contains only the initial co-ordinates and the initial

velocities, the second equation has no differential coefficient of

any co-ordinate in it. This equation, therefore, represents typically
all the second integrals of the motion.

Besides these we have the two equations

%-* I!--*
.....................

&amp;lt;

2
&amp;gt;&amp;lt;

where, if the geometrical equations do not contain the time ex

plicitly, we may put h for H, h being a constant. In this case

these integrals may be used to connect the constant of vis viva

with the constants (, j3 , &c.).

Comparing Art. 447 with these results we see that S is such

a function, that all the equations of motion and their integrals are

included in the statement that 88 is a known function of the

variation of the limits. If we keep the limits fixed, we get

Lagrange s equations ;
if we vary the limits we get the integrals.

464. In just the same way, if we regard g/, q.3 ,
&c. as

functions of t, the initial co-ordinates and their initial velocities,

we may eliminate t also by means of the equation

We may eliminate t also by means of a similar equation

giving H in terms of the initial conditions. Both these reduce

to H= HQ = T U when the geometrical equations do not contain

the time explicitly.

Let us suppose V to be expressed in this manner as a function

of the initial co-ordinates, the co-ordinates at the time t, and of H
and H . Then, by the equation for 8V,

dV_dT dV__dT dV dV _
dq~dq

y

d/3~ d&&quot;
dH~ dU,~

Supposing V to be known, the first of these equations gives in

a typical form all the first integrals of the equations of motion.

The second supplies as many equations as there are co-ordinates

192
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(&amp;lt;?i&amp;gt; q*&amp;gt; &amp;lt;&.)
When the geometrical equations do not contain the

time explicitly these do not contain t, but they all contain h.

One of them, therefore, reduces to the relation between this

constant and the constants ({3, , &c.). The two last equations
become dV/dh = t t . This will give another second integral of
the equations of motion containing the time.

465. The typical expression dT/dq has been called in Vol. i.

the momentum corresponding to the co-ordinate q or, more briefly,
the q component of the momentum. We may therefore say that

the q component of the momentum is given by dS/dq or dV/dq
according as we are using S or V.

The momenta corresponding to the co-ordinates qlt q, &c. will

be represented by the symbols pi,pzt &c., or typically by the single
letter p.

By Lagrange s equations dp/dt
= dL/dq, we may therefore also

say that the rate of change of each momentum is equal to the

differential coefficient of a single function, viz. L with regard to

the corresponding co-ordinate.

466. If Q=
I

(2qp + H)dt, where P = -p prove that 8

Thence show that if Q be expressed as a function of the initial and terminal

components of momentum, viz. (04, a2 , &c.) and (PI, p%, &c.) and of the times t

and t, then
d^ = q, ^ = -/3,

d
=H. This result is due to Sir W. E. Hamilton.

dp
l da dt

467. Examples. Ex. 1. A homogeneous sphere of unit mass rolls down a

perfectly rough fixed inclined plane. If the position of the sphere is defined by the

distance q of the point of contact from a fixed point on the inclined plane, show that

where g is the resolved part of gravity down the plane and t = 0.

Thence obtain by substitution the Hamiltonian first and second integrals of the

equation of motion.

We easily find, as in Vol. i., that q = p + p t +& gP. Also T= jyq *, U=gq.

To find S, we substitute in S=[* (T+ U) dt. After integration we must eliminate

/3 by means of the equation for q.

Ex. 2. Taking the same circumstances of motion as in the last example, show

that V= J*{(gq + h)
3

-(gp + lif
t

}. Thence also deduce the Hamiltonian first

and second integrals.

Ex. 3. Show how to deduce the equation of vis viva from the Hamiltonian

integrals.

We have V a function of qlt q2 , &c. and H. Hence =S
-&amp;lt;?

+ ,. ,

which becomes by Hamilton s integrals 1T= S (dT/dq
f

) q + t (dHjdt). When T is a

homogeneous quadratic function of (q^ q.2 , &c.) this gives dH]dt O
t
or J/= con-

stant. The equation of vis viva may also be deduced from Hamilton s principal

function.
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Ex. 4. When the geometrical equations do not contain the time explicitly,

show that no two of the Hamiltonian integrals can be the same and that no one
can be deduced from two others.

If it were possible that two could be the same, the ratio of dT/dq^ to dT/clg^ must
be some constant m. Integrating this partial differential equation, we find T to be a

homogeneous quadratic function of qi+mq l2 t qs ,
&c. It would, therefore, be possi

ble to set the system in motion, with values of q^ and q.2 which are not zero, and

yet so that the system is without vis viva.

Ex. 5. In any dynamical system, if the co-ordinates q 1 , q%, q3 and their corre

sponding momenta p l , p2 , ps
are expressed in terms of their initial values and the

time elapsed, prove that the Jacobian of Pi,p2) ps , q1} q2) q-d with regard to their

initial values is equal to unity.

Ex. 6. A system whose co-ordinates are qlt q.2 , &c. is making small oscillations

about a state of steady motion determined by q l
= 0, 52 = 0, &c. The Lagrangian

function, as in Art. Ill, is given by L =L + 2Aq + L2 ,
where L2 is a homogeneous

function of the second order of the co-ordinates and their velocities. Prove that

where the last term is to be taken between the limits t and t. Here the in

tegrations have been effected, but in order to express S (Art. 463) as a function of

the co-ordinates we must finally substitute for q and j8 in terms of these quantities.

Ex. 7. The position of a system making small oscillations as in Ex. 6 is

defined by one co-ordinate q, so that

where the coefficients are all constants.

where m2= CUIAU .

Ex. 8. A particle oscillates in a straight line about a centre of force which

varies as the distance, show that the Hamiltonian function

2 s

Verify this by deducing the Hamiltonian Integrals.

468. Hamilton s Differential Equations. By the pre

ceding reasoning all the integrals of a dynamical system of equa
tions can be expressed in terms of the differential coefficients of

a single function. But the method supplies no means of discovering
this function d priori. We shall now show that this function must

always satisfy a certain differential equation, so that the solution of
all dynamical problems may be reduced to the integration of one

differential equation.

To construct this differential equation we first form the

reciprocal of the Lagrangian function L T-\-U according to the

rule given in the first volume of this treatise, Arts. 410 and 414.

Briefly the rule is as follows, we put dT/dqi =PI, dT/dq* =p-z ,
&c.

as in Art. 465 of this volume
;
also putting
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we eliminate the velocities qj, g2 ,
&c. and express T2 as a function

of the co-ordinates qlt q,, &c. and the momenta plt -pzt
&c - The

reciprocal function of L = T + U is then H=T2
- U.

If the geometrical equations do not contain the time explicitly,

the vis viva 2T is a homogeneous quadratic function of the

velocities. If this function be

a

f + &c.,

we have T., = pl p,

p l
Au A la

where A is the discriminant of T] see Vol. I. Art. 413. Thus H
is a quadratic function of the momenta plt p 2&amp;gt;

&c. We may
shortly write this in the form

H= B
But pi

= dV/dqlt p.2
=

dV/dq.,, &c. and the equation of vis viva

gives H= h. Hence V must satisfy the equation

17? (
dV\j-T* ^A TT A

1 1%, -= \ + t12 -= -=
\- &c. U =fi

\dqj dql dqt

In just the same way pl dS/dqlt p.2
=

d8/dq.2&amp;gt;

&c. and H dS/dt.
Hence S must satisfy the equation

Here the coefficients BU) B12 ,
&c. are all known functions of the

co-ordinates q lt q2 ,
&c.

We have supposed V to be expressed as a function of the

co-ordinates at the time t, the initial co-ordinates and the energy
h. But in this equation we may also regard V to be a function of
the co-ordinates at the time t, the energy h, and as many arbitrary
constants as there are co-ordinates. In this case these constants

are really functions of the initial co-ordinates which we do not
care to determine. The equations giving the momenta plt p.2) &c.

at the time t as the differential coefficients of V with regard to

qlt q2 ,
&c. will still be true; but the equations expressing the

initial momenta are supposed not to be wanted.

If we take as these constants the actual co-ordinates at any
epoch t = t we may form another equation of a form similar to (I)
with ft, ft, &c. written for qlt q2) &c. and t for t. It is then

necessary that V should satisfy both these equations.

Summing up, we may form the Hamiltonian equation (I) by
the following process. We first form the Lagrangian function
L T + U and thence its reciprocal function H=T U by the rule

given in Vol. I. Art. 410. Equating this to a constant h, we have the

equation of vis viva expressed in terms of the momenta. Lastly, we
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write for the momenta the differential coefficients of V with regard
to the corresponding co-ordinates.

469. When the equations contain the time explicitly, the vis viva 2T contains

both first and second powers of the velocities. Let this be

Then the reciprocal function T., contains both first and second powers of plt p.2 &c.,

and may be written

_ -1 Pi~ A i P*~ A3~

where A is the minor of the leading constituent in this determinant. Thus

H=T - U when expanded takes the form

We then substitute pl
= dVldq 1

&c. and obtain the equation

B (
dV\ B -H U2 n

\^9iJ
*

^h
Since the time t here occurs explicitly we suppose its value dV/dH to have been

written for it. We have thus a partial differential equation to find V as a function

of q lt q 2 &c. and H. Supposing V to be properly found from this partial differen

tial equation, the formulas given in Art. 463 would determine all the integrals of the

dynamical equations.

Ex. If the expression for T were of the form

reciprocal function of T is S (n
-

1) Tn , which must of course be expressed in terms

of the momenta. It may be noticed that T
1
is absent from the formula.

470. Jacobins Complete Integral. We thus have, in

general, a partial differential equation to find V or S. This

equation admits of many forms of solution, but Sir W. R. Hamilton

gave no rule to determine luhich integral is to be taken. This
defect has been supplied by Jacobi in the following proposition.

Let there be n co-ordinates in the system. Suppose a complete
solution to have been found containing n 1 constants (besides h)
and the constants which may be introduced by simple addition to

the function V. These constants need not be the initial values of

qlt q2 , &c., but may be any constants whatever. Let them be denoted

by &!, &2 -..&n-i so that

V=f(ql ,q,...qn,bl ,b,...bn_l ) + bn ............ (1).

Then the integrals of the dynamical equations will be

df p df df /ox

/&r
- a- &c- 5C = &quot; a

&quot;-&quot;

4
............ ( }&amp;gt;

where a1 ,a2 ...ara_1 and e are n new arbitrary constants, and tJie

first integrals of the equations may be written in the form

df dT df dT--
j T, -r-= j ,,

dql dq, dq.2

,= j ,, &c. = &c................ (3).
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It appears from Jacobi s proposition that any integral.provided
it is complete, will supply a solution to the dynamical problem.

We have also a sufficient number of constants, viz. 6 : ... 6W_1 , h, e

and al . . . an^ to satisfy any initial conditions.

An integral of a partial differential equation has been called by Lagrange

&quot;complete,&quot;
when it contains as many arbitrary constants as there are independent

variables. It is implied that the constants enter in such a manner into the inte

gral that they cannot by any algebraic process be reduced to a smaller number.

For instance, if two of the constants enter in the form b + b2 , they amount on the

whole to only one.

471. To prove these results we must show that, if the form of

V given by (1) satisfies identically the equation

H = BlLp l*+Bvplpt+...-U = h .................. (I),

where p stands for dV/dq, then the relations (2) will satisfy iden

tically the two typical Hamiltonian equations

dH , dH f

It will immediately follow, since H and T+ U are reciprocal func

tions, that the relations (2) will also make

Since (I) is identically satisfied, we may differentiate it partially
with regard to each of the n constants 6X ... bn^ and h. We thus

obtain, after substitution from (1), n 1 equations of the form

dpl db dp2 db

and an nth equation derived from this by writing h for b and

unity for the zero on the right-hand side. We shall use these n

equations to find dH/dplt dH/dp.2) &c.

But if we differentiate Jacobi s integrals (2) with regard to t

we have n 1 equations of the form

dJh.^L +^ *_ + . .. =0
dt dbdql dt dbdq.2

and an nth equation derived from this by writing h for b and

putting unity on the right-hand side. We shall use these n equa
tions to find dq/dtlt dqjdt, &c.

Comparing these two sets of equations, we see that, when we
substitute for the typical p its value derived from p = df/dq, the

equations become identical. Hence,

dH dql dH
dq&amp;lt;2_ = _*i _ _if

(fee.

dpl dt
dp&amp;gt;2

dt

Again, if we differentiate the identical equation (I) with regard
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to each of the co-ordinates ql . . . qn in turn, we obtain after sub
stitution from (1) the typical equation

dK
+ dHdft^dHdp,

dq dpl dq dp.2 dq
^, =()

dH _dql d*f dq .2

dq dt dq^dq dt dq^dq

But since p =
df/dq}

the right-hand side is the same as dp/dt, we
therefore have

dH _ dpl dH _ dp2

dql dt dq2 dt

472. When the geometrical equations contain the time explicitly the enuncia

tion is slightly altered. Since the partial equation, as explained in Art. 469, has

now 7i + l variables, viz. q^...qn and H, the complete integral has n+1 constants

and may be written in the form

V=f(ql ...qw H, V.AH&n+l ........................... (1)-

Then the n integrals of the dynamical equations are

where
! ... an are n new arbitrary constants. These integrals contain ql ...qn and

H, but H may be eliminated and t introduced by using the equation dV/dH=t.
The n first integrals are

df_dT df_dT
--&quot; ~- ............................

and H may be eliminated as before.

When the geometrical equations do not contain the time explicitly the partial

differential equation (III) of Art. 469 contains H but not dVjdH, this last having
been introduced merely to eliminate t. The complete integral has therefore

n constants instead of w+1. We now write h for H and by Art. 464 we have

dV/dh= t- t . Putting e for - 1
,
we see that the place of the missing constant in

(2), viz. ern , is filled by the constant e.

473. Geometrical Remarks. To simplify the argument let us suppose that

the dynamical system depends only on two co-ordinates ql , q^ . The Hamiltonian

equation (I) therefore takes the form

Let us suppose that a complete integral has been found, viz.,

V=f(q 1 , ?.,, bj + b., ................................. (2).

Kegarding &amp;lt;/j, q2 and V as the Cartesian co-ordinates of a point P, this is the

equation to a double system or family of surfaces. Let us select any family we

please, so that the constants 6lf b
2 are now related by some equation b., = \f/(b 1 ).

The characteristics of this chosen family are given by

V=f(q 1 ,q.2 ,bl) + t(b1)}

= dfldb1 + dtldb1 ]

where &
x
is regarded as a constant.

The general integral is obtained by eliminating l)
l
between the two equations (3).
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Here 6j in the first equation is to be regarded as a function of qlt q.2 ,
determined by

the second equation. This of course is merely following Lagrange s rule to find the

general integral when any complete integral is known.

In the same way we find that Lagrange s singular solution is at infinity.

It appears from this that all the characteristics of all the families of surfaces

included in the complete integral (1) are used to build up the general integral. We
choose any set of characteristics we please so that a surface can be made to pass

through every member of the set. This surface is a particular case of the general

solution.

474. According to Jacobi s theorem the path of the dynamical system is defined

by dfldb-L
= - ar Looking at the second of equations (3) we see that this is equivalent

to asserting that d^ldb^ and therefore 6j is constant. It follows that the possible

paths of the dynamical system are the characteristics of the families ivhich may be

chosen out of the complete integral.

475. Since Lagrange s method of finding the general integral will give a solu

tion whatever the form of
\f/ (6X ) may be, we may use that process to obtain other

complete integrals. If we write 0(?, bj +n for ^(6j) and proceed to eliminate &x we

obtain a solution which contains two constants, viz. m and n, and which is therefore

a complete integral. Here
&amp;lt;f&amp;gt; may be any function we please, and \ is to be regarded

as a function of qlt q% determined by the second of the equations (3).

The paths derived from this new complete integral by Jacobi s method are

given by (dfld^ + d^jdb^ db-
Lldin + d\p/dm= - aL .

By the second of equations (3) the term in brackets is zero. The path therefore

is defined by equating to a constant a function of b and m. The paths are there

fore given by equating &
x
to a constant. It follows that the two complete integrals

lead to the same set of dynamical paths.

476. If the Hamiltonian equation

iBu (dVjdqJ* + 12 (dVfdqj (dV/dqJ + B22 (dVldq^= U+h
is such that all the coefficients on the left side and also U are functions of one co

ordinate only, say q.2 ,
then a complete integral can be found by writing V W+ btfi,

where W is a function of
q&amp;lt;&amp;gt; only. Substituting this in the Hamiltonian equation

we have a differential equation with one independent variable, viz. q.2
. The solution

of this can be effected by the ordinary method of separating the variables. Thus

we easily find by solving a quadratic that dV/dq.2 is a known function of q% and br
Integrating this we have a value for V with one additional constant. This there

fore is a complete integral.

477. Examples. Ex.1. Taking the same problem as that in Ex. 1 of Art. 467,

show that Hamilton s differential equation for V is T
5

(dV/dq)
2 -gq = h. Integrate

this equation and thence find the motion.

Ex. 2. Let us next consider a more complicated case in which there are two co

ordinates. The simplest example we can take is that of the motion of a projectile

under the action of gravity.

If q lt q.2 be its co-ordinates the equation of vis viva may be written

i (0i
a + 9s

2
)
= ~

f/&amp;lt;l&amp;gt;2

+ h Following the rule of Art. 468 we see that the Hamiltonian

equation is ^(dV/dq l )

2 + ^(dVldq 2)^= -gq.2 + k. To solve this we notice that all the

coefficients on the left side are constants and that U is a function of
q&amp;lt;2 only. By

Art. 476 we therefore assume V W+ b^. Substituting and integrating we find

W
t
so that finally F= bfa

-
(2/t

-
bf - 2gq2 fl + b.2 .
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Following Jacobi s rule (Art. 470), the motion is given by

dVldh= --(2/i-^
2

g

These easily reduce to the ordinary formula? for the motion of a projectile.

Ex. 3. A particle describes an orbit about a centre of force which attracts

according to the law of nature. If r, & be its polar co-ordinates referred to the

centre of force as origin, show that the Hamiltonian equation is

(d F/dr)
2 + (d Vjrdey*= 2^/r+ 2h.

Show also that a complete integral may be found (as in the last example) by

putting V=W + b0.

Variation of the Elements.

478. Lagrange s Theorem. Let the co-ordinates of a

system be qlt q2) ...qn and let the corresponding momenta be

PI, P-z,
- pn - If the Hamiltonian function be

the equations of motion may be written in the typical form

, = _dH ,JLH_

where accents denote differentiations with regard to the time.

Let two independent variations be given to these letters, which
we shall represent by the symbols 8 and A. We may imagine
these to be produced by varying in two different ways the initial

conditions.

the time t not being varied. Performing the operation A on both

sides of the equation, we have

AS# = :E (&q Sp-&p Sq + q ASp-p &Sq) ......... (4).

But reversing the order of the operations, we find

8A^ = S(VAp-S/Ag + ^SAp-/SAg) ......... (5).

Subtracting and remembering that SA=AS we have

S (Ag Sp
-

Sq &p - kp Sq + Sp kq) = 0.

Since both the operations A and 8 are independent of d/dt, this

gives

.................. (6).

Thus the total differential with regard to t of the quantity
summed is zero throughout the motion

;
that quantity is therefore

constant.

Let us suppose that the co-ordinates ql ,
&c. and their momenta
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plt &c. have been found by solving the equations of motion and

that each is expressed as a function of t and the constants of

integration, say a, 6, c &c. Let these constants receive any two

independent variations, represented by 5a, Aa, &c., the time not

being varied, then the corresponding variations Bq, A&amp;lt;/,
&c. may be

found by simple differentiation in terms of t, the constants a &c.

and their variations. The theorem asserts that, on substituting these

in the expression

2(Ag8p-Aj&amp;gt;Sg) (7),

the time t will disappear from the result, so that the result is a

function only of the constants and their variations.

Let t be any time other than t and let a.! ...
, & ... n be the

values of pl} &c. qlt &c. at that time. For example we may let t

denote the time of the initial motion, and OL^ . . . an , A ... @n the

initial values of the variables p &c., qL &c. We then have

2(A^-A;%) = :S(A/3Sa-AaS/3) (8).

Lagrange deduces the theorem from his own general equations
of motion, see page 304, Vol. 1, of the Mecanique Analytique.
The proof just given is due to Boole; see Cambridge Mathematical

Journal, Vol. 11, p. 100.

479. Extension of Lagrange s Theorem. In Lagrange s theorem the quantities

g, q + Aq, q + Sq are contemporary values of the co-ordinate q. It is however

sometimes convenient to vary the time also, just as in the calculus of variations we

ascribe a variation to the abscissa as well as to the ordinate. Let then q, q + Aq t

q + dq represent the values of any co-ordinate in the undisturbed and varied motions

at the times t, t + At, t + 5t respectively, where At and 5t are any small arbitrary

functions of the time. On this supposition we must alter Lagrange s theorem by

writing Aq-q At and dq-q 8t &c., for Aq and Sq &c., see Art. 445. In the same

way, if At and dt be the arbitrary changes in the initial time, we write Aa - a!At &c.

for Aa &c.

Let also H represent the same function of t0t &amp;lt;ti...an , ft...^ that H is of tt

Pi --Pn) &amp;lt;h---&amp;lt;Zn- Then, making these substitutions in (8) and remembering that

AH=2(q Ap-p Aq) +H At (9),

with similar expressions for 8H, AH and 5H
, we find

S (Aqdp -
Ap8q) + AHdt - Af5/1= S (A/35a

-
AaS/3) + AH 5i - A 5H . . . (10).

If the geometrical equations do not contain the time explicitly, H is not a

function of t and therefore H=H = h. The equation (10) then becomes

2 (&q5p
-
&p8q) + &hd (t

- g - A (t-t )
5h= 2(Ap8a-&adp) ,.(11).

480. As an example of this theorem, let the symbol A represent simply djdt.

Then
A&amp;lt;/

is the difference between the values of the co-ordinate q in the undisturbed

motion at the times t and t + At, no change being made in the initial conditions.

It follows that Aa = 0, A = 0, A =0, Aff = 0. Dividing equation (10) by At, we
have therefore 8H= S (q Sp -p Sq) +H 5t,

which is a symbolical method of writing the Hamiltonian equations.
In the same way we may let A represent differentiations with regard to some

other letter. For example, we may regard // as the independent variable, and
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express plt &c., 7, ,
&c. and t in terms of H and the constants of integration;

then taking A to represent d\dll, the constants not being varied, we obtain the

Hamiltonian equations with t and H, p and q interchanged.

481. Ex. 1. Assuming H=l$p-qt, Jf = |a
2 -

/3&amp;lt; ,
solve the Hamiltonian

equations of motion and express p, q and H in terms of t and the initial values of

p and q. Thence verify by substitution both Lagrange s variation theorem and the

extension of that theorem.

Ex. 2. Let
&amp;lt;fj, ga ...gn be the co-ordinates of a dynamical system and let the

corresponding momenta be plt pz ...pn - Taking these in pairs, let (ptfi), (p2 &amp;lt;72)...

be the Cartesian rectangular co-ordinates of n moving points Plt P2 ,..., Pn whose

positions in space at the time t therefore determine the position of the system.

Suppose that, when any two small arbitrary changes are given to the initial values

of thep s and
&amp;lt;/

s, these points take the positions Q1 ^ Q.2 ,... ;
Rlt P2 ,... at the same

time t. Prove that the sum of the area of the triangles PjQj-Rj, P
2Q2

Z?2 ,
&c. is

constant throughout the motion.

Prove also that, if the Hamiltonian function H be expressed as a function of the

Cartesian or polar co-ordinates of the points P
x ,
P2 ,..., then H acts as a stream

function, so that its partial differential coefficients give the resolved velocities of the

points P1? P2 ,... in any directions.

Ex. 3. Brassinne s extension of Lagrange s variation formula. Supposing the

Lagrangian function L to be a function of the typical variables
&amp;lt;/, q , q&quot;

and the

differential equations of motion to have the form

dL_d_dL d^dL_
dq~ dt dq

+
dt2

dq&quot;~

show that, when the time is not varied, Lagrange s variation formula becomes

(AqSp
-
&p8q) + (Aq Sr - ArSg ) + (Ar Sq

- Aqdr )
= constant,

vfherep= dL[dq , r= dL/dq&quot;. Liouville s Journal, Tome xvi. 1851.

Brassinne deduces the result from Lagrange s equations, but it follows more

easily from the corresponding Hamiltonian forms. Following Boole s method the

result is arrived at by equating 5AH and AdH.

482. Normal Transformations. We have supposed that the constants

a
i---

ani i-../8n are the values of the variables p^.-Pn, q^..qn at some time *= *o-

But this restriction is not necessary. Let the 2n independent integrals of the

equations of motion be

fl(Pl:-Pn&amp;gt;Vl.~q, *)=/! (!.&amp;gt;&...&, *o)&amp;gt; /2 (&C.)=/2 (&C.), &C.=&C....(A).

It is evident that we may combine these together in an arbitrary manner so

as to arrive at 2n other independent equations, which may equally serve as

integrals. Thus supposing, we write

where a^ &c., blt &c. are 2ra new constants, the new forms of the integrals are

obtained by eliminating a^..^, ft...^, between (A) and (B). The resulting forms

contain
, but, if desired, we may eliminate f also, either by giving it some definite

value or by properly introducing it into the functions 1} &c., \fflt &c. The former

course is the simpler of the two.

The only restriction on the arbitrary functions fa , &c. which it is necessary to

make for our present purpose is that the variations of the two sets of constants

should obey Lagrange s variation formula, viz.

(12).



302 THE CALCULUS OF VAKIATIONS. [CHAP. X.

Supposing this to be the case, let H be expressed in terms of the new constants

and t . The extended Lagrangian variation formula then takes the form

2 (Aqdp
-

Airfq) + AH8t - AtdH - 2 (AbSa
-
Aa56)

-
AfZ&quot; 5f + At 8H = 0. . . (13),

where the letters alt &c., blt
Ac. are either the values of the elements at some

arbitrary time f
() ,
or some constants derived from them by a normal transformation ;

the terms containing dt and 8H being omitted if the arbitrary time t is not

varied.

There are many ways of so choosing the relations between the two sets of

constants that the variation formula (12) may hold. It will be presently proved

that, A being any arbitrary function of the quantities a^...an , j8i...j8n ,
the equation

(12) is satisfied if the two sets are so related that each b = dK[da and each a. = dK\d$.

When quantities (az &c.), (ft &c.) are changed into others (ax &c.), (&J&G.) by

relations such that each b = dKlda and each a^dKJdp, the transformation has been

called normal by Donkin, see Phil. Trans. 1855. We shall however extend the

meaning of this term to include all transformations which satisfy equation (12).

483. Conjugate elements. We notice that the elements or letters used in

equations (10) or (13) run in pairs, so that in using the theorem it will be

convenient to write them in two rows, thus :

&amp;lt;?!&amp;gt; 02--3n H
0&amp;gt;

&
1&amp;gt;

&
2&amp;gt;---

b
n&amp;gt;

H,

Pi&amp;gt;P3&amp;gt;Pn&amp;gt; -*&amp;lt;)&amp;gt;

-
fl

i
-a

9 ,...-an , t,

where one or both of the columns containing H, t
;
H

,
t are omitted when we do

not wish to vary t or f . The letters or elements here placed in any column are

usually called conjugates. If a, y be any two conjugates the equation (13) may be

shortly written S(Aa% - Ay5x) = (14).

We further notice that Lag-range s theorem is not altered by interchanging any
two conjugates provided we change one of their signs. For instance we may write

the letters in the order q l ,
. . . qn , H&quot;

,
alt ... an , H,

Pn-Pn&amp;gt; -* &i-& *

It is evident that the effect of the change of order in (a, b) is exactly counteracted

by the change of sign.

484. Two ways of expressing the solutions. Supposing If to be a given

function of p1 &c., qr &e. and t, we can form the Hamiltonian equations of motion ;

let these be solved and let the constants of integration be expressed in terms

of either the initial elements at the time t or the functions of them represented by
a

1
&c. , &! &c. In this way we have 2n equations connecting the variables pl &c.,

q l
&c. with the 2n constant elements and the two times t and t- . If necessary we

may join to these the two equations connecting H and H with the same letters.

These 2n + 2 equations may be combined together in a great variety of ways and

(with some exceptions) we may express any 2n + 2 of the letters in terms of the

remaining 2n + 2 as independent variables. Two combinations are generally used,

though others may be imagined.

(1) Suppose the elements written in two rows having conjugate elements in the

same column, as in Art. 483, then the elements in either row may be regarded as

functions of those in the other.

(2) Omitting the columns which contain H, t and H
,

t and arranging the

remaining columns so that the _p s and g s are on one side of the middle vertical

line and the o s and & s on the other
;
the letters on either side of the middle line

may be regarded as functions of those on the other side together with t and t .
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485. Various Potential functions. Writing the letters in the order

let the elements in the upper row be regarded as the independent variables. Let us

choose the operation A so that the variation of every element in the upper row

except one is zero
;

let this one be qr . The variations of the elements in the lower

row due to A are not zero, but taking any one of them s&yp, Ap = kq f . dp[dqr . In

the same way, we shall so choose the operation 5 that the variation of every
element in the upper row, except one, say &amp;lt;/

s ,
is zero, then as before dp = 5qs . dp/dqs .

The theorem expressed by equation (14) then becomes

It immediately follows that ^ = dp-.
dq s dqr

By interchanging conjugate elements and changing the sign of one of them we

may obtain a number of similar equations. In whichever of these orders the rows

are written, it follows that, if the elements in either row are independent, the

differential coefficients of any two dependent elements, each taken with regard to the

conjugate of the other, are equal.

486. The equality of these differential coefficients expresses the fact that

Pidql +... +pndqn
-
ajd&j

-
&amp;lt;fcc.

- Hdt +HQdt

is a perfect differential of some function of the co-ordinates qi-..qn , &!...&, t and t
tt

.

If S be this function we have the typical equations

dS dS
,

d.Sf dS
P=

dq&amp;gt;

=
Tb&amp;gt;

=
di *&quot;*

In the same way, if we interchange the conjugate elements (-//, ), (#0*0) and

give the proper change of sign we see that

p1dq l +&c. - a^&j - &c. + tdH - tQdH

is a perfect differential of some function of the co-ordinates q 1 &c., b
1 Ac., // and

H
Q . If V be this function we have

_dV _dV ^_dV _dV
P
~dq ~~db -~dH ~dH

To discover the meanings of the functions here called S and V we recall the

letters L and H as defined in Art. 442. Putting L for the Lagrangian function and

remembering that H is its reciprocal, (Vol. i. Art. 410), we have L +H= 2pq .

From the equation giving the total differential of S we have dS/dt = 2pq - II=L.

If the constant elements are the initial values of q l &c., p^ &c., we have in the

same way, dSjdt = -L , where L is the initial value of L. We therefore have

S= \Ldt where the limits are t t and t = t.

Again, comparing the total differentials of S and V, we see that

d(S-V)=-d(Ht) + d(IIM,

whence S=V-Ilt +HQt . This leads to the same value of V as that given in

Art. 443.

487. It is evident that we may obtain a variety of functions besides S and

V which possess analogous properties. We have only to interchange two con

jugate elements, changing the sign of one of them, and a new function may be

deduced at once from the new arrangement. The relations between these functions

may be put more generally as follows,
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Let any two series of variables be represented by the two rows

Firstly, let each element r in the lower row be obtained by differentiating some

function A
l
of the elements in the upper line with regard to the conjugate viz. xr.

This series of equations we may write typically = ^ .

Then A

.-. SA

Similarly AS.4
1
= S (A5.r fA5.r).

Equating these results exactly as in Art. 478, we have 2 (A.r5
-
A5.x) = 0,

which corresponds to Lagrange s theorem.

It follows by the same reasoning as in Art. 485 that each x is the differential

coefficient of some function A.2 of the elements in the lower line with regard to its

conjugate viz. . Thus ^ =
-3&amp;gt;r

Since dA^= 2dx and dA^= 2xd we have by addition and integration A 1 + A z
= Sz.

Hence A
l
and A 2 are reciprocal functions according to the definition given in

Vol. i. Art. 410.

Let us next reverse the order of one of the conjugate elements, writing the

scheme in the form xlt xz ...xn^l , n ,

l&amp;gt; 2&quot;-n-U
~ x

n&amp;gt;

we then have r=dBnldxr from r=l to r=n-l, and -xn=dBJd n where Bn is

some function of the elements x
l
...xn^l

and n . Since

dBn= ^dXl + ...+ ^n-1
dxn_ 1

- xnd n ,

we have Bn=A 1
-xn n . Keferring to Vol. i. Art. 418 we see that Bn is the modified

function of A^ for the conjugate set (xn , n).

488. We may now express in a convenient manner the relation between the

constant elements a
l
...an ,

b
l ...bn and the initial values of Pi...pn ,

&amp;lt;h --?n Putting

ctj...^, fa...^ for these initial values, we have by Art. 482

S (A&oa
-
Aa5b)

- S (A/35a
-
5/3Aa) = 0.

If then we write the letters in the order

blt ...bn ,
-

each letter in either row is the differential coefficient with regard to its conjugate
of some function. Thus, if K be any arbitrary function of the letters in the upper

row, we have b = dK/da and -p= dKjda. Other orders of the letters give other rules.

489. Canonical elements. We shall now return to Lagrange s equation and

show how we may arrive at another set of relations by treating it in a different

manner.

Writing the letters in the order

we shall regard the elements on one side of the vertical bar as functions of those on
the other together with t and . As we are about to use Lagrange s variation

theorem the constants must be either the initial values of the variables or those



ART. 490.] CANONICAL ELEMENTS. 305

derived from them by a normal transformation. Since the time will not be varied

in what immediately follows the presence of t or tQ is not material.

We shall now prove that the partial differential coefficient of an element in one

row on one side of the bar with regard to any element in the other row on the other

aide of the bar is equal to the partial differential coefficient of the conjugate of the

latter with regard to the conjugate of the former.
To prove this we use Lagrange s theorem. Let the symbol A mean that the

variation of every letter on the left-hand side except pr is zero, so that A represents

Apr . d/dpr . Let d mean that the variation of every letter on the right-hand side

except bs is zero, so that S represents dbs . d/dbg . We then have &pr8qr
- Aa,S&(

= 0,

. dpr _ dbs

das dqr
which proves the theorem.

If we interchange the conjugates on the right-hand side of the vertical bar,

changing the signs of one of the rows, we deduce at once -2? -
.

dbs dqr
The method of deriving the equality of these differential coefficients from

Lagrange s theorem is due to Donkin.

490. We shall now introduce a new symbol due to Poisson. Let u, v be any
two functions of the variables p^.-pn, ql ...qn ,

then

f du dv du dv\
u v

&amp;gt;-

\dpi dq~i

~
dq. dpj

where the summation is to be taken for all values of i from i= l to i= n. We may
also include the conjugate elements (H, t)

if u, v are functions of H or t, but this

term is not to be included unless it is expressly mentioned. In using the abridged

notation (u, v) the order of the letters is to be attended to. The first factor on the

right-hand side is dujdp not dujdq.

There is another summation which Lagrange has represented by the same

symbol. To prevent confusion we shall slightly alter its form. Let u and v be

two quantities of which the variables p l , &c., qlt &c. are functions, then

where the summation is to be taken for all values of i, the denominators u, v being
the same in every term.

We shall again apply Lagrange s variation theorem with new meanings to the

operators A and 3. Considering the letters on the right hand of the vertical bar as

the independent variables, Art. 489, let A denote differentiation with regard to

6* and 5 differentiation with regard to ar . We then have (Art. 478)

the right-hand side being zero or unity according as ar ,
bK are not or are conjugate

elements.

It has already been shown that

dpi _ dax dpi _ dbr dq t dbr dqi dag

dbg dq-t dar
~

dqi dar
~

dpf dbs

~
dp{

Substituting these values (at ,
br)
= 2 i

J _ = o or 1,1

\dfHdqi dpidqj
the right-hand side being zero or unity according as a r ,

bs are not or are conjugate
elements. In the same way (br ,

bs)
= 0, (a r , s)=0.

R. D. II. 20
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When the dynamical equations have been solved we have 2n equations giving

the values of (pt &c.), (&amp;lt;7i &c.) in terms of t and the constants (^ &c.), (bl &c.) of

integration. If these constants are so chosen as to he the initial values of (p 1 &c.),

(q l &c.), or if they are any constants derived from them by a normal transformation,

we have just proved (a, b)
= or 1 ....................................... (I).

But if the constants are merely those introduced at each integration it may happen
that they do not satisfy the above relations. To distinguish these cases, the

constants are called canonical when they are so arranged that they satisfy the

relations (I).

491. There is another way of proving the relations (I) which has the advantage

of showing how closely they are connected with those already proved in Art. 487.

Let two sets of conjugate variables be represented in the two rows

and let them be connected together by the n relations

^ (*!...*, f1 ...U = 0, ^2
= 0, &c. = 0.

Then the \n (n 1) equations typically represented by d^rldxs d^sldxr for all values

of r and s are equivalent to the hn (n
-

1) equations represented by

where the 2 implies summation for all values of i. If either of these sets of

equations is given, the other follows from it. A proof of this theorem is given in

Forsyth s Differential Equations under the heading Jacobi s general method, Art. 211.

To apply this theorem to our present purpose we let the two sets of variables be

q l ...qw !-..,

Pl-~Pn&amp;gt;
b
l -A

so that x corresponds to any letter in the upper row and to any in the lower row.

Let the 2n relations between these be

.F
1
=

1
-a

1
= 0, F2

=
3 -a2

= 0, &c.

-Fn+1 = n+1 -&! = (), 1^= 0^-62=0, &c.

where each is some function of the variables
&amp;lt;?!..?, P\---Pn an^ * Then

remembering that the sum (Frt Fs)
extends over all the conjugate letters, while the

sum
(&amp;lt;/&amp;gt;,.,

4 ) extends only over the p s and # s, we have (Fr ,
Fs )

=
(&amp;lt;pr , 0.,) + l or 0,

where r&amp;gt;s and 1 or is taken according as the elements br , as are or are not

conjugate. Substituting for r , 0,, the equation (Fr ,
Ft)

= Q may be written in the

form (b, a)
= - 1 or 0.

It follows that the two following statements are equivalent to each other, viz.

(1) p 1dq l + ... + blda-i + ... =a perfect differential ;

(2) the constants are such that (a, b) is unity or zero according as a and b are

or are not conjugate.

It has also been shown in Art. 487 that the first statement is equivalent to the

following

(3) 2 (&pdq -
AjSp) - 2 (&a5b

-
AbSa) = 0.

By giving the p s and
r/

s their initial values in the third statement we see that

when the constants are canonical, i.e. when the second statement holds, they can

be derived from the initial values by a normal transformation.

It appears also that, when the constants a, b are any two of a canonical set, the

summations represented by (a, b) and [a, b] are equal.
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492. Ex. Helmholtz s Theorem. The natural motion of a conservative

system would carry it from a position A to a position B in a time t ; the system
would also describe the reversed motion from B to A in the same time. Let its

co-ordinates and momenta at A and B be respectively b
1 ...bn ,

a
l
...an and qi...qnt

Pi &quot;-Pn- Suppose that in passing through the position A the system receives some

small impulse, so that the momentum ar is increased by 8ar ,
all the other elements

being unchanged, and that the co-ordinates after a time t are in consequence
altered by dq l ,...Sqn . Suppose again that, when passing the position B in the

reversed motion from B to A
,
a small impulse is given to the system by which the

momentum^ is increased by Apf ,
and let A6

1 ,...A6n be the corresponding changes
in the co-ordinates after a time t. Then dqsl8or = Abr/^ps . Crelle s Journal, Vol. 100.

Prof. Lamb in commenting on this theorem gives a number of applications to

Acoustics, Optics, &c. See Reciprocal Theorems in Dynamics, Vol. xix. of the

Proceedings of the London Mathematical Society, 1888.

493. roisson s Theorem. If any two integrals of the equations of motion are

written in the forms c
i
=

&amp;lt;J&amp;gt;i(Pi &amp;lt;&&amp;gt;
&amp;lt;7i

*#c.
)&amp;gt;

c2
=

&amp;lt;f&amp;gt;^(pi

&c.
t ql

&c. t),

then regarding c
l
and c2 as functions ofplt &c., ql , &c., t being constant, the quantity

(cl ,
c2) is constant throughout the motion.

Since there cannot be more than the proper number of integrals of the equations

of motion, it must be possible to derive these two from the 2n integrals with the

initial values for the arbitrary constants. If
(ctj &c.), (ft &c.) be these initial values,

we have therefore c
l =f(a1 &amp;lt;fec., ft &c.), c2

=F(al &c., ft &c.),

where (c^ &c.), (ft &c.) are to be regarded as known functions of (p l &c.), (q 1 &c.).

Now
dp da^ dp rfa2 dp dq da^ dq da.* dq

dCl de,
a _ _,_^=S(

dq dp \c

df dF df

dc% dc-^ dCt&amp;gt; ( df dF df dF\ ( da^ rf cto da.-^ da.A

dq dq dp \dcij da2 da^d^J \dp dq dq dp)

Since the integrals a1} a2 &c. are canonical, (al5 a2 )
= or 1. Also their coefficients

in this series are all functions of a
x , a2 &c. and are therefore constants. It follows

that (Cj ,
c2) is constant throughout the motion.

It follows from Poisson s theorem that whenever two integrals, say c
l
=

(f&amp;gt;,

c2
=

if/,

of the differential equations are known, the relation c3
=

(&amp;lt;j&amp;gt;, \j/)
must be a third

integral of the equations of motion, or an identity, or deducible from the two integrals

already known.

494. Another proof. Since the integral cl
=

(pl (p ]
&c. q l

&c. t)
satisfies the

Hamiltonian equations, we shall obtain an identical result if we differentiate it

totally and substitute forp and q their values given by the Hamiltonian equations.

We thus obtain =
sf

-
%&amp;gt;f +

*
**) + ^ (1).

\ dp dq dq dp J dt

This equation may aho be written in the compact form = (H, cj + dcjdt and

expresses the condition that c
1
=

cf&amp;gt; (&c.) is an integral of the equations of motion.

Let .4 = S
&quot;j-

1
-r-

2 - T- ,

2
. we have to prove that A

, being regarded as a
[_dqs dp, dp, dqj

function of p l , q lt &c. and t, the total differential coefficient d . Ajdt is zero. Now

d . A _ dA ^jdA dA
,[

dt
&quot;

dt
+
~\dp~r

P +
dqx

qr
l

202
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The letters plt qlt &c. enter into the expression for A only through c
x
and c2 .

Let us consider only the part of d . A[dt due to the variation of c
l , then the part due

to the variation of c.2 may be found by interchanging c
x
and c.2 , and changing the

sign of the whole. The complete value of d . Ajdt is the sum of these two parts.

The part of d . Ajdt due to the variation of c^ is

|
dc2 jd dc

l d?^ dH d^ct dh]
~|

~dt dprdqs dqr
~^

dqrdqs dpr \ dq,(dps dt dprdq.dqr dqrdps dpr ] J
If we substitute for dcjdt its value given by the identity (1), we get

V r^c2 frfc
1

d?H _dc d?H\ _dc.2 idc
l

d?H dc
l

d?H
}\~\

\_dps \dpr dq sdqr dqr dprdqs\ dq s (d/Jr dpsdqr dqr dprdp$ J

If we now interchange c
1
and c2 we get the same result. Hence when the two

parts of d . Ajdt are added together, the signs being opposite, the sum is zero.

495. Examples. Ex. 1. If c
l
=H is the equation of vis viva and c2= $.&amp;gt; (&c.),

is any other integral not containing , prove that (clt c2) is identically zero. But if

the integral c.2 contain t and is written in the form c3
=

2 (&c.)
-

1, then (c l , c.2) is

identically unity. [Bertrand.]

The results follow from (H, c) + dcjdt= 0.

Ex. 2. If cl
=

cf)l (&c.) be any integral not containing t, there must be at least

one other integral c2
=

2 (&c.) such that (c l ,
c.2]

is not zero.

For if possible let (clt c^^O for all integrals ^...c^. This equality may be

regarded as a differential equation to find c
; ,

and it must comprehend all the

solutions of (H, c^rrO, since this last equation expresses the fact that c
t is an

integral of the equations of motion not containing t explicitly. But two linear

equations having the same number of variables cannot have the same integrals

unless they are identical. Hence c
l
or 0j is a function of H and the given integral

is the equation of vis viva. But if cx
is the equation of vis viva there is an integral

which, combined with it, gives the result unity, viz. that one in which the constant

is joined to the time. [Bertrand.]

Ex. 3. If cl
=

&amp;lt;f&amp;gt;1 (&c.), c2
=

2 (&c.) are two different integrals and are each

derived from the same two integrals, alt a2 , taken from a canonical set, then

(c j , c.,)
is finite or zero according as a

x , cu are conjugates or not. See Art. 493.

496. We shall now prove that the constants introduced in JacoU s complete

integral form a canonical set. Referring to Art. 470, we see that if the elements

are written according to the scheme

t + e, al ... an_^,
each element in the lower row is the partial differential coefficient with regard to its

conjugate of a function /. It follows therefore that Lagrange s theorem applies to

this scheme of elements when we treat t + e as one of them, Art. 487. But, when
the elements on the right-hand side are regarded as functions of those on the left,

Lagrange s theorem supplies all that is necessary to obtain the relations (a, b)
= or 1.

Since t and e enter in the form of the sum t + e, these relations reduce to

(a, 6)
= 0orl, (b, e)=0, (h, e)

= l.

The constants are therefore canonical. This theorem is given by Donkin.

Ex. Taking the example of the motion of a projectile given in Art. 477, show

that the four integrals deduced from Jacobi s complete integral are

2h=p^ +PJ + 2gqa ,
t + f= -

p.2/g.

Verify that these constants are canonical.
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497. Ex. Bertrand s Theorem. Let a.=
&amp;lt;f)(pl c&c., q l &c., t) be an integral of

the equations of motion and let ft 7, 5 be three others of the same kind. Form the

determinant in which the first row is da/dpr , da/dqr , daldps , dajdqs and the three

other rows are deduced from the first by writing ft 7, 5 for a. Let (a, ft 7, 5)

represent the sum of these determinants for all values of r and s. Prove that

(a, ft 7, 5) is constant throughout the motion. [Comptes Rendus, 1852.

Brioschi gives a short proof of this by expanding (a, ft 7, 5) in a series of

determinants each of two rows. The expansion is

2 (a, j8) (7, 5) + 2 (a, 7) (5, 0) + 2 (a, 5) (ft 7),

which is constant by Poisson s theorem. If the constants are canonical this

reduces to 2 or 0, according as there are or are not two pairs of conjugate elements.

He also shows that

(a, ft 7, S, 77,
= 3(o f fl(y 5 77 + 3(o, 7) (ft

5
77)

+ 3 (a, 5) (/S 7 77 + 3 (a, 77) (/S 7 5) + 3 (a, (0 7 5 77).

Tortolini, Annali di Scienze matematiche efisiche, Vol. iv., 1853.

498. Properties of (w, v). As the symbol (u, v) has considerable importance

in theoretical dynamics, it will be found useful to notice the following properties.

(1) (u,v)=-(v,u).

(2) (,)= &amp;lt;).

(3) (pi &amp;gt; &amp;lt;?)

= 1 and (#; ) qj) 0.

(4) Let U=f(ul , u.2 ...un), V=F(u1 ,
u.2 ...un), where Wj, &c. are functions of the

elements (PJ , &c.), (q lt &c.). Then

where S implies summation for all values of r and a. Bertrand, see notes to the

Mecanique Analytique of Lagrange, 1853.

(5) The following is a more general theorem.

Let U=f(p l
.. .pH ,?!... qn , % ,.) ,

= (C7; F) + SJ|^K, 7) +^(^, r)|
Then

(

where (?7; F) is partial with regard to 2? and q, and J? stands for the result given in

Theorem 4. This theorem is given by Imschenetsky, see the translation from

Russian into French in Grunert s Archiv, 1869.

(6) If u and v are functions of (p t &c.), (q l &c.) and any letter .c, it follows by

the rule for differentiating determinants that

d . du \ / dv

Proceeding as in Leibnitz s theorem, we have

n-l

Imschenetsky.

(7) If u, v, iv are three functions of the variables, then

(u, (v, w)) + (v, (w, u)) + (w, (M, v))
= 0.

Jacobi. Crelle s Journal, LX. p. 42. A proof is given in Forsyth s Differential

Equations.
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499. Transformation of Co-ordinates. The Hamiltonian equations of

motion may be written in the typical form

p = -dHjdq, q = dHjdp (1).

If we now change the co-ordinates ft...^ to others Q l ...Qn connected with the

former by equations of the form q=f (Qi...Qn), we know from dynamical considera

tions that the transformed equations take the typical form

P = -dHjdQ, Q = dH/dP (2),

where P
l
...Pn are the momenta corresponding to Qi...Qn respectively and may be

derived from the transformed value of the vis viva by the same rules as before.

In order to generalize this, let us enquire whether we can find any more general

transformation, such as

qi=fi(Qi...Q,?i~-PJ&amp;gt;&* (3). ft=*i(Qi...0. Pi...*U*c W,
so that the Hamiltonian equations (1) when transformed will take the form (2). We
suppose that II is any given function of (plf &c.), (ft, &c.) and of t, but that the

formulae of transformation (3) and (4) do not contain t explicitly.

Since the Hamiltonian equations (Art. 479) may be written in the form

2 (AgrSp-ApS7) + AH5-Af5ff= constant (5),

it is clear that the transformation can be effected if we take

2
(&q5p - ApSq) = S (AQ5P - AP5Q) (6),

where A and 5 have the meanings given to them in Art. 478.

If we write the letters according to the scheme

JPi...J. -*i...-&amp;gt;.

ft ..&amp;lt;?. Ql- Q.
we can infer from Art. 487 the following rule, originally due to Jacobi, (see his

Dynamik) : assume any arbitrary function, \f/ (ft...fln , Qi-..Qn), of the given co-ordinates

and of the new set to be introduced, then the required relations (3) and (4) are

equivalent to the typical relations p= d\f//dq and - P= d\{/ldQ.

Other rules may be obtained by interchanging the conjugate elements with the

necessary change of sign. Thus taking the order

ft...&amp;lt;7n , Pi...Pn ,

Pl-P, Ql-Qn,
we may obtain transformation formula equivalent to (3) and (4) by putting

q = d\f//dp and P= d\j/fdQ where ty is an arbitrary function of Pi-..pn , Q\..-Qn &amp;gt;

This rule is also given by Jacobi, see the Comptes Rendus, 1837, Tome v. p. 66.

500. Examples. Ex. 1. Let us choose the arbitrary function
\f/

to be

*=2&amp;gt;lfl(Ql-..Qn)+Plf2(Ql...Qn) + (1).

We then find by Jacobi s second rule that the required formulae of transformation
are Qi=fi(Q l-.Qn ) (2), Pi=P 1dflldQ i +p.2df2/dQi + (3).

These are the ordinary formulae of transformation when we change from one set of

co-ordinates qv ..qn to another Qi...Qn .

By remembering the definition of plt p.2 , &c. and noticing that Q/, g./, &c., do
not enter into (2) we easily find that

dTldQt^p^dqJIdQt +p.,dq2 ldQ i + &c.

This by differentiating (2) is seen to lead to the right-hand side of (3). It therefore
follows that in this case P{ is the momentum corresponding to the co-ordinate Q t

.

Ex. 2. A system depends on two pairs of elements, viz. (p,, ft) (pz , q.2)- taking
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Jacobi s arbitrary function to be 2/3^
-

(q 1
-

QJ&quot;
+ (q.2

- Q2)
3 find the formulae of

transformation and examine what they become when fi
= Q.

Ex. 3. Donkiris rule. In Jacobi s rule the arbitrary function
\f/

is not to contain

t explicitly. If we suppose \f/
to be an arbitrary function of p l , &c. , Q 1 ,

&c. and

t, prove that the transformation formulae typically written q= d\f/ldp, P= d\j//dQ
will change the differential equations into others still of the Hamiltonian form but

with H-d^jdt written for H. [Phil. Trans. 1885.

Let x be such a function of the variables and t that the equation (6) Art. 499 is

true after the addition of 2 (Atdx - Axdt) to its right-hand side. The possibility of

this assumption is proved by finding the proper form for x. The second scheme is

then altered by the addition of another set of elements, viz. x to the upper and t to

the lower line. It then follows by the same reasoning as before that x = d\f/jdt and

conversely. The equation (5) then shows that H - x must be written for H in the

Hamiltonian equations.

Ex. 4. Mathieu s rule. If the variables (p l , &c.), (qlt &c.) are changed into

(P1? &c.), (Qlf &c.) by relations such that 2p8q = 2P5Q, prove that the Hamiltonian

equations when so transformed retain the Hamiltonian form. Thence deduce the

following rule to obtain a set of transformation formulae. Assume any arbitrary

function of the old and new co-ordinates say \f/ (qlt &c., Qlt &amp;lt;fec.)
and equate it

to zero. The required relations may be typically written p = /j.d\l/jdq and
- P= ud\f/ldQ. We thus have2rc + l equations to find (P1 , &c), (Qlt &c.) and /A.

Liouville, xix., 1874.

To prove the first part of this theorem Mathieu remarks that the Hamiltonian

equations may be written in the form

8H=-2{d(pq )-dldt(p8q)}.

Hence if we choose 2,p8q = 2PdQ for all variations the Hamiltonian form is

unchanged.
To prove the second part, Mathieu notices that the equation ^pdq-^PdQ leads

to 2i equations which may be typically written

where i has any value from 1 to n. The set (II.) shows, by elimination, that the

Jacobian of qi...qn with regard to P
1 ...Pn is zero. Hence the n equations (3) of

Art. 499 are such that, if we eliminate n - 1 of the P s, the nth will also disappear,

aud leave an equation containing only q l ...qn and Ql ...Qn . This is the equation he

calls
i//
= 0. Differentiating ^ = with regard to P^..Pn in turn, the equations (II.)

show that pi pd^ldqi. Then, substituting in (I.) it follows that P,-= -
/j.d\f//dQi.

It may be noticed that the unknown quantity /A,
is not restricted to be a function of

tfi- &amp;lt;?, Qi...Qn only.

501. The use of changing the variables^ cfec., q 1
&c. into others P

1 &c., Ql
&c.

is that if the arbitrary function
\f/

is properly chosen the expression for // can be

simplified, while the Hamiltonian form of the differential equations is still retained.

The letters (Px , QJ, (P2 , Q.,) &c. retain their dual character so far as the differential

equations are concerned, but it does not follow that P represents the momentum

corresponding to Q. Other conditions must be satisfied that this may be true.

Ex. 1. Supposing H not to be an explicit function of t and the formula) of

transformation to contain only the old and new (variables without^, show that the

semi vis viva T and the force function U may be expressed in terms of Q lt Q.t &c.
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and Q/, Q2 &c. Show also that if each P is to be the momentum corresponding to

each Q, i.e. if P=dL/dQ is to be true, it is. necessary and sufficient that

Zpdq = SP5Q.

We notice that, il L and M are the reciprocal functions of H with regard to

(p-L, &c.) and (Pl , &c.) respectively, the typical equations p = dL[dq , P=dM/dQ
follow. To prove the second part of the example it is sufficient to make M=L.
By the definition of a reciprocal this requires Spg = SPQ , and, since t does not any
where enter explicitly, this leads to 2p5q = 2,PdQ.

Ex. 2. Show that in Jacobi s first rule, Art. 499, the P s do not in general

represent the momenta corresponding to the Q s.

If they did there would be a relation between the # s and Q s alone, Art. 500,

Ex. 4. But Jacobi s formulae do not admit of this.

502. Hamilton s equations with Indeterminate Multipliers. Let /,... /,,

Pi-&quot;Pn
be the co-ordinates and momenta of the system, L the Lagrangian function

and H its reciprocal. By the principle of virtual moments we have as in Vol. i.

_ ..................................

dq

for all variations consistent with the geometrical relations. Again by the definition

of a reciprocal function

H+L= 2pq ....................................... (2).

Taking the total variation of this as in Vol. i. Art. 410 we have

Remembering that p = dLjdq by definition and eliminating 2(dLldq)dq by (1), we

have 8H= -2,p 5q + 2q 5p (4).

If all the p s and q s were independent, ice could deduce at once from this the

Hamiltonian equations. If however there are equations of condition between the

variables we may use the method of indeterminate multipliers. Let there be r

equations of condition and let these be expressed by

where i has any value from i = 1 to r. Differentiating these, and subtracting them
from (4) after multiplication by \lt \.,...\r , we have

f jf \

? (6),

where the S implies summation for all the co-ordinates. From this we deduce the

following n equations: which are typically written

,
dH ^ df, dL

1 =^~+ Xl^ +X2 -r-
2 + &C.

dp
l

dp
2
dq

&quot;we put tf=/f-fX
1/1 + \2/a + &c ............................... (8),

we see that the equations (7), by virtue of (5) take the form

p = -dK/dq, q = dK/dp .............................. (9).

The r equations represented by (5) and the 2n equations represented by (7) or (9) are

sufficient to determine the r multipliers and the 2/i co-ordinates and momenta.
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503. The values of the / multipliers X^.A,. may be found as follows. Differen

tiating (5) we have Zq dfjdq + Zp df/dp = 0.

Substituting from (7) the values of p and q
f

,
we find

(H, f)+\(flt /)+X2 (/2 , /) + ...=0 (10),

where the symbol (u, v) has the meaning given to it in Art. 490. Writing fr ...fr

successively for / in this typical equation, we have r linear equations to find the

multipliers. Substituting their values in (7), we have 2n equations to find the

co-ordinates. The equations (10) are given by Mathieu in Liouville s Journal,

1874.

504. The equations of condition (5) have been taken to contain the momenta
as well as the co-ordinates, as this supposition made the investigation more

symmetrical, but in most cases the momenta are absent and the results are

accordingly simplified.

505. Variation of the elements. Let there be two dynamical problems in

one of which the Hamiltonian function is H and in the other H+ K. Their

differential equations are therefore respectively

dH
,
dH dH dK

,
dH dK

P =
-dq-&amp;gt;

2=^ {1) * = -^-e*g *=^ +TP (2)

Let the integrals of the first problem be

ci=fi(Pi, &Q
-&amp;gt; ffn &c., ), c2=/3 (l&amp;gt;1 , &c., q lt &c., t), &c (3).

If we consider clf c
2 , &c., the constants of the solution of the first problem,

to be functions of pl , &c., qlt &c. and t, we may suppose the solution of the

second problem to be represented by integrals of the same form (3) as those of

the first problem. It is our object to discover what functions cls c2 , &c. are of

plt &c., qlt &c. and t. The function K is called the disturbing function and is

usually small compared with H.

Since the equations (3) are the integrals of the differential equation (1) when

Cj ,
&c. are regarded as constants, we shall obtain identical equations by substituting

from (3) in (1). Hence, differentiating (3) and substituting for p and q their values

given by (1), we have the typical equation

dc dH dcdH dc

~Tp~dq
+
dqTp

+ -&quot; +
dt

where c stands for any one of the constants clt c2 ,
&c. See Art. 494.

But, when c
l ,

c2 ,... are considered as variables, the equations (3) are the integrals

of the differential equations (2). Hence, repeating the same process, we have

, _ _dc dH dc_dH dc_fcdK dc^dK
dp dq

+
dq~dp

+ --- +
dt dp dq

+
dq dq

+

where the differential coefficients on the left-hand side are total, and those on the

right-hand side partial.

Hence, using the identities (4), we get c
1
=
~~^~j I* ~r^ j (*&amp;gt;)

with similar expressions for c2 , &c.

If K be given as a function of p, q, d~c. and t, we have dcjdt, &G. expressed as

functions of p, q, &G. and t. Joining these equations to those marked (3) we find

Cj, c2 ... as functions of t.

If K be given as a function of clt c
2 ,... and t we may continue thus,

dK dK dc
l

dK dc.z dK _ dK dcl
dK

dcj

dp
~

dcj dp dc.2 dp dq dc1 dq dc.2 dq
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Substituting in the expression for c/, we get

,_ y rdc
1 dc^_dc1 dci]dK ^Tdc^dc.^ _ dc^dcf\&amp;lt;1K

^[_dq dp dp dqj dc,
&quot;

[_dq dp dp dq_\ dcs

where the 2 means summation for all values of p, q, viz. plt q l , _pa ,
&amp;lt;/.,,

&c.

By using the abbreviated notation explained in Art. 490 this equation may
be written in the compact form

k -f*.*&amp;gt;a*fc.i)j+
m-

506. The formula? giving the variations of the constants are greatly simplified

when the elements chosen are canonical. When this is the case the constants

run in pairs, let these pairs be c
l , c., ,

r
3 , c4 ; &c., then (c2 , Cj)

= l, (clf c3)
=

and so on. The formulae then take the form

Cl
= dKldc, } cs

= dKldc4 \

c, = -
dKjdc, I

c4 = - dKldc3 I

507. Returning to the general equation (7) where the constants are unrestricted

we notice that, when c
lt c.2 &c. are expressed as functions of (plt qj &c. and t, as in

(3), the coefficients (ca , Cj) &c. may be found by simple differentiation. It will

usually be found more convenient to express them in terms of the constants

c
1 ,

c2 &c. and t, by substituting for (plt qj &G. their values given by the

integrals (3).

On effecting this substitution it is found that t disappears from the expressions.

This follows at once from Poisson s theorem given in Art. 494. Thus when the

disturbing function is given in terms of the time and the constants of the undisturbed

motion, the variations of those constants produced by the disturbing forces can be

expressed in terms of the differential coefficients of the disturbing function without

t appearing explicitly in any coefficient.

508. As an example consider the case of a particle or planet describing an

ellipse about a centre of force. The constants of the elliptic motion are usually

taken to be the major axis 2a, the eccentricity e, the longitude of one apse w, &c.

Supposing the motion of the particle to be disturbed by the attraction of some

other particle, the object of Lagrange s method of treating the planetary theory
is to find how these constants are altered by the disturbing forces. To effect

this, the disturbing function K is first expressed in terms of the time and the

constants a, e, a? &c., and secondly formulae are found giving a
,

e
,

a&amp;gt; &c. in

terms of dKfda, dKjde &c. These formulae do not contain t except implicitly

through the disturbing function, and this remarkable characteristic is not restricted

to these particular constants, but holds true whatever constants are chosen to fix

the elliptic motion. We may also notice that this property holds when K is a

function, not merely of the co-ordinates q l ,
&amp;lt;/2 &c. but of both the co-ordinates and

their corresponding momenta.

509. The equations (6) given above, expressing Cj ,
c2 &c. in terms of the

differential coefficients of K, are due to Poisson
;

the corresponding formulae of

Lagrange are differently arranged. Regarding K as a function of the co-ordinates

and the momenta, we have

dK dKdq l
dK dqz dK dp,

, =-- -y^ + -
pJ+&amp;lt;%0.+_ Ip

cZcj dq 1
dc

l dq.2 dcl dpl
dc

l

Taking the differential equations of the undisturbed motion iu the Hamiltonian

form (1), let their solutions be

?!
= / !(. CL c* &c.), tfa

= &c (10).
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These if substituted in (1), treating c1J c2 &c. as constants, satisfy (1) identically.

Hence, when they are substituted in (2), treating clt c2 &c. as functions of t, all

terms will cancel each other identically except those which contain c/, c2 &c.

and the terms dK/dq, dK/dp. The excepted terms which contain c/, c2 &c.

can enter only through p and q ,
we therefore have

dK dp dp dK dq- - = -Lc
l + ,

2
Co + &c., = -

r -c
1 + &c (11).

dq dc
x

l
dc.2

-
dp dc 1

Substituting these in (9), we find that c/ disappears from the result, and that

= [c 1 ,c2]c2 + [c 1 , cs]c3 + (12),

where [c 1 ,
c2] has the meaning given to it in Art. 490. Similar relations hold for

each of the differential coefficients dK/dc.2 &c., so that we have as many equations

as there are constants.

Comparing the equations (7) and (12), we see that in both the disturbing

function K is supposed to be known as a function of the constants of the

undisturbed motion and t. To find the coefficients in (7), the integrals of the

undisturbed motion must be expressed in the form (3), i.e. each constant must

be given as a function of the variables and the time. To find the coefficients

in (12), the integrals must be expressed in the form (10), i.e. each variable must

be given as a function of the time and the constants. Again in (7) c/, c.2 &c.

are found directly in terms of dK/dc, &c., but in (12) a system of linear equations

must be solved to find c/, c2 &c. In both (7) and (12) the coefficients (clt c2),

[Cj, c2] &c. do not contain the time explicitly.

510. Lagrange shows that, when the constants are the initial values of the

variables (plt qj &c., these equations reduce to simpler forms like those in (8).

Regarding any constants which may be introduced in the integrations as functions

of these, he proceeds in the Mecanique Analytique to express their variations in

terms of the differential coefficients of K in a form resembling (7).

511. One peculiarity of the method of the variation of constants is that the

co-ordinates qi,...qn and the momenta Pi,...pn are expressed by the same functions

of q, c2 &c. and t, whether the motion considered is the undisturbed or the varied

motion. It immediately follows that the velocities qi ,...qn are also expressed by
the same functions of c

a , c2 &c. and t in both motions. To prove this it is

sufficient to notice that, since p 1
= dTldq l , p.2

= dTjdq.2 &c., we can express &amp;lt;//, q.2 &c.

in terms of pl , p.2 &c., qlf q., &c.

512. The subject of Theoretical dynamics is so large that it is impossible to

discuss it fully in a treatise which contains so many applications of dynamics. We
can therefore only allude to Donkin s theorem that a knowledge of half the integrals

of the Hamiltonian system will in certain cases lead to a determination of the rest,

(Phil. Trans. 1854, 1855), or to Bour s method of reducing the number of variables

when some of the integrals are known (Liouville s Journal, Vol. xx., 1855).



CHAPTER XL

PRECESSION AND NUTATION.

On the Potential.

513. To find the potential of a body of any form at any
external distant point

Let the centre of gravity G of the body be taken as the origin
of co-ordinates, and let the axis of x pass through S the external

point. Let the distance GS= p. Let (x, y, z] be the co-ordinates

of any element dm of the body situated at any point P and let

GP=r, then PS 2 = p
2 + r* -

2psc. The potential of the body is

.

~PS
&quot;

(

\

r2

\
3 35

&quot;~ ~ + - + ~~
* &quot;

arranging these terms in descending powers of p, we get

F^-%
\Mtiu

\ ^ Ou *jX/~
l

~&quot;

/
- O& ~~ Ot2//

&amp;gt;- OO^6 &quot;~ ^\}CC^lf
t~

&quot;y&quot;
Of^

&amp;gt; I I^ &quot;SJ-T ^ &amp;gt;

P ( P zp* zp &p*

Let M be the mass of the body, then 2dm = Jtf. Also since the

origin is at the centre of gravity, we have ^xdm = 0.

Let A, B, C be the principal moments of inertia at the centre

of gravity, / the moment of inertia about the axis of x, which in

our case is the line joining the centre of gravity of the body to

the attracted point. Then

Let I be any linear dimension of the body, then, if p be so

great compared with I that we may neglect the fraction (l/p) of

the potential, we have
M A+B + C-3I

= H
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If we wish to make a nearer approximation to the value of F,

... .

we must take account of the next terms, viz.
4

Let (f, 77, f) be the co-ordinates of m referred to any fixed

rectangular axes having the origin at G, and let (a, /3, 7) be the

angles GS makes with these axes. Then

x cos a + ?; cos /:? + 0087;

/. Swue3 = cos3a2wf 3 + 3 cos2a cos 0Sfn*q 4- ......

If the body is symmetrical about any set of rectangular axes

meeting at G, we have 2raf
3 = 0, 2wf -77

= 0, &c. = 0, so that the

next term in the expression for the potential vanishes altogether.
Thus the error of the preceding expression for V is comparable
to only the fraction (l/p)* of the potential. This is the case with

the earth, the form and structure of which are very nearly sym
metrical about the principal axes at its centre of gravity.

514. In this investigation S has been supposed to be at a very

great distance. But the expression for the potential is also very

nearly correct wherever the point S is situated, provided the body is

an ellipsoid whose strata of equal density are concentric ellipsoids

of small ellipticity.

To prove this, we may use a theorem in attractions due to

Maclaurin, viz., the potentials of confocal ellipsoids at any ex

ternal point are proportional to their masses. Let us first con

sider the case of a solid homogeneous ellipsoid. Describe an
internal confocal ellipsoid of very small dimensions and let a

,
b

,
c

be its semi-axes. Then, because the ellipticity is very small, we
can take a

,
b

,
c so small that S may be regarded as a distant

point with regard to the internal ellipsoid. Hence the potential
due to the internal ellipsoid is

T7/ ,
1 =

7~
where accented letters have the same meaning relatively to the

internal ellipsoid that unaccented letters have with regard to the

given ellipsoid. The error made in this expression is of the

order (a /pyV. Hence, by Maclaurin s theorem, the potential V
of the given ellipsoid is

V_M M A + B + C -SI
&quot;

p
+ M ~

2p*

and the error is of the order (a /p)
4 V.

If a, b, c be the semi-axes of the given ellipsoid, we have

a* - a 2 = b2 - b 2 = c
2 - c

2 = X2
;

M
:. A =M - =

5

A M
A ^2

1
=

-ig, A + _

/ M
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Similarly, 0-jpir+jHX ,
C =^ C +

|
MX2

.

Also if (a, & 7) be .the direction-angles of the line G3 with

reference to the principal axes at 6r, we have

M 2
I = A cos2 a + B cos2 + (7 cos2^= -I ^ - .MX2

.

.M o

T7
Jlf 4 + 5 + C-3/

Hence, substituting, we have V = ----h
^-5

.

If a, b, c are arranged in descending order of magnitude, we
can by diminishing the size of the internal ellipsoid make c as

small as we please, though in the limit the ellipticities of both the

sections containing c af and c b become equal to unity. In this

case we have ultimately a = Va2 c
2

. Let e be the ellipticity of

the section containing a and c the greatest and least semi-axes.

Then = a\f2e t
and the error of the above expression for V is of the

order 4(a/p)
4
e
2 F.

The theorem being true for any solid homogeneous ellipsoid
is also true for any homogeneous shell bounded by concentric

ellipsoids of small ellipticity. For the potential of such a shell

may be found by subtracting the potentials of the bounding
ellipsoids, A + B + C (see Vol. I.) being independent of the direc

tions of the axes.

Lastly, suppose the body to be an ellipsoid whose strata of

equal density are concentric ellipsoids of small ellipticity, the

external boundary being homogeneous. Then the proposition,

being true for each stratum, is also true for the whole body.

Ex. Verify this theorem by showing that when the attracting body is a homo

geneous ellipsoid the terms of the fourth order given in Art. 513 are of the order

We first show by integration that the terms of the fourth order are

8 ^5 ^ t35^ +^ + &quot;^
~ 2 ^^ +^b* + V^

- 10 (\
2a2 + /*

2&2 + v2c2
) (a

2 + 62 + c 2
) + (a

2 + b2+ c2
)

2 + 2 (a
4 + Z&amp;gt;

4 + c4 )],

where (X, /*, v) are the direction -cosines of GS. If the ellipsoid is nearly spherical

we put bja= 1 - e and c/a= l-e . It is easily seen on substitution that not only

are all the terms independent of e, e zero but that the terms containing the first

powers of e and e disappear.

The theorem of Art. 513 is due to Poisson, but it was put into the convenient

form given in that article by MacCullagh. The fact that this theorem is very nearly

true even when the attracting body is close to the earth provided that the earth

is ellipsoidal is given by Laplace, Mecanique Celeste, Book v. The proof in Art. 515

is nearly the same as that of MacCullagh. Transactions of the Royal Irish Academy,
Vol. xxn. Parts i. and n. Science.

515. The following geometrical interpretation of the formula of Art. 513 is

also due to Prof. MacCullagh. His demonstration and another by the Kev. B.

Townnond may be found in the Irish Transactions for 1855.
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A system of material points attract* a point S whose distance from the centre

of gravity G of the attracting mass is very great compared with the mutual

distances of the particles. If a tangent plane be drawn to the ellipsoid of gyration

perpendicular to GS, touching the ellipsoid in T and cutting GS in U, then the

resultant attraction on S lies in the plane SGT. The component P of the attraction

on S in the direction TU= -
^ GU . UT. The component of the attraction on

M 3A +B + C-3I
S m the direction UG=^ + ~ -

.

P&quot;

2 p
4

These theorems are also true if we replace the ellipsoid of gyration by any
confocal ellipsoid. Let a, b, c be the semi-axes of this confocal, and let p be the

perpendicular G U on the tangent plane. Since (see Vol. i.)A = Ma~+ X, B= Mb- + \,

,
,
M M(a2 + /&amp;gt;

2 + c2 -3p2
)

dec. where X is some constant, we have V I

*

7̂ i .

P V
To prove that the resultant force on S lies in the plane SGT, let us displace

S to S where SS is perpendicular to this plane and is equal to pd\f/. Because V is

a potential, the force on S in the direction SS is dVfpdf. But after this displace

ment the tangent plane perpendicular to GS intersects along TU the former tangent

plane, hence dpjd\f/
= Q, and .*. dV]d\j/

= Q.

To find the force P acting at S in the direction TU, let us displace S to
S&quot;,

where

SS&quot; is parallel to TU and is equal to pd\p. Since GU is perpendicular to UT we

have TU=dpldf. Hence P=- d
-^-
= - p . TU.

p d\l/ p
4

dV M BA+B + C-3IR
=~Tp=?

+
2 p

4
~

Ex. Show that the product GU . TU is the same for all confocals.

516. Examples on attractions. Ex. 1. Let GP be a straight line through the

centre of gravity such that the moment of inertia about it is equal to the mean of

the three principal moments of inertia at G, then the resolved attraction of the

body on any point S in the direction SG is, when S lies in GP, more nearly the

same as if the body were collected into its centre of gravity than when S lies in

any other straight line through G.

Show also that the moment of inertia about GP is equal to the mean of the

moments of inertia about all straight lines passing through G.

If two of the principal moments of inertia are equal, prove that GP makes with

the axis of unequal moment an angle equal to cos&quot;
1

(l/x/3). In the case of the

earth this line is in latitude 54 . 45 .

517. Other laws of attraction. Ex. 2. If the law of attraction had been

-
(dist.) instead of the inverse square, the potential of a body on any external

point S would have been represented by Zmfa (PS), where (p)
is the differential

coefficient of
X (p). In this case, by reasoning in the same way as in Art. 513, we get

where A, B, C and / have the same meanings as before.
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If (x
1

, ?/ ,
z

)
be the co-ordinates of S referred to the principal axes at G, the

moment of the attraction of S about the axis of y is= - -
. (G

- A) x z .

pdp p

518. To find the Force-function due to the attraction of any

body on any other distant body.

Let G, G be the centres of gravity of the two bodies, and let

GG = R. Let A, B, C; A
,
B

,
C be the principal moments of

inertia of the two bodies at G and G respectively ; 7, / the

moments of inertia about GG ,
and let M, M be the masses of

the two bodies.

Let m be any element of the body M situated at a point S,

and let GS = p. Then the potential of the body M at m is

,(M A + B+C-SIJ , T . ., , . ,. ,m
-j

--
1- -f, where /a is the moment of inertia of

j p 2p-

the body M about G8. We have now to sum this expression for

/ mi M^ m , T: &amp;gt;

all values of m . This gives M2, + Zm

The first term by the same reasoning as before gives

MM A +R+a-sr

In the second term, let x
, y ,

z be the co-ordinates of m
referred to G as origin. Then

/ of ,\

p = R ( 1 +
-p
+ squares of &

, y ,
z

J
,

a*7 + /% 4- 7/ + squares),

where a, /S, 7 are some constants. Substituting these, and remem

bering that 2mV = 0, 2m y = 0, 2mV = 0, we get

,.., ^. + 5 + G 37
f

/terms depending on the\)

\ \ squares of a?
, y , z )}

Hence the required force-function is

JOT A + B +C -ZI ^~ ~

The error of this expression is of the order (11 jR^fV, where

I, I are any linear dimensions of the two bodies respectively.

519. Moment of the Sun s force. To find the moment of
the attraction of the sun or moon about one of the principal axes of
the earth at its centre of gravity.

Let the principal axes of the earth at its centre of gravity be
taken as the axes of reference, and let a, /3, 7 be the direction-

angles of the centre of gravity G of the sun. Then, if V be the

potential of the sun or moon on the earth, we have

MM A + B + C -SI M,A + B+C-3I
R M ~ ~
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where unaccented letters refer to the earth, and accented letters to

the sun or moon. Let be the angle which the plane through the

sun and the axis of y makes with the plane of xy, then dV/dO is

the required moment in the direction in which we must turn the

body to increase 6. From the above expression, since 6 enters

. ,, ,
T

dV SM dl
only through /, we have

-^
= -

^^ ^ .

Now I A cos2 a + B cos2
ft + C cos2

7, and by Spherical Trigo

nometry, we have cos 7 = sin ft sin 6, cos a = sin ft cos 6
;

. .

d

J= - 2 (A - &amp;lt;7)sm

2
/3sin (9 cos 0;

. . the moment required) M /rt ..

. .

^
^
= -3-D-((7-^l)cabout the axis of y }

R^
In this expression the mass of the attracting body

is measured

in astronomical units. We may eliminate this unit in the follow

ing manner. Let ri be the mean angular velocity of the sun

about the earth, R^ its mean distance, so that if M be the mass

of the earth, we have (M + M)/R 3 = n 2
. Now M is very small

compared with M
,
so small that M/M is of the order of terms

already neglected. Hence we may in the same terms put
M /R

3 = ri2
,
and therefore

the moment of the sun s at-) , /rl A . f^o\
3

, . -
}

= - 3?/2

(0-^1) cos a cos 7 -~ .

traction about the axis of y} \-tiJ

Let n&quot; be the mean angular velocity of the moon about the

earth, so that, if M&quot; be the mass of the moon, R the mean

distance, we have
(M&quot; + M)jR ^ = ri -. Let v be the ratio of the

mass of the earth to that of the moon, then M&quot; (1 + v)/R
* = n&quot;

2
,

and therefore, if R be the distance of the moon,

the moment of the moon s at-) 3ri&quot;
2

/rt ., fR o\
s

, . r = i (C 4) cos a cosy I -5? ).
traction about the axis ofi/j l + z&amp;gt; \-tt J

In the same way the moments about the other axes may be

found. Putting K for the coefficient, we have

moment about axis of x = 3/c (B 0) cos ft cos 7,

moment about axis of z = 3/c (A B) cos a cos ft.

520. Examples. Ex. 1. The force-function between a body of any form and

a uniform circular ring whose centre is at the centre of gravity of the body and

T^ MM
{/r ,A +B + C-3Jwhose mass is M1

is V= M -rs ,

P V
where J is the moment of inertia of the body about an axis through its centre of

gravity perpendicular to the plane of the ring, and A, B, C are the principal

moments of inertia at the centre of gravity.

Thence show that Saturn s ring supposed uniform will have the same moments

to turn Saturn about its centre of gravity as if half the whole mass were collected

R. D. II. 21
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into a particle and placed in the axis of the ring at the same distance from Saturn,

provided that the particle repelled instead of attracted Saturn.

Ex. 2. If the earth be formed of concentric spheroidal strata of small but

different ellipticities and of different densities, show that the ratio of C to A may be

found from the equation Cjpd (a
5
e)
= (C -A)jpd (a

5
),
where e is the ellipticity and p

the density of a stratum, the major-axis of which is a ;
the square of e being neg

lected. It follows that if e be constant, the ratio of C to A is independent of the

law of density.

If we assume the law of density and the law of ellipticity usually taken for the

Figure of the Earth, this formula gives (C-A)fC= -00313593. See Pratt s Figure

of the Earth.

Ex. 3. A body free to turn about a fixed straight line passing through the

centre of gravity is in equilibrium under the attraction of a distant fixed particle.

Show that the time of a small oscillation is 2?r ],,, un
P
A . t ,

-* \

&quot;

,
where the

(Mr|t(C7-.&amp;lt;f)+.fttfJ

fixed straight line is the axis of y, the plane of xy in equilibrium passes through the

attracting particle, and , T? are the co-ordinates of the particle. Also A, B, (7, D, E, F
are the moments and products of inertia of the body about the axes. If the straight

line did not pass through the centre of gravity show that the time would be propor

tional to p.

Motion of the Earth about its Centre of Gravity.

521. To find the motion of the pole of the earth about its

centre of gravity when disturbed by the attraction of the sun and

moon, the figure of the earth being taken to be one of revolution.

Let us consider the effect of these two bodies separately.

Then, provided we neglect terms depending on the square of

the disturbing force, we can by addition determine their joint
effect.

The sun attracts the parts of the earth nearer to it with a

force slightly greater than that with which it attracts the parts
more remote, and thus produces a small couple, which tends

to turn the earth about an axis lying in the plane of the equator
and perpendicular to the line joining the centre of the earth

to the centre of the sun. It is the effect of this couple which
we have now to determine. It clearly produces small angular
velocities about axes perpendicular to the axis of figure. We
shall suppose that the initial axis of rotation so nearly coin

cides with the axis of figure, that we may regard the angular
velocities about axes lying in the plane of the equator to be small

compared with the angular velocity about the axis of figure.

Let us take as axes of reference in the earth, GG the axis

of figure, GA and GB moving in the earth with an angular
velocity 3 round GC. Then, following the notation of Art. 10,

wo have J^ = Aw 1 ,
h.2
= Aw.,, h s

= Cco^,

Q
l
=

!, 0.j
=

&&amp;gt;o.
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The equations of motion are therefore

. ctai A Q F - T
dt

l -f Aa)^ =M

=

A - -
(1).

The last of these equations shows that o&amp;gt;3 is constant. Let
this constant be denoted by n.

The angular velocities e^ and w2 are to be found by solving the
other two equations. The solution must be conducted by the
method of continued approximation, e^ and o&amp;gt;2 being regarded as

small compared with n.

In the first instance let us suppose the orbit of the dis

turbing body to be fixed in space. This is very nearly true
in the case of the sun, less nearly so for the moon. This limi
tation of the problem proposed will be found greatly to simplify
the solution. We can now choose as our axes of reference in

space two straight lines GX, GY at right angles to each other
in the plane of the orbit and a third axis GZ normal to the

plane.

522. In these equations of motion the quantity 3 is at

our choice, let it be so chosen* that the plane containing the

* We might also very conveniently have chosen as axes of reference, GC the

axis of figure and axes GA , GB moving on the earth so that GB is the axis of

the resultant couple produced by the action of the disturbing body on the earth.

In this case the plane GA moves so as always to contain the disturbing body S,

C 212
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axes GO, GA also contains GZ. Then 3 is the angular velocity of

the plane ZGG round GC. The velocity of A in the direction AB
is therefore represented both by Os and by sin ZA . dty/dt, where ty

is the angle the plane ZGC makes with some fixed plane ZGX.

Equating these, as we do in forming the third Eulerian geometrical

equation, we have 3
= cos0

-^
........................... (2).

If, as usual, 6 represent the angle ZC, we have also the two

geometrical equations
dO

These follow at once from a mere inspection of the figure, or we

may deduce them from Euler s geometrical equations (see Vol. I.)

by putting cf&amp;gt;

= 0.

The terms O^ and 3 &&amp;gt;2 in the differential equations (1) contain

the squares of the small quantities to be found. As it will appear
that both d0/dt and dty/dt are of the same order as the disturbing
moments L and M, we shall presently neglect these two terms. lie-

thus 3 is the angular velocity of CS round C and is therefore a small quantity of
? the order n . We shall therefore reject the small terms w2 3 and Wj^3 in equations

(1). The equations now become

A
-y + Cnw2=0, A

-^
-
Ctow^-flf= - 3* (G

- A) cos a cos y,

where the value of M is at once obtained from Art. 519, and in our case a= ^ir-y.

Eliminating o,2 we have ^ + (* Y Wl= -^ M.

Since the angular distance y of the disturbing body from the pole of the earth

varies very slowly, the term on the right-hand side is very nearly constant. If

this be regarded as a sufficient approximation we have

3K G-A .

But in fact these are nearly true when we take account of the periodical term

provided that S moves slowly. For suppose M=M + SP sin (pt + Q),

where p is small ; we have in that case Wl= - _ s ^^ a
gin (pt + Q),

neglecting the small term p
2 in the denominator we have as before *,= --.Cn

The motion of the axis C in space is therefore simply that due to an angular
velocity o^ about the axis A . Since the plane A C moves so as always to contain
the disturbing body ,9, the axis of figure GO is at any instant moving perpendicular
to the plane containing it and the disturbing body (i.e. in the figure G is always

moving perpendicular to SG) with an angular velocity equal to
3* C-~ sin 2y. If
&quot;//

we resolve this in the directions along and perpendicular to ZC, we easily deduce the

equations (^i in the text, and the solution may be continued as above.
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taining them for the present, to show how they affect the steady

motion, the equations of motion take the form

fidfy d6dty CndO L\
-sm0-^--2cos0-r- Jr + ^r-ji^-T

dt? dt dt A dt A{ ,..

d&amp;gt;6 afd^Y Cn . -d* 4ff

.........

,, -sm0cos&amp;lt;9 1 2) + A- sm O-Ji = A)dV \ dt ) A dt A)

523. We have now to find the magnitudes of L arid M. Let

8 be the disturbing body and let it move in the direction X to Y.

According to the usual rule in Astronomy, we shall suppose the

longitude I of $ to be measured in the direction of motion from

some fixed line in the plane of XY, say the axis of X. Then

SN=l-Tfr and BS=^7r-(l- ^r). Also ^-%TT is the longitude
of the ascending node in which the plane of the orbit of S cuts the

equator. When S represents the sun, this node is called the first

point of Aries. By Art. 519 we have

L = -3* (5- G) cos /3cos 7 = - 3fc(A-C)smSNcosSN sin 6

= f*(0-4)8m0sin2(Z-^) ......... (5).

=
-f*(&amp;lt;7-^)sin&amp;lt;9cos&amp;lt;9{l+cos2&amp;lt;7-^)) .........(6).

These values of L and M contain the two small multipliers K

and (G A). They are not the complete values of L and M, but

only the principal terms (Art. 514). We shall therefore suppose
that the square of /c(C A) is to be neglected. The mean value

of K is n 2 where n is the angular velocity of the disturbing body.
The ratio n /n is very small, being about ^ for the moon and^
for the sun.

By referring to Art. 519 we notice that K contains the factor

(R /R)
S

. If the eccentricity e of the orbit of the disturbing body
is not rejected, even when multiplied by ri2

(G A), we must
substitute in (5) and (6) for R and also for I their values given by
the theory of elliptic motion. The value of / is known to be of the

form l = rit + e + 2e sm(rit+e -(o ) + &c............. (7),

and there is a similar expression for the reciprocal of R. In these

series the coefficients of the trigonometrical terms and the co

efficients of t in the arguments are all small compared with n.

524. To find the steady motion or precession. We
notice that the quantities L and M contain only one term which
is not an explicit function of the longitude of the disturbing body.
We find the steady motion by taking this one term alone. We
have therefore L = 0, M= J (C A ) sin 6 cos 6. The differential

equations are satisfied if we put
=

a, d^/dt = fj,
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where a and
//.

are two constants which satisfy

sin a. {A cos a/*
2 - Cup fK (C

- A) cos a}
= 0.

Since a in the case of the earth is about 23J, we must have the

quadratic factor equal to zero. Since n is not small, this gives two

values of
/-c,

one nearly equal to
^
--

^ cos a, and the other

C
nearly equal to -j?isec a.

As in the analogous case of the top, considered in Art. 207, either

of these values of
JJL might be the true one if the proper initial

conditions were given to the earth.

The latter value of
/*, gives, by (3), col

= (C/A) n tan a, and in

this case the axis of rotation can not closely coincide with the

axis of figure. The initial conditions must therefore have been

such as to give /M the smaller value.

The actual steady motion is therefore such that the pole C of

the earth describes a small circle of radius a about the pole Z of

the orbit of the disturbing body with a retrograde angular velocity
, , 3K C-A

equal to --~ cos a.
2n C

We notice that, if the angular velocity n of the earth about its axis were very

small or zero, the roots of the quadratic to find
/u,
would take a different form, so

that the expression just found for the retrograde motion of the pole of the earth

would cease to be even approximately true.

We may also notice that, if the pole of the equator were very close to the pole of

the ecliptic or very nearly 90 from it, we should have a different state of steady

motion. As in the case of the top already referred to, the oscillations or nutations

about this state of motion would have to be treated by a different analysis.

525. To find the Nutation. We must next consider the

terms in L and M which contain the longitude I of the dis

turbing body explicitly. At the same time to make the differential

equations linear we might write B = oL-\-61} dty/dt
= p + d^/dt,

where the additional terms 61 and d^/dt are so small that their

squares can be neglected. This substitution is however un

necessary, for having now ascertained that the constant part /-c

of dty/dt is of the order ic(C A) we may at once neglect the

terms 3 o&amp;gt;i
and 3o)2 in the differential equations (1). They now

take the linear form

(8).

Since the motion of the disturbing body is very slow compared
with the angular velocity of the earth about its axis, I is, and
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therefore L and M are, very nearly constant. If this be regarded
as a sufficiently near approximation we have at once

M L
Wl= -Cn ^Cn

These give by (3), (5) and (6)

d0 3fcG-A . . 0/J
&quot; -aras-o- &amp;lt;*-*)

_^ =
*f -*c-^ + _

sma at 2n (;

526. To find the motion of the pole of the earth in space
referred to the pole of the orbit of the disturbing body as origin,
we integrate the equations (9). If we write for I its approximate
value I = n t + e we find

3* C-A . 0/l ,

6 a -
;

~ sin a cos 2 (I -ur)4mi
o r A

. OK \J -L f7 i r /7 I

-fy
= const. , ~ cos a {& + J sin 2 (&

In these equations T/T + JTT is the longitude of the disturbing

body measured from the ascending node of the orbit. This, as

before mentioned, is the first point of Aries when the body is

the sun.

If the origin of measurement of I and ^r is such that they
vanish together, the constant of integration in the second equation
is zero.

527. We may measure the degree of approximation of equations (9) in the

following manner. If we eliminate o&amp;gt;2 between the equations (8) we have

dX C2n2 1 dL Cn _,

dt^
+ -A^^

=ATt-^ M
Since we reject the squares of K (C

-
A) we may, in calculating the value of the

right-hand side from the expressions (5) and (6), put 6 a. and
\f/
=

fj.t + v. Substi

tuting the values of I and R given in (7), suppose we find

where the constant part of M is given by \=0 and all the other values of X are small.

Then solving, we find Wj = - S ^2j^2x2
cos (X* +/).

Since F and X2 are both small we may reject the small term X2 in the denominator,

wothenhave ^= - 2FcoB(X(+/)= - + ................. (10).

In the same way we find &amp;lt;*
= +7^i^ro?i c^w at

In this approximation we have rejected terms of the order \~M or X2L. We see by

(7) that this is equivalent to rejecting terms of the order (/I / O
2^ or

(
ll l

tl
)

2 L.

By referring to (5) and (6), we see that the terms dL/dt and dM/dt contain,

besides the small factor ic(C-A), another small factor ri which arises from the
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differentiation of 1. These terms are therefore of the order (n /rc)
L or (n jn) M.

As the first terms on the right-hand side of (10) and (11) give rise to nutations

which are very small, or only just perceptible, it is unnecessary to take account

of the second terms. As these are of the same general forms, viz. Pcos2Z and

Q sin 21, as the first terms we notice that they will not be divided on integration by

any small factors which do not also divide the first term (see Art. 337). Kejecting

then these terms we have the same result as (9).

528. The integration in Art. 526 by itself is not altogether satisfactory. For,

when we substitute for I its full elliptic value given in (7), each of the moments L
and M assumes the form of a series of terms such as Fcos(\t+f), where the

values of X are small. After integration these terms get magnified by the divisor

X and if any constant term should occur it would get multiplied by t after inte

gration.

By a slight modification of these equations (suggested by Laplace) we may evade

this difficulty. Taking for I its value given by the theory of elliptic motion we

have R2

^constant.
This constant is evidently R 2n (1 -e rf. Substituting for

K its value given in Art. 519 and taking I as the independent variable, the

equations (9) assume the form

d6 _ PRa sin 2(1-^) d\f/ _ P R cos2(l-tj/)
dl R (1

- e 2
ft

dl JJ (1
- e 2

)^

where P, P and Q are small constant terms.

R (1 e 2
)

From the equation to the ellipse, we have ~^~p =l + e cos
(/-

-
L).

If this value of R be substituted, the integrations can be effected without difficulty.

It is clear however that the combinations of the one term cos (I
-
L) with sin 2 (I

-
ty)

and cos 2
(/
-

\f/)
can produce only periodic terms. These are of the form

sin

cos

and after integration are divided only by the same small factor n that divides the

terms independent of e .

Since e is small, we see that the terms which depend on the eccentricity of the

orbit of the disturbing body retain always their relative insignificance compared
with the principal terms calculated in equations (12).

529. Let us now examine the geometrical meaning of the

equations (12). For the sake of brevity, let us put 8 = ^^-, -^ ,2nn C
o n Aw? S C1

Aw&quot; 1
so that, by Art. 519,$ = ^ ^ or 8=-=^ r accord-

L&amp;gt; n & (j n 1 + v

ing as the sun or moon is the disturbing body, the orbit of the

disturbing body being in both cases regarded as circular.

Let us consider first the term 8 cos 61 in the value of

&amp;gt;/r.

Let a point C describe a small circle round Z the pole of
the orbit of the disturbing planet, the distance CZ being constant
and equal to the mean value of 6. Let the velocity be uniform
and equal to Sn cos 6 sin 0, and let the direction of motion be
opposite to that of the disturbing body. Then C represents



ART. 531.] THE NUTATION. 329

the motion of the pole of the earth so far as this term is con

cerned. This uniform motion is called Precession.

Next let us consider the two terms

SO = \ 8 sin 6 cos 21, 8^ = ^ScosO sin 21.

If we put x sin OS^jr, y = 86, we have

*2

,

f ,

(%S cos sin 0)
2

(J sin 0)
2

which is the equation to an ellipse.

Let us then describe round C as centre an ellipse whose
semi-axes are ^8 cos 6 sin 6 and J$ sin 9 respectively perpen
dicular to and along ZG\ and let a point Gl describe this ellipse
in a period equal to half the periodic time of the disturbing

body. Also let the velocity of G^ be the same as if it were
a material point attracted by a centre of force in the centre

varying as the distance. Then Cl represents the motion of the

pole of the earth as affected both by Precession and the principal

parts of Nutation.

If we had chosen to include in our approximate values of

6 and ty any small term of a higher order, we might have repre
sented its effect by the motion of a point (72 describing another

small ellipse having Cl for centre. And in a similar manner by
drawing successive ellipses we can represent geometrically all the

terms of 6 and ty.

530. Numerical results. The preceding investigations are

of course approximations. In the first instance we neglected in

the differential equations the squares of the ratios of
&&amp;gt;!

and o&amp;gt;2

to n, and afterwards some periodical terms which are an (n /)th
of those retained. We see by equations (3) and (12) that the

second set of terms rejected is much greater than the first, and

yet when the sun is the disturbing body these terms are only
about ^^th part of those retained, and when the moon is the

disturbing body they are only ^rth part of terms which them
selves are imperceptible.

We have also regarded the earth as a solid of revolution so

that A B may be taken zero, a supposition which cannot be

strictly correct.

531. In the case of the sun we have $ = s 7* &amp;gt;

so that

, 3 C - A n
the precession in one year is - ~ cos UZTT. It is shown in

treatises on the Figure of the Earth that there is reason to sup
pose that (G- A)/C lies between 0031 and 0033. Also we have
n jn

=
^JF ,

and 6 = 23 . 8 . This gives a precession of about 15&quot;*42

per annum. Similarly the coefficients of Solar Nutation in ty
and 6 are respectively found to be 1&quot; 23 and 0&quot; 53. If we sup-
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posed the moon s orbit to be fixed, we could find in a similar

manner the motion produced by the moon referred to the pole

of the moon s orbit. In this case S =
^ jj -^Tv

The

value of varies between the limits 23 5. Putting ri/n
=

^V,

v 80, = 23, we find a precession in one year a little more than

double that produced by the sun. But the coefficients of what

would be the nutations are about one-sixth of those produced by
the sun.

532. The complementary functions. In this solution we

have not yet considered the complementary functions. If we

abstract all the disturbing forces and regard the earth as simply
set in rotation and left to itself, the equations of Art. 525 take the

form Awi +Cnco.2 = 0, Aco^ - Cna&amp;gt; 1
= 0.

We easily find

o&amp;gt;!

=H sin (qt + K), co2
= -H cos (qt + K\

where q
= Cn/A, and H, K are two arbitrary constants. The

effect of these terms, if of sensible magnitude, would be to produce
a small oscillation in the earth s axis. This is sometimes called the

Eulerian nutation.

As the initial values of ^ and o&amp;gt;2 are unknown, the magnitude
of H must be determined by observing the changes produced in

the position of the pole of the earth. Since the latitudes of places
on the earth are very nearly constant we conclude that the magni
tude of H is nearly insensible.

533. The effect of these complementary functions on the motion of the pole of

the earth has been already considered in Arts. 180 182. Let i and 7 be the

inclinations of the instantaneous axis GI and the invariable line GL to the axis of

figure GG. Then tani=IZ&quot;/n and tan7= tani. AfC. In the case of the earth A

and C are very nearly equal and 1-AJC has been variously estimated to lie between

0031 and -0033. Thus 7 and i differ at most by ^th part of either and must

therefore be regarded as very nearly equal.

As explained in the articles just referred to, the instantaneous axis GI describes

a right cone in space whose axis is GL and whose angular radius is equal to i - 7,

the time of a complete revolution being nearly equal to a sidereal day. The

instantaneous axis is therefore nearly fixed in space and coincident with GL.

The instantaneous axis and the invariable line describe right cones in the body
whose common axis is the axis of figure, the time of a revolution being

sin 7/sin (i
-
y)ih part of a day. The period is therefore 306 to 325 days according

to the value taken for A\G. This is often called Euler s ten monthly period.

534. The common method of finding the latitude of a place P depends on

observations made on a star at an interval of half a day. The latitude found is

therefore the angle between GP and the invariable line. As the invariable line

travels in the body round the axis of figure, the latitude should have a ten-monthly

period whose magnitude is //. For the purpose of detecting the possible changes of

latitude special methods have been used, but they cannot be described here.

A series of observations made at Berlin in 188486, to determine the coefficient
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of aberration, led to the result that the latitude had decreased 0&quot;*2 in one year.

Afterwards, at Berlin, Potsdam and Prague, observations made in 188990 showed

that small periodic changes of latitude do occur amounting to half a second. As

the changes at these three places have all the same sign and follow very nearly the

same law it is impossible that they could be due to purely local causes. They

appear to indicate a yearly inequality. We learn from No. 3055 of Ast. Nach. that

the observations have been continued in 1891 and that these confirm the previous

results. The latitude of a place can be observed, by using the best instruments and

taking the utmost care, to within a tenth of a second. This corresponds roughly
to three yards on the surface of the earth, so that a change of place of the

instrument in the same room can be detected (Flammarion, Astronomie, April 1891).

When so much can be done we may expect that before long the uncertainties

remaining in this problem will be removed. In a paper, read to the Geographical

Society at Berlin 1891, Prof. Forster stated that simultaneous observations were

to be made for this purpose at Berlin and Honolulu continuously for a year.

These places being nearly on opposite meridians, their latitudes should be

altered by equal but opposite quantities if the changes are caused by movements of

the instantaneous axis. We now learn from the presidential address of Sir W.
Thomson that the results of the first three months of observation at Honolulu

show that movements of the instantaneous axis do occur sufficiently great to cause

sensible changes of latitude at that? place in the direction expected.

535. These changes of latitude may be due to other causes acting jointly with

the Eulerian nutation, and amongst these we must include the yearly meteorological

changes of the earth. The consequence is that the change of latitude appears to

have a double oscillation, the period of one being ten months and of the other a year.

The least common multiple of these is five years, so that the changes should repeat

themselves in this time. Again, when the two oscillations are compounded together,

the rate at which the latitude changes is not uniform. At one time the magnitudes

of the two oscillations are both increasing and their rates of change are added

together, at another time they are subtracted from each other
; see Art. 89 on the

transference of oscillations. It follows, as Prof. Forster remarks, that one series of

observations may be favourable to exhibit the change of latitude, while another

series made at a different time may show but faint traces of change.

In connection with this double oscillation the problem of Helmert given at the

end of Art. 23 is interesting. It should also be noticed that the displacement of

the instantaneous axis has been magnified by the nearness of the period of Euler s

nutation to that of the meteorological disturbance.

536. We should notice that the complementary functions are not strictly

represented by the Eulerian nutation. Taking only the forces which produce

precession, the equations of motion are, by Art. 522,

- A sin
8\f/&quot;

- 2 A cos 66 $ + Cn6 = 0,

A6&quot;
- A sin 6^

2+ Gn sin 0i//
= -

|/c (G
- A) sin cos 0,

where accents denote differentiations with regard to the time. The precession

being determined by writing 6= a and f = n, we substitute d= a + x and if/=/j.t+ y to

find the nutations. We shall evidently find on the right-hand side terms which

contain the first power of x, and, though these are of the second order of small

quantities, they should be examined into for the reason given in Art. 356. Like the

terms in the Lunar theory of the form cd - a, they modify the first approximation,

Art. 359.
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Making these substitutions we find that one effect of these terms is to alter the

Eulerian period. If 2ir/gr1 is the altered period, we have

The value of q l
differs very slightly from that defined by q in Art. 530. Since

the Eulerian period is not yet known with sufficient accuracy to make this difference

of importance (Art. 532), it is unnecessary to discuss at length the effects of these

small terms.

537. Examples. Ex. 1. If the earth were a homogeneous shell bounded by

similar ellipsoids, the interior being empty, the precession would be the same as if

the earth were solid throughout.

Ex. 2. If the earth were a homogeneous shell bounded externally by a spheroid

and internally by a concentric sphere, the interior being filled with a perfect fluid

of the same density as the earth, show that the precession would be greater than if

the earth were solid throughout.

Let (a, a, c) be the semi-axes of the spheroid, r the radius of the sphere. Then,

since the precession varies as (C-A)/C by Art. 529, the precession is increased in

the ratio a4
c : a4c - r5 .

Ex. 3, If the sun were removed to twice its present distance, show that the

solar precession per unit of time would be reduced to one-eighth of its present

value
;
and the precession per year to about one-third of its present value.

Ex. 4. A body turning about a fixed point is acted on by forces which tend to

produce rotation about an axis at right angles to the instantaneous axis, show that

the angular velocity cannot be uniform unless the momental ellipsoid at the fixed

point is a spheroid.

The axis about which the forces tend to produce rotation is that axis about

which it would begin to turn if the body were placed at rest.

Ex. 5. A body free to turn about its centre of gravity, which is fixed, is in stable

equilibrium under the attraction of a distant fixed particle. Show that the axis of

least moment is turned toward the particle. Show also that the times of the

principal oscillations are respectively 2*- *and ^ *

If the body be the earth and M be the sun, show that the smaller of these two

periods is about ten years.

538. Unequal moments of inertia. The method used in Art. 521 is well

adapted to find the precession and nutation of the earth both to a first and to

higher degrees of approximation when we regard the earth as a uniaxal body.

Though the method may be used when A is not equal to B, yet it loses much of its

brevity. We shall therefore adopt a different method to determine how the

precession and nutation are altered when we regard all the three principal moments
of inertia as unequal, though of course their ratios are supposed not to differ much
from unity.

Eeferring the motion to the principal axes, the Eulerian equations become

Aw^ -
(13

-
C) u#a3

= L = -SK(B-C) cos
ft cos 7^

.Bw2
-
(C

- A) w1u3
= M= - 3/c (C - A) cos a 0087 V (1),

&amp;lt;7w3 -(A- B) ^w.^ N= -3K (A- B) cos a cos p)
6 =

a&amp;gt;j

sin + w2 cos
1

- sin
6\f/

= wj cos -
a&amp;gt;o sin t (2).
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We see by (1) that w1? w.2 are of the order of the constant of precession, i.e.

K(G-A)IC ; hence, as we reject the square of this quantity, we shall reject the

second term on the left-hand side of each of the equations (1). To find A^, Bw^
Cw3 we have therefore merely to integrate the right-hand sides of these equations.

Proceeding as in Art. 523 we find

cos a= sin (I
-
^) sin + cos (I

-
\j/)

cos 6 cos
0^

cos /3= sin (Z- 1^)0080- cos (Z- i/ ) cos sin V (3).

cos 7= cos (Z- i//)
sin J

The third of equations (2) shows that differs from a constant, viz. n, by

quantities of the order of the precession, hence, if we reject the product of this

quantity by w /n, we may on the right-hand sides of (1) put &amp;lt;j&amp;gt;=nt
+ e, and in the

integration treat I, 6, and ^ as constants. We therefore see that nfcosftdt and
-

??Jcos adt differ from cos a and cos
/3 only by constant terms. These constant

terms may be omitted, as they represent the complementary functions which are

considered separately; it is also evident from (2) that small constant additions to u
1

and w2 only give rise to small daily periodic terms in 6 and
\j/

.

We therefore have i

3/c G-B 3/c C-A
0^= - cos a cos 7, w2

= = cos
/3
cos 7.HA ?l -/5

Since we have rejected the squares of (C-B)/A and (C-A)IB, we may to the same

degree of approximation write C for A and B in the denominators of these

expressions.

Substituting these values of ult w2 in the equations (2) we find

,
3/c 2C-A-B
2n 2C

sin sin 2 (-

where E1
and JR2 contain only terms whose period is about half a day and whose

coefficients contain the small factor K (A
-
B)IC. The value of (A

- B)/C has not been

determined but it is known to be very much less than (C
-
A)fC. As only terms of

long periods can rise into importance after integration with regard to t, Rl and E2

may be altogether rejected.

Omitting the terms R
1
and J?2 as being quite insensible, we see that both the

precession and nutation of the earth, with unequal principal moments of inertia

A, B, C, are the same as those for a uniaxal earth with principal moments of inertia

andC.

539. Let us now consider the third of equations (1). As the constancy of the

angular velocity w3 is a matter of great importance, it may be proper to examine it

to a higher degree of approximation. This equation as it appears in (1) is accurate

except that on the right-hand side we have rejected some small terms depending on

the higher inverse powers of the distance of the disturbing body; see Art. 513. The

values of Wj and w2 have been found rejecting terms of the order K(C-A)/C when

multiplied by n /n. Substituting these in the small terms we have

Cw3 -(A-B) f Y (
C - A W&quot; B ) COS2 y cos a cos p- _ 3K

(
A _ B) cos a cos /S.

If we now write for cos a, cos/3, 0037 their values given by (3) we obtain only a

long series of trigonometrical terms whose periods are about half a day and whose

coefficients are very small. It is unnecessary to calculate these at length, it being

sufficient to notice that the periods are not such that the coefficients are magnified
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by integration. We infer that the attractions of the sun or moon cannot produce

sensible changes in the period of rotation of the earth.

It is possible that the angular velocity of the earth might be altered by other

causes such as its gradual refrigeration, tidal friction, &c., for these have not been

included in the above discussion.

540. Ex. If the principal axes of the earth remain fixed in position but

the magnitudes A, B, C alter slowly and become equal to A+ at, B + bt, C + ct after

a time t, show that the secular inequality in the obliquity is given by

d0 P a + b-2c .

qiri f)

dt~2n C-A
where P is the precession of the equinoxes, i.e. 50&quot;. Darwin, Phil. Trans., 1876.

To prove this, we may begin with the equations used in Art. 24, Ex. 2 and

proceed as in Art. 538.

The existing difference C-A between the moments of inertia of the earth

corresponds to an excess of the equatorial over the polar radius of thirteen miles.

Unless we can suppose that geological changes could produce alterations of level

comparable with this, it,is clear that the coefficient of sin 6 in the expression given

above will be a small fraction of P.

541. To give a general explanation of the manner in which

the attraction of the Sun causes Precession and Nutation.

In order to explain the effect of the sun s attraction on the

earth it will be convenient to refer to Poinsot s construction for

the motion of a body, described in 140 and the following articles.

If a body be set in rotation about a fixed point under the

action of no forces, we know that the momenta of all the particles
are together equivalent to a couple which we shall represent by G
about an axis OL called the invariable line. Let T be the vis

viva of the body. If a plane be drawn perpendicular to the axis

of G at a distance e
2

*/MT/Q from the fixed point, then the whole
motion is represented by making the momenta! ellipsoid whose

parameter is e roll on this plane. In the case of the earth, the

axis 01 of instantaneous rotation so nearly coincides with 0(7, the

axis of figure, that the fixed plane on which the ellipsoid rolls is

very nearly a tangent plane at the extremity of the axis of figure.
This is so very nearly the case that we shall neglect the squares
of all small terms depending on the resolved part of the angular
velocity about any axis of the earth perpendicular to the axis of

figure.

Let us now consider how this motion is disturbed by the action
of the sun. The sun attracts the parts of the earth nearer to it

with a slightly greater force than it attracts those more remote.

Hence, when the sun is either north or south of the equator, its

attraction will produce a couple tending to turn the earth about
that axis in the plane of the equator which is perpendicular to

the line joining the centre of the earth to the centre of the sun.
Let the magnitude of this couple be represented by a, and let us

suppose that it acts impulsively at intervals of time dt.
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At any one instant this couple will generate a new momentum
adt about the axis of the couple a. This has to be compounded
with the existing momentum G to form a resultant couple Qf

.

If the axis of a were exactly perpendicular to that of G we should

have G = V(F+(a^)2 = # ultimately.

Let 6 be the angle that the axis of G makes with OC, then

6 is a quantity of that order of small quantities whose square is

to be neglected. Taking the case when OC, the axis of G t
and

the axis of a are in one plane, for this is the case in which G will

most differ from G, we have

G * = (G cos 6)* + (G sin + adt)*

= (G* + 2G*sm6dt (1).

Then a and 6 being of the same order of small quantities, the

term a sin 6 is to be neglected. Hence we have G = G. But the

axis of G is altered in space by an angle adt/G in a plane passing

through it and the axis of a.

Next let us consider how the vis viva T is altered. If Tf

be

the new vis viva, we have

T - T twice the work done by the couple a,

= 2a
(a&amp;gt;

cos ) (ft (2),

where &&amp;gt; cos /3 is the resolved part of the angular velocity about

the axis of a. For the same reason as before the product of this

angular velocity and a is to be neglected. Hence we have T = T.

It follows from these results that the distance e-^MT/G of the

fixed plane from the fixed point is unaltered by the action of a.

Thus the fixed plane on which the ellipsoid rolls keeps at the

same distance from the fixed point, so that the three lines 00,
01, OL, being initially very near each other, will always remain

very close to each other. But the normal OL to this plane has

a motion in space, hence the others must accompany it. This

motion is what we call Precession and Nutation.

Lastly the small terms which have been neglected will not

continually accumulate so as to produce any sensible effect. As
the earth turns round in one day, the axis OC will describe

a cone of small angle 6 round OL. The axis about which the sun

generates the angular velocity a is always at right angles to the

plane containing the sun and OC. Hence, regarding the sun as

fixed for a day, the angle 6 in equation (1) changes its sign every
half day. Thus G is alternately greater and less than G. Simi

larly, since the instantaneous axis describes a cone about OL, it

may be shown that T is alternately greater and less than T.

542. Solar Precession and Nutation. The three axes in

the earth which are the most important in our theory are (1) the

axis of figure OC, (2) the instantaneous axis of rotation 01, (3) the
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invariable line OL. It has just been proved in the last article

that, if these three be at any one instant very nearly coincident

with each other, they will, notwithstanding the sun s attraction,

always remain very close together. It will therefore be sufficient

for our present purpose to find the motion in space of any one of

the three.

Let OA, OB be two perpendicular axes in the earth s equator
and let the earth turn round OC in the positive direction AB.
Let the sun S at the time t be in the plane COA and on the

positive or north side of the equator. The sun s attraction during
the time dt generates a couple adt about the axis OB, which acts

in the negative direction AC. It follows from the last article

that OL (which is very nearly coincident with 0(7) moves in space
in the plane BOG with an angular velocity equal to a/G in the

direction BG. Since the sun moves round in the same direction

as the earth turns round its axis 0(7, it follows that, when a is

positive, the axes OL and 00 move very nearly at right angles to

the plane COS in a direction opposite to the sun s motion.

Knowing the motion produced in these axes by the sun in the

time dt, we now proceed to sum up the whole effects produced by
the sun in one year. For simplicity we shall speak only of the

axis of figure, viz. OC.

Describe a sphere whose centre is at 0, and let us refer the

motion to the surface of this sphere. Let K be the pole of the

ecliptic, and let the sun 8 describe the circle DEFH of which K
is the pole. Let DF be a great circle perpendicular to KG, then
since OC and the axis of figure of the earth are so close that we
may treat them as coincident, D and F will be the intersections of
the equator and ecliptic. When the sun is north or south of the
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equator, its attraction generates the couple a, which will be

positive or negative according as the sun is on one side or the
other. This couple vanishes when the sun is passing through the

equator at D or F. If the sun be anywhere in DJSF, i.e. north
of the equator, G is moved in a direction perpendicular to the .

arc (7$ towards D. If the sun be anywhere in FED, a. has the

opposite sign, and hence C is again moved perpendicular to the
instantaneous position of CS but still towards D. Considering
the whole effect produced in one year while the sun describes the
circle DEFH, we see that C will be moved a very small space
towards D, i.e. in the direction opposite to the sun s motion.

Kesolving this along the tangent to the circle, centre K and radius

KG, we see that the motion of G is made up of (1) a uniform
motion of G along this circle backwards, which is called Preces
sion and (2) an inequality in this uniform motion which is one

part of Solar Nutation. Again, as the sun moves from D to E, G
is moved inwards so that the distance KG is diminished, but, as

the sun moves from E to F, KG is as much increased. So that
on the whole the distance KG is unaltered, but it has an in

equality which is the other part of Solar Nutation.
It is evident that each of these inequalities goes through its

period in half a year.

543. Lunar Nutation. To explain the cause of Lunar
Nutation.

The attraction of the sun on the protuberant parts at the
earth s equator causes the pole G of the earth to describe a small

circle with uniform velocity round K the pole of the ecliptic with
two inequalities, one in latitude and one in longitude, whose period
is half a year. These two inequalities are called Solar Nutations.
In the same way the attraction of the moon causes the pole of the
earth to describe a small circle round Jf, the pole of the lunar

orbit, with two inequalities. These inequalities are very small \
and of short period, viz. a fortnight, and are therefore generally
neglected. All that is taken account of is the uniform motion
of G round M. Now K is the origin of reference, hence if M
were fixed the motion of G round M would be represented by a
slow uniform motion of G round K, together with two inequalities
whose magnitude would be equal to the arc MK, or 5 degrees,
and whose period would be very long, viz. equal to that of G
round K produced by the uniform motion. But we know by
Lunar Theory that M describes a circle round K as centre with
a velocity much more rapid than that of G. Hence the motion
of G will be represented by a slow uniform motion round K,
together with two inequalities which will be the smaller as the

velocity of M round K is greater, and whose period will be nearly
equal to that of M round K. This period we know to be about
19 years. These two inequalities are called the Lunar Nutations.

R. D. n. 22



338 PRECESSION AND NUTATION. [CHAP. XI.

It will be perceived that their origin is different from that of

Solar Nutation.

544. Motion of the plane of the disturbing body. In

the reasoning in Art. 521 the plane of the orbit of the disturbing

body was treated as if it were fixed in space. In order to discuss

the Lunar Nutations it will be necessary to determine how far its

motion affects the precession. We shall continue to take the

principal axis OA so that the plane OCA is perpendicular to the

instantaneous position of the orbit at the moment under con

sideration. The quantity Os will not be the same as before*, but, if

the motion of the orbit in space be very slow, S will still be very
small. We may therefore neglect the small terms 9.Awl and #3 ft&amp;gt;2

as before. The dynamical equations will not therefore be materially
altered. With regard to the geometrical equations (3), it is clear

that a).,, G)J will continue to express the resolved parts of the

velocity of C in space along and perpendicular to the instantaneous

position of ZC. These velocities are therefore expressed by the

values of dO/dt and sin Od-^rjdt given in equations (9). To this

degree of approximation, therefore, all the change that will be

necessary is to refer the velocities as given by equations (9) to

axes fixed in space, and then by integration we shall find the

motion of G. This is the course we shall pursue to find the lunar

nutation.

545. To calculate the Lunar Precession and Nutation.

Let K be the pole of the ecliptic, M that of the lunar orbit,

G the pole of the earth. Let KX be any fixed arc, KG = 6,

XKC =
-fy,

then we have to find 6 and ty in terms of t. In

calculating the lunar precession and nutation we are, by Art. 543,
to take account only of one part of the motion of C, viz. that called

the uniform motion of C round M. By Art. 529 we know that

this motion is represented by a velocity equal to $n&quot;sin MCcos MG
in a direction perpendicular to the arc MG. Substituting for S its

value given in that Article, it follows that the velocity of G in

space is at any instant in a direction perpendicular to MG, and is

equal to

Zn&quot;*G-A 1 ,fn . ,,n-=- n _ cos MG sm MG.
2n C I +v

For the sake of brevity let the coefficient of cos MG sin MG
* The value of

3 may be found in the following manner. The orbit at any
instant is turning about the radius vector of the planet as an instantaneous axis.

Let u be this angular velocity, which we shall suppose known. Let Z, Z \ B, B be

two successive positions of the pole of the orbit and the extremity of the axis of B
respectively. Then ZB = & right angle =Z B . Hence the projections of ZZ

,
BB

,

on^
ZB are equal. This gives, since ZB is at right angles to both CZ and SB,

BSB 8mBS=ZCZ sinZC. Now the angle ZCZ = - 50
3 and the angle BSB = u,

hence S0
:!

. sin = - u sin I. The value of 503 must be added to the former value of 83 .
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be represented by P. Then resolving this velocity along and

perpendicular to KG, we have.

dO/dt = -Psm MG cos MC sin KGM
\

sin 6 cty/dt
= - P sin MG cos MG cos KGM

J

By Lunar theory we know that M regredes round K uniformly,
the distance KM remaining unaltered. Let then KM =

i, and
the angle XKM = mt + a. Now, by spherical trigonometry,

cosMG = cos i cos 6 + sin i sin 6 cos MKC,
T\/rn rrn T\T cos * ~ cos MC COS 6

sm MG cos KGM = -
r

sin 6

= cos i sin $ sin i cos cos

sin M7 . sin KGM = sin i sin MKC.

Substituting these values, we have

d0/dt
= -P [sin i cos i cos sin MKC+ \ sin2

1 sin d sin

sin Od^rjdt
= P {sin cos (cos

2
i J sin2

1)

sin i cos i cos 20 cos MKC J sin 2
1 sin cos cos 2MKC}.

For a first approximation Ave may neglect the variations of

and
i/r

when multiplied by the small quantity P. Hence dO/dt
contains only periodic terms, and the inclination has no per
manent alteration. But dty/dt contains a term independent of

MKC
; considering only this term, we have

^ = constant P cos (cos
2
i \ sin2

i) t.

This equation expresses the precessional motion of the pole
due to the attraction of the moon. We may write this equation
in the form ^ = ^ pt.

To find the nutations, we must substitute for MKC its ap
proximate value MKC =

( m +p) t + a ^ .

We then have, after integration,

P sin i cos i cos , , Tr ~ P sin2
i sin= const. T cos MKC - cos 2MKC.mp 4 (m p)

The second of these two periodic terms, being about one-

222
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fiftieth part of the first, which is itself very small, is usually

neglected. Also p is very small compared with m, hence we have

P sin i cos i cos 6 , . rrr(
6 = 6, cos MKC.

m
This term expresses the Lunar Nutation in the obliquity.

The coefficient of the periodical term cos MKC lies between 8&quot;

and 9&quot;.

In the same way by integrating the expression for
i/r,

and

neglecting the very small terms, we have

^ = ^Q -Pcos0 (cos
2 i - i sin2 i)t-P^~ . ^j sin MKC.

The angle MKC is the longitude of the moon s descending

node, and the line of nodes is known to complete a revolution

in about 18 years and 7 months. If we represent this period by
T, we have MKC=-27rt/T+ constant. The coefficient of sin MKG
lies between 16&quot; and 17&quot;.

The pole M of the lunar orbit moves round the point of re

ference K with an angular velocity which is rapid compared with p,
but yet is sufficiently small to make the Lunar Nutations greater
than the Solar. We may also notice that, if M had moved round

K with an angular velocity more nearly equal to p }
the N utations

would have been still larger.

546. We may also make some allowance by this method for the effect of the

motion of the ecliptic. We now let M be the pole of the moving ecliptic at any time

t
,
K that of some fixed circle of reference. Assuming that the chief effect of the

solar precession is to make the pole C of the earth move perpendicularly to the arc

CM with a velocity equal to Pcos MG . smMC, we find the same values for ddjdt

and sin 6d\f/jdt as before. The motion of the ecliptic is so slow that, if we take as

the fixed point K the pole of the ecliptic at some not very remote date, we may
neglect the squares of i. We thus have

deidt = - Pi cos 6 sin MKC,

sin 8d\f//dt
= -P (sin cos - i cos 26 cos MKC),

where KG = 6 and the angle CKX=\f/.
Since the pole of the lunar orbit describes very nearly a small circle with a

uniform motion we were able in Art. 545 to substitute for the angle MKG
its value (p-m) t + &c. In the case of the ecliptic we proceed otherwise.

Let t=0 be the time at which the pole of the ecliptic is at K and let the arc KX
join K to the pole G of the equator at the same time. Let the resolved velocities

of K along and perpendicular to KX be g and g. Assuming that the time t is not

so long that the direction and velocity of K has had time to change sensibly, we

may regard g t and gt as the co-ordinates of M referred to KX as axis of x. Hence

i sin MKC= gt cos ^ -
g t sin

\f/,
i cos MKC= g t cos

\f/ + gt sin
\f/.

Now ^ is zero when t = and increases at about 50&quot; per year, so that in a hundred

years if/
amounts to a little over one degree. Since P, g, g and

\j/
are all small

quantities, we shall write in the small terms i sin MKC=gt and i cos MKC-g t.
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Substituting these in the above expressions and integrating we have

= - ip cos gt
2

, \f/
-P (cos t - ^ cos 20 cosec g t

2
),

where is the angular distance of the pole C of the earth from the pole K of the

ecliptic at some chosen epoch, and 0, ^ are the co-ordinates of G after a time t

referred to the same point as origin.

547. It is sometimes more convenient to refer the motion of C to the pole M of

the ecliptic at the time t. Putting MC= 6
l
and the angle CMC =

\f/1
we evidently

have 1
= 0-g t. Eemembering that KM is less than one degree while the four

arcs CK, CM, C^K, C M are each about 23, we have
\f/l

sin
1 and \f/

sin each nearly

equal to G C. We therefore have
\l/1
= \f/(l+g t cot 0). Thus, when and

\{/
are

known, the values of
l
and ^ follow at once.

Ex. If the pole M of the ecliptic, starting from K, describe a great circle KX
with a constant angular velocity v, prove that the motion of the pole G of the

earth is given by d0fdt= - v cos
\f/ t d\j/jdt

= v cot 0sm\[/-P cos 0,

where = MC, \f/=CMX and P has the meaning given to it in Art. 546. Show also

that, if the square of v/P is neglected, these equations are satisfied by
- a - (v/P) sec a sin (P cos at), -\l/

= Pcosat- (v/P) sec 2 a cosec a cos (P cos at).

If there were no precession, i.e. if P were zero, the changes in the obliquity due

to the motion of the ecliptic would be nearly given by = a-vt, but we see that

here one effect of the precession is to bring the possible changes of the obliquity
within narrow bounds.

The actual motion of the pole of the ecliptic is very different from that supposed
in this example, but Laplace has shown that, when we take the co-ordinates of K
supplied by the planetary theory, a similar theorem is still true. One effect of the

precession is to cause the plane of the equator to move with the plane of the

ecliptic so that the possible change of obliquity is less than it would be if there

were no precession; Mecanique Celeste, Vol. n. p. 367.

548. Numerical results. Let BDE and DA be the positions of the ecliptic

and equator at some fixed epoch, say Jan. 1, 1850; CAE and BCF their positions

after a time t measured in Julian years i.e. years of 365-25 mean solar day each.

F

BDE is the fixed ecliptic, DA the fixed equator, CAE &quot;the moving ecliptic and

BC the moving equator.

Consider first the precession. That part of the precession which is due to the

action of the sun and moon on the earth is called Uini-solar precession. This is

referred to the fixed ecliptic and is represented in the figure by BD, we have

4 = BD = 50&quot; 37140* -0&quot; -000108806*-.
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The inclination of the equator to the ecliptic would be constant if the motion of the

ecliptic did not modify the forces (Art. 524). The inclination CBD of the ecliptic

to the equator is therefore given by

= CBD = 23 27 32&quot; + 0&quot; -00000719*2 .

To these values of
\f/
and 6 we must add the geometrical effect of the motion of

the ecliptic, or as it is usually called planetary precession. The resultant of luni-

solar and planetary precession is called general precession. Taking a point D on the

moving ecliptic so that ED = ED, the arc D C represents the general precession.

We have
i/ i

:=-D C--=50&quot;-23572 + 0&quot;-00011290
2

,

0j
=ACF= 23 27 32&quot;

-
0&quot; 47566( - 0&quot; 00000149t2

.

The planes of the moving ecliptic and equator determined by these angular
co-ordinates are usually called the mean ecliptic and mean equator at the time t.

The coefficient of t in the expression for
\f/l

is usually called the constant of

precession. It represents the sum of the precessions due to the sun .and moon
found in Arts. 524 and 545 together with the correction depending on g cot 6

mentioned in Art. 546.

549. Consider next the Nutations. These are so small that the amounts to be

added to ^ or ^ or
X
are the same; let these be called respectively \l&amp;gt; and 9.

Then *= -17&quot;-251sini2 + 0&quot;-207sin 212 - l&quot;-269 sin 2 O
-

0&quot; 204 sin 2]) + 0&quot;-069 sin ^w+ 0&quot;-128 sin A g ,

6= 9&quot;-223 cos 12 - 0&quot; -090 cos 2ft + 0&quot;-551 cos 2 Q + 0&quot;-089 cos 2 j).

Let the dotted line in the figure represent the Lunar orbit, so that G is its ascending

node, then ft=CG is the longitude of G measured on the true ecliptic from the true

spring equinox, but it is sufficient in these small terms to regard 12 as representing

the longitude of the mean node measured from the mean equinox. Similarly in

these terms O and ]) are the longitudes of the sun and moon measured on the

moving ecliptic from either the true or mean equinox. The symbols A s and Am
represent the mean anomalies of the sun and moon in their elliptic orbits.

Several terms are here exhibited which have been rejected in the preceding

theory in order that the relative magnitudes of the term may be more clearly

understood.

The coefficient of sin 12 in the expression for \I&amp;gt; is called the constant of nutation.

It represents the coefficient of sin MKC in the expression for
\j/

in Art. 545.

The terms in ^ and 6 containing sin 212 and cos 212 are discussed in Art. 545,

and then rejected. The terms with ein 2 and cos2o are the solar nutations, see

Art. 526. The terms containing sin 2 J) and cos 2 D are discussed in Art. 531 and
it is pointed out in Art. 543 that they are usually neglected. The terms depending
on Am and A s are alluded to in Art. 528.

The numerical values of the several terms are variously given by different

calculators, though the variations are not important. Those here followed are

given by Serret, Annales de VObservatoire, t. v. 1859. Another list differing from
these is given in Main s Astronomy (1863), where Bessel s constants are used. In
these the year 1750 is taken as the fixed epoch from which the time is measured.

550. Nutation of the earth s axis when the mean obliquity is zero. When
the instantaneous obliquity is small, a very slight change in the position of the

equator may greatly alter its line of intersection with the ecliptic. It is therefore I

not convenient to measure our angles from the first point of Aries. Let GZ be a
normal to the ecliptic, GC the axis of figure, then we wish to find the small
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oscillations of GC about GZ. Let GX, GY be axes fixed in the ecliptic and let the

longitude of the sun be measured from GX. Let (P, Q, 1) be the direction cosines

of GC referred to the axes of X, Y, Z. It is unnecessary to go through all the stops

of the investigation, it is enough to say that the equations of motion to find P and

Q take the form given in Art. 15. Eemembering that the disturbing couple due to

the sun s attraction is equal to - 3k (C
-
A) sin CS . cos CS, and that its axis makes

an angle I + \TT with GX, we obtain the equations

AQ&quot;-CnP +fQ = -fsm2l.P+fcos2l. Q)

AP&quot; + CnQ +fP= -f cos 2l.P-f sin 21 . Q]

where f=%k (C
- A) and l= n t. The small terms fP and fQ must be retained in

the first approximation, for the reason given in Art. 356. The first approximation
is then found by omitting the right-hand side and assuming

We then find the quadratic Ap
2 ~ Cnp-f=0, so that the two values of p are nearly

equal to Cn/A and -f/Cn. Also K=H. If p and p be the roots of the quadratic,

we have for a second approximation

P=Hcos (pt + e) +X cos {(2ri
-
p)t-e}+ H cos (p t + e )+X cos {(2ri

-
p )

t - e },

Q=Hsm (pt+ c) + Xsin {(2ri~p) t- }+H sin (p t + e
) +X sin {(2ri

-
p )

t-e
},

where X {A (2n
-

p)
2 - On (2ri

-
p) -f}=X {A (2ri

-
p )

2 - Cn (2ri
-
p ) -f}=Hf.

It may be noticed that, when k is small, it has not been assumed that A and G
are nearly equal. The method of approximation adopted requires that X and X
should be small compared with H, and this will be true if n /n is small and CjA not

small. It will also be true if ?i= and C is nearly equal to A.

Poisson attached so much importance to this problem that he wrote at least two

memoirs on it. The first was published in the Connaissance des Terns for 1837,

where he criticises a dynamical argument of Laplace on this subject in the

Exposition du systeme du monde, livre iv. chap. xiii. Soon afterwards he returns

to the subject, giving a new solution in the fourteenth volume of the Memoires

de VAcademic des Sciences, 1838. He refers the motion to a set of axes different

from those used above, though the equations are afterwards reduced to a somewhat

similar form. He then obtains an accurate solution of the equations, but the easy

approximations here given are sufficient for our present purpose.



CHAPTER XII.

MOTION OF THE MOON ABOUT ITS CENTRE OF GRAVITY.

551. IN the theory of precession and nutation the earth is

generally regarded as a uniaxal body. This is a sufficient ap

proximation in the case of the earth, for we have seen in Art. 538

that no important phenomenon of the motion is caused by the

slight differences which really exist between the equatorial mo
ments. But in the case of the moon the supposition would cause

us to miss some of the most interesting peculiarities of the motion.

Besides this there are other differences so great that the two

theories are perfectly distinct.

As our object is to examine the mode in which the disturbing
forces alter the several motions of the moon about its centre of

gravity, rather than to obtain arithmetical results of the greatest

possible accuracy, we shall separate the problem into two. In the

first place we shall suppose the moon to describe an orbit which is

very nearly circular, in a plane which is one of the principal planes
at its centre of gravity. In the second case we shall remove the

latter restriction, and examine the effects of the obliquity of the

moon s orbit to the moon s equator.

552. The moon describes an orbit about the centre of the earth

which is very nearly circular. Supposing the plane of the orbit to

be one of the principal planes of the moon at its centre of gravity,
it is required to find the motion of the moon about its centre of

gravity.

Let GA, OB, GO be the principal axes at G the centre of

gravity of the moon, and let GO be the axis perpendicular to the

plane in which G moves. Let A
, B, G be the moments of inertia

about GA, GB, GG respectively, and let M be the mass of the

moon, and let accented letters denote corresponding quantities for

the earth.

Let be the centre of the earth, and let Ox be the initial line.

Let OG =
r, GOx = 0. Let us suppose that the moon turns round

its axis GC in the same direction that the centre of gravity describes

its orbit about 0, and let the angle OGA =
d&amp;gt;.
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The mutual potential of the earth and moon is, by Art. 518,

V_MM M M ,

r 2r* 2r3

Here / = A cos2

&amp;lt;/&amp;gt;

+ B sin2
&amp;lt;/&amp;gt;,

and therefore the moment of the

forces tending to turn the moon round GO is

(1).

Since 6 +
&amp;lt;j&amp;gt;

is the angle which GA, a line fixed in the body,
makes with Ox, a line fixed in space, the equation of the motion of

the moon round GC is

d?d
,

&&amp;lt;}&amp;gt;

3M B-A . ^
df^dt^-^-G-^^ ............ (2) &quot;

The motion of the centre of gravity of the moon referred to the

centre of the earth as a fixed point is found in the Lunar Theory.
It is there shown that r and may be expressed in the form

r = c (1 + L cos (pt + a) + &c.},

dd/dt = n + @t + Mp cos ( pt + a) + &c.,

where ftt is a very small term which represents a secular change
in the moon s angular velocity about the earth, and is really the

first term of the expansion of a trigonometrical expression.

If we substitute the value of dd/dt in equation (2), we have the

following equation to determine $,

....... (3),
CIL ~

where for the sake of brevity we have put n&quot; ~ ~ = ~ .

Z O 2i

Now we know by observation that the moon always turns the

same face towards the earth, so that amongst the various motions

which may result from different initial conditions, the one which
we wish to examine is characterized by (f&amp;gt; being nearly constant.

Let us then introduce into this equation the assumption that $ is

nearly constant
;
we may then deduce from the integral how far

this assumption is compatible with any given initial conditions
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which we may suppose to have been imposed on the moon.

Putting &amp;lt;j)

=
(f&amp;gt;

+
&amp;lt;/&amp;gt;

,
where &amp;lt;

is supposed to contain all the con

stant part of
&amp;lt;/&amp;gt;,

we easily find

+
(j

3 cos 2(
&amp;lt;/&amp;gt;

- M-fr sin (pt + a) + &c.
dt&quot;

Solving the second equation, we find,

=H sin (qt + #) +
&amp;lt;/&amp;gt;o

+ M -, sin
0&amp;gt;*

+ ) + &c. . .

.(5),

where jT and K are two arbitrary constants whose values depend
on the initial conditions. The angular velocity of the moon about

its axis is therefore
given by the formula

In this investigation the axis GA which makes the angle &amp;lt;

with the radius vector GO drawn to the earth may be either of the

principal axes in the moon s equator. If we choose GA to be that

axis whose mean position makes the lesser angle with the radius

vector GO, the quantity cos 20 will be positive. The quantity &amp;lt;f

will be positive or negative according as that axis GA has the

least or greatest moment. In the solution just written down
&amp;lt;f

has been taken to be positive.

If (f were negative or zero, the character of the solution of (3)
would be altered. In the former case the expression for

&amp;lt;/&amp;gt;

would
contain real exponentials. If the initial conditions were so nicely

adjusted that the coefficient of the term containing the positive

exponent were zero, the value of
(/&amp;gt;

would still be always small.

But this motion would be unstable, the smallest disturbances

would alter the values of the arbitrary constants, and then $
would become large. If we also examine the solution when (f

= 0,

we easily see that
&amp;lt;/&amp;gt;

could not remain small. The complementary
function would then take the form Ht + K, and as before some
small disturbance might cause &amp;lt; to become great. We therefore

infer that, of the axes GA, GB of the moon, the axis of least

moment is turned more towards the earth than the other, and that

these two principal moments are not equal.
In order that the expression (5) for

fy may represent the actual

motion it is necessary and sufficient that H when found from the
initial conditions should be small. We see, by differentiation, that

Hq is of the same order of small quantities as
d(f&amp;gt;/dt.

Hence H
will be small if at any instant the angular velocity, viz. dd/dt
+ d(f)/dt, of the moon about GO is so nearly equal to the angular
velocity, viz. ddjdt, of its centre of gravity round the earth, that
the ratio of the difference to q is very small.
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We see from the first of equations (4) that the magnitude of

the constant part &amp;lt; of the angle which the axis of least moment
in the moon s equator makes with the radius vector drawn to the

earth depends on the ratio 2{3/q\ The value of ft is found in the

Lunar Theory and is known to be extremely small. It represents
an increase in each century of the angular velocity of the moon in

her orbit round the earth of about 25 seconds per century. The
numerical value of (f depends on the structure of the moon, and is

not properly known. Its value can only be found by comparing
the results of this or some other investigation with those of

observation. It will presently be shown that according to Nicollet

3 (B - A)/G = 00167. This would make
&amp;lt;/&amp;gt;

to be so small as to be

inappreciable.

The first of equations (4) shows that 2/3 must be less than (f ;

so that unless the moments of inertia A and B in the moon are

sufficiently unequal to satisfy this condition, the moon could not

move so as always to turn the same face to the earth.

If we enquire what can be the physical cause of the difference

between the moments of inertia about the two principal axes in

the moon s equator we naturally think of the attraction of the

earth on that body. This attraction, either in the past or in the

present time, would tend to lengthen that diameter which is

directed to the earth. Taking the suppositions usually made in

the theory of the Figure of the Earth, Laplace has attempted to

deduce from this the value of
(f.

The only result we are here

concerned with is that the ratio 2ft/q~ is so small that we may
reject its square. Assuming this, we again see that

(/&amp;gt;

must also

be very small. It follows also that we may write ft/q
2 for &amp;lt; and

unity for cos
2^&amp;gt;

in equations (5) and (6).

If therefore we suppose the moon at any instant to be moving
with its axis of least moment pointed towards the earth, and its

angular velocity about its axis of rotation to be nearly equal to that

of the moon round the earth, then the axis of least moment will

continue always to point very nearly to the earth. The mean

angular velocity of the moon about its axis will immediately become

equal to that of the moon about the earth and will partake of all its

secular changes. This is Laplace s theorem. It shows that the

present state of motion of the moon is stable, rather than explains
how the angular velocity about the axis came to be so nearly equal
to the angular velocity about the earth.

553. The statement that the moon always presents the same face to the earth

must be understood with some limitation. The angular velocity of the moon about

its axis is very nearly uniform, but the angular velocity in its orbit about the earth

is not constant, and hence there arises an inequality or libration in longitude which

may amount to as much as six degrees. Again, the axis of rotation of the moon is

not quite perpendicular to the plane of its orbit, so that there is a libration in

latitude. Lastly, as the observer is not situated at the centre of the earth there is
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a diurnal libration which arises from parallax and may amount to nearly one

degree. These are called the apparent or geometrical librations. After all these

have been allowed for, there remains a real libration in the angular velocity of the

moon about its axis and it is this last inequality or libration which we are

here considering.

554. If the longitude of the centre of the moon as seen from the centre of the

earth be =
l + Msm(pt + a) + &c.,

where l
= nt + /3t

2 + e, then the longitude of any spot on the moon as seen from the

centre of the moon and measured from the first point of Aries is

-
T--t

where I is some constant. Any lunar meridian whose longitude is given by this

expression is fixed on the moon and moves with it. That particular meridian

whose longitude is defined by this expression when I is omitted is called the

first meridian, and I is the longitude of the spot under consideration measured

from the first meridian. If the periodic terms in the expression for L are

omitted as being almost insensible, the first meridian will be defined by the

longitude L = ir + 1 ,
and this meridian will bisect the visible disc of the moon,

supposing it to move in the ecliptic with an angular velocity n + pt about the earth,

to rotate with the same angular velocity about an axis perpendicular to tbe ecliptic,

and to be seen from the centre of the earth.

555. To determine the numerical values of the coefficients of the periodic terms

in the expression for L, the oscillations of some spot conveniently situated on the

apparent disc of the moon must be observed. Bouvard measured the difference of

the right ascension and declination of the spot Manilius from the bright rim or

border of the moon. Subtracting these from the calculated semi-diameter of the

moon, the co-ordinates of the spot referred to the centre of the visible disc are

known. A great variety of astronomical corrections have to be made and the

result has to be referred to trie centre of the moon as origin. Finally the

longitude of the spot measured on the ecliptic from Aries up to the descending

node of the lunar equator and then along that equator is determined.

By equating the longitudes of a spot on the moon observed at different times

to those deduced from theory we may form a sufficient number of equations to

determine the values of any unknown constants in the theory. In this way we

may attempt to discover the value of (B-A)jC. The observations of Bouvard and
Nicollet however show that the amount of the true libration is so small as to be

almost insensible. The extent of the oscillation in lunar longitude on each side of

the mean position is about 4 . 45&quot; or 285&quot;.

If the term Hq cos (qt + K) could be detected by observations we should deduce

the value of (B - A)IChom its period. Among the other terms of the expression for

the angular velocity of the moon about its axis those will be best suited to discover

the value of q which have the largest coefficients, that is, those in which either the

numerator M is the greatest, or the denominator q
2 -p2 the least, possible. The

term with the largest M is the elliptic inequality, and if (B-A)fC were as great as

03, Laplace has shown that it could be recognized by observation. The term with

the least value ofp is the annual equation, and here njp= 13 36, M= -
669&quot;. If we

ascribe the variation of the spots wholly to this inequality we have lfy
2
/(p

2 -
&amp;lt;/

3
)
= 285

We easily deduce (D -A)/C= -00057.

The spot Manilius was selected as being both distinct and not far from the
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centre of the visible disc, and was observed by Bouvard at Paris at every opportunity

during the four years 1806 10. The choice was afterwards objected to by Beer

and Maedler because its aspect differs according to the mode of illumination. They
suggested the crater Maesting A, which is described by Webb (Celestial objects) as

minute and very luminous. This spot was accordingly observed for two years and

a half at Konigsberg.

556. Motion of the centre of gravity of the Moon. We may also deduce

from the potential given in Art. 552 the radial and transverse forces which act on

the centre of gravity of the moon due to the mutual attractions of the earth and

moon. Since the principal moments of the moon are nearly equal, and its linear

size small compared with its distance from the earth, these forces are very nearly

the same as if the moon were collected into its centre of gravity. The effect of the

small forces neglected by this assumption will be insignificant compared with the

other forces which act on the centre of gravity of the moon. The motion of the

centre of gravity of the moon is therefore very nearly the same as if the whole mass

were collected into its centre of gravity.

Ex. The centre of gravity G of a rigid body describes an orbit which is

nearly circular about a very distant fixed centre of force attracting according

to the Newtonian law and situated in one of the principal planes through G. If

r c
(!+/&amp;gt;),

6 = nt + n\j/
be the polar co-ordinates of G referred to 0, show that the

equations of motion are

f
_B-A ,_2C-A-B

We may notice that the values of y and 7 are much smaller than that of q- and

might therefore be rejected in a first approximation.
If the body always turns the same face to the centre of force so that is

nearly constant and is small, show that there will be two small inequalities in the

value of of the form L sin (pt + a) t
where p is given by

( p2 - n2
) (p*

-
q
2
)
- 3n2

7 (p
2 + 3w2

)
= 0,

one of these periods being nearly the same as that of the body round the centre

of force, and the other being very long.

If the body turns very nearly uniformly round its axis GC, so that = n t + e

nearly, show that there will be two small inequalities in the value of 0, one in

which p n and another in which p = 2n .

557. Examples. Ex. 1. Show that the moon always very nearly turns the

same face to that focus of her orbit in which the earth is not situated. [Smith s

Prize.]

Ex. 2. If the centre of gravity G of the moon is constrained to describe a

circle with a uniform angular velocity n about a fixed centre of force attracting

according to the Newtonian law, show that the axis GA of the moon will oscillate

on each side of GO, or will make complete revolutions relatively to GO, according

as the angular velocity of the moon about its axis at the moment when GA and GO
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coincide in direction is less or greater than n + q, where q has the meaning given

to it in Art. 552. Find also the extent of the oscillations.

Ex. 3. A particle m moves without pressure along a smooth circular wire of

mass M with uniform velocity under the action of a central force situated in the

centre of the wire attracting according to the law of nature. Show that this system

of motion is stable if T̂ &amp;gt;

+
n ~ . The disturbance is supposed to be given

Al &d

to the particle or to the wire, the centre of force remaining fixed in space.

Ex. 4. A uniform ring of mass M and of very small section is loaded with a

heavy particle of mass m at a point on its circumference, and the whole is in

uniform motion about a centre of force attracting according to the law of nature.

Show that the motion cannot be stable unless m/(Af+m) lies between 815865 and

8279.

This example shows (1) that if a ring, such as Saturn s ring, be in motion

about a centre of force, its position cannot be stable, if the ring be uniform
;
and

(2) that if, to render the motion stable, the ring be weighted, a most delicate

adjustment of weights is necessary. A very small change in the distribution of

the weights will change a stable combination to one that is unstable. This

example is taken from Prof. Maxwell s Essay on Saturn s Rings.

Ex. 5. The centre of gravity of a body of mass M, symmetrical about the plane

of xy, is G ; and is a point such that the resultant attraction of the body on is

along the line GO. Then, if the body be placed with coinciding with a fixed

centre of force S, and be set in rotation about an axis through perpendicular to

the plane of xy with an angular velocity u, G will, if undisturbed, revolve uniformly
in a circle, always turning the same face towards 0, provided that MauP is equal to

the resultant attraction along GO, where a is the distance GO. It is required to

determine the conditions that this motion should be stable.

The motion being disturbed, will no longer coincide with the centre of force

S. Let two straight lines at right angles revolving uniformly round S as origin

with an angular velocity w be chosen as co-ordinate axes, and let x be initially

parallel to OG. Let (x, y) be the co-ordinates of 0,
&amp;lt;f&amp;gt;

the angle OG makes with

the axis of x, then x, y, tf&amp;gt;

are all small. Let V be the potential of the body at 0,

and let d2
F/d#

2= a, d2
V/dxdy = y, d-V/dy*= p. Let S be the amount of matter in

the centre of force. The equations of motion of a particle referred to axes moving
in one plane round a fixed origin are given in Vol. i. These equations may also be

deduced from Arts. 4 and 5 of this volume by putting 0]
= and 2

= 0. In this way
the equations of motion of G reduce to

and the equation of angular momentum about S will lead to

where k is the radius of gyration of the body about 0. Combining these equations
as a determinant, and reducing we find that the differential equation in , 17, or &amp;lt;

is of the form A~+B, + C=0.
dr dt2

The condition of stability is that the roots of this equation should be real and
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negative. Hence A, B, G must be of the same sign and B 2
&amp;gt;4AC. This pro

position is due to Sir W. Thomson and is given in Prof. Maxwell s Essay on Saturn s

Rings.

558. Cassini s theorem on the Moon s equator. Before we proceed to the

theoretical discussion of this problem it will be convenient to mention the most

striking of the results arrived at. There are three planes with which we are

concerned, viz. (1) the plane of the moon s orbit round the earth or, which is the

same thing, the plane of the earth s orbit as seen from the moon
; (2) a plane drawn

through the centre of the moon parallel to the ecliptic, i.e. parallel to the plane of

the earth s orbit round the sun
; (3) the plane of the moon s equator. This last is

a plane perpendicular to that axis of figure which most nearly coincides with the

axis of rotation. Now Cassini discovered that these three planes all intersect in the

same straight line, so that the plane of the moon s equator has to follow the plane

of the moon s orbit as it regredes along the ecliptic. He also discovered that the

plane parallel to the ecliptic always lies between the other two planes, Memoires

de VAcademie des Sciences, vol. vm. These results were afterwards confirmed by

T. Mayer, who undertook a series of observations on the spots of the moon during

the years 1748 and 1749. He also corrected the inclinations of the three planes

as given by Cassini. Subsequently Lalande confirmed Cassini s theorems a second

time, see the Memoires de VAcademie des Sciences, 1764. Lastly, Bouvard under

took a more complete set of observations which extend over the years 1806 1810.

These were reduced and discussed by Nicollet, who published his results in the

Connaissance des Terns for the year 1822 published in 1820. These observations,

thus reduced, still remain the standard set of observations and are generally referred

to as the proof of Cassini s theorem. According to Nicollet the inclination of the

moon s equator to the ecliptic is constant and equal to 1 28 . He also found that

a meridian drawn on the moon through any spot oscillates on each side of its mean

position though an angle of only about 4 to 5 .

These relations between the three planes are so interesting and extraordinary that

a theoretical explanation was soon sought after. D Alembert in 1754 was the first

to attempt the solution. But his results were far from complete. The Academy

of Sciences offered their prize of 1764 for a complete theory of the moon s libration.

This was gained by Lagrange. In 1780 he proved that, if the three planes originally

coincided, the attraction of the earth on the moon would maintain the coincidence.

Memoires de Berlin, 1780. Laplace showed further that these theorems are disturbed

neither by the secular inequalities of the mean motion of the moon nor by the

secular changes of the ecliptic. Poisson repeated and extended Lagrange s theory

and discovered some new inequalities in the motion. These results may be found in

the Connaissance des Terns for 1821. For a further account of the history the

reader may consult Grant s History of Physical Astronomy and the Connaissance des

Terns for 1822.

559. Theoretical investigation of Cassini s theorem. The motion of a

rigid body about a distant centre of force has been investigated on the supposition

that the motion takes place entirely in one plane. We see by equation (2) of Art.

552 that the case in which the centre of gravity describes a circular orbit, and the

rigid body always turns a principal axis towards the centre of force, is one of steady

motion. The preceding investigation also shows that this motion is stable for all

disturbances which do not alter the plane of motion, provided that the moment of

inertia about that principal axis which is directed towards the centre of force is less

than the moment of inertia about the other principal axis in the plane of motion.
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It remains now to determine the effect of these disturbances in the more general

case when the motion takes place in three dimensions.

Statement of problem. The problem we have to consider may therefore be

summed up thus. The moon turns about its centre of gravity G and is acted on by

a centre of force E which moves in a given manner. The instantaneous axis is

very nearly coincident with one principal axis GC, and is nearly perpendicular to

the plane of the ecliptic. The mean angular velocity is equal to that of E round

G, so that a principal axis GA is nearly pointed to E. The centre of force E moves

in a nearly circular orbit in a plane which is very nearly perpendicular to GC.

This plane is known to have a slow motion in space, so that the normal GM to its

instantaneous position describes a cone of small angle round GZ the normal to the

ecliptic. The two normals GM and GZ maintain a nearly constant inclination of

about 5 8 . The motion of the normal GM round GZ is nearly uniform, and a

complete revolution is effected in about 18 years and 7 months. Thus the nodes of

the orbit of E round G regrede on the ecliptic at a rate about l/250th part of the

angular velocity of E round G.

Before proceeding further it will be useful to state the numerical magnitudes of

some of the small terms. The direction cosines of E are X, /*, v. Now the

inclinations of the moon s equator and the moon s orbit to the ecliptic are respectively

1 and 5. Hence the greatest value of v is sin 6, which is about TV It appears

from Art. 552 that the mean value of
/u,

is zero, while the libration in longitude is

about 4 or 5 minutes. This would make the greatest value of /A
= sin 5 =^.

ThusX^l-^. Again r= cos CZ= cos li = l--jnJW nearly. Hence p2 + q
z=i^

so that the greatest value of either p or q is about TV We shall now be able to

estimate the magnitudes of the small terms rejected in the following investigation.

The figure has been .drawn so that the direction cosines (\, p., v) and (p, q, r) are

positive. The poles G, Z, M are actually on a great circle and Z lies between

C and M.

560. It will clearly be convenient to refer the motion to axes GX, GY, GZ
fixed in space such that GZ is normal to the ecliptic. Let GA, GB, GG be the

principal axes of the moon at the centre of gravity G. Let (p, q, r) be the direction-

cosines of GZ referred to the co-ordinate axes GA, GB, GG. Then we have by
Art. 18, since GZ is fixed in space,

jp -w3g + o;2r=0, q
-
w^r + w^p-Q, r -

a)&amp;lt;$&amp;gt;

+ &amp;lt;1)
lq = Q (I),

where accents denote differential coefficients with regard to the time.

Let GC be the axis of rotation of the moon, and as before let the moment of

inertia about GA be less than that about GB.
Now our object is to find the small oscillations about the state of steady motion

in which GZ, GC, GM coincide. We shall therefore have p, q, Wj, w2 small, and r

very nearly equal to unity. The equations (I) therefore become

where n is the mean value of w
3 .

Let X, n, v be the direction-cosines of the centre of force E as seen from G.

Then we have by Euler s equations and Art. 519,

Aw/ -
(B

- C) w2w3
= - 3n 2

(B -
C) pv \

Bw.2 - (C-A) 0^ = - &ri~(C-A)v\ I (II).

C w3
-
(A

-
B) WjWg = - 3n 2

(A
-
B) X/t )

In tlie case of steady motion, the rigid body always turns the axis (GA) of lesser

moment towards the centre of force, and w3
= n. We have then both /t and v small
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quantities, so that in the first equation we may neglect their product /j.v, and in

the second equation we may put v\= v. Also, we may put o}
3
= n = n in the small

terms.

If I be the latitude of the earth as seen from the moon, we have

sin I= cos ZE =^X + qfj. + rv =p + v nearly.

Hence the two first of Euler s equations .take the form

If the earth, as seen from the moon, be supposed to move in a circular orbit in

a plane making a constant inclination k with the ecliptic, and the longitude of

whose ascending node is -
gt + j8, we shall have sin I k sin (nt + gt

-
/3).

In this expression g measures the rate at which the node regredes, and is about

the two hundred and fiftieth part of n. We shall therefore regard gin as a small

quantity.

c

A
To solve these equations, it will be found convenient to substitute for wj,

their values in terms ofp,q. We then have, as in Art. 15,

Aq + (A+B-C)np -n*(B-C)q = )

Bp- (A + B -
C) nq + 4n* (C-A)p = 3ri* (G

-
A) sin if

To find p, q, let us put p = Psm{(n + g) t-p}, q = Qcos{(n + g) t- j8},

where P, Q are some constants to be determined by substitution in the equation.

}

-A)l

We may solve these equations and find P and Q accurately. In the case of the

on the ratios ^- ,
-

,c A x

of these small quantities, we have

moon the ratios ^- ,
-

,

~
and 9- are all small ;

if we neglect the productsc A xj n

&amp;lt;Ll_^
3nk(C-A)

P &quot;

n 3n(C-A)-2Bg
561. The complementary functions. To find these we put

p = Fsin(st + H), q = Gcoa(st + H).

R. D. II. 23
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On substituting we have the quadratic

ABs*- {(A +B - C)*-B(B -C)-4A(A- &amp;lt;7)}n

2
s
2 + 4 (A -

C) (B
-
C) ?i

4=0

G (A+B-C)ns
to find ,

and F
=
As*+(B- C) n*&amp;gt;

to find the ratio of the coefficients of corresponding terms in p and q. If the roots

of this equation were negative p and q would be represented by exponential values

of t, and thus they would in time cease to be small. It is therefore necessary for

stability that the coefficient of s2 should be negative and the product (A
-
C) (B - C)

positive. Both these conditions are probably satisfied in the case of the moon.

For since B-C and A - C are both small, the term (A+B-C) 2 is much greater

than the two other terms in the coefficient of s
2

. Also, since the moon is flattened

at its poles, we shall probably have A and B both less than C.

We may approximate to the roots of this biquadratic in the following manner.

Since the product of the roots (as indicated by the last term) is very small, and the

sum of the roots (as indicated by the coefficient of s2
)
is nearly equal to n2

; we see

that one of the roots is very small and the other is nearly equal to wa
. To find the

latter we put s^= n^ + x, substitute in the equation, and neglect the squares of x.

This gives x= 3n2
(C-A)jC nearly. We thus find s = n ( 1 +

1

To find the former we reject s
4

, writing Sj for this root we have

Substituting these values in the expression for G/F, we find in these two cases

F_s F
1 _

G~n GI~
It will be presently shown that (C-A)/G= 000597 and (C-JB)/C= 000033.

Taking these we see that the period of one of the complementary functions is very

little less than a month, and the period of the second is about 3571 months or

274 years.

562. It appears therefore that each of the expressions for p and q contains

three periodic terms but no constant terms. The periodic terms are the forced

vibration due to the term sin I in equations (III), Art. 560, and the two comple

mentary functions. We may approximately write these expressions in the form

p= -.arfl +jM sin{(w + fif)t-j

q = - M ( 1 -^ J
cos{ (n + 0) t - 0} + Nn cos (st + H)-

where M=~ and p=
C ~ A

. The numerical value of M is 1 28
,

see
2# - 3np B

Art. 559, so that M is about two-sevenths of k. It will presently appear that

(C-A)jB is -0006 and, since gjn is about -0043, it follows that M is positive.

563. To find the motion of the principal axis GC in space and to deduce Cassini s

theorem. Let M be the pole of the orbit of E as seen from the centre of the moon,
then M is the pole of the dotted line in the figure of Art. 560. If the longitude of E,

viz. = (n + g] t - /S, is measured in the ecliptic from the ascending node of the

orbit, the angle EZM measured positively in the direction of motion is ^TT + 0.

Again, since p and q are the co-ordinates of Z referred to tangents at C to CA,



ART. 564.] VARIOUS THEOREMS. 355

CB as axes and E never deviates far from A, we have cosEZC= -pl^Kp^ + q-}, and

),
where the radical has the positive sign. Hence

sin GZM= sinEZG cosEZM - cosEZG sinEZM=

Firstly, taking the forced vibration only, Art. 562, we write p = - M (1+ g/2n) sin 0,

and q
-M (1

-
#/2tt) cos 0. We easily find that

sin CZM=
(
-
0/2n) sin 20, sin GZ=M {

1 - (0/2re) cos 20
}

.

Thus the mean value of the angle CZM is zero. The three points C, Z and M
therefore make very small oscillations about a state of steady motion such that all

three lie on the same great circle. At the same time the arc GZ is sensibly constant

throughout the motion*.

Next, if we include the complementary functions in the values of p and q, we find

more complicated values for sin CZM and sin CZ. Supposing however that N/M
(Art. 562) is so small that we may reject all terms beyond its square, we again find

that sin CZM is periodic, and that sin CZ differs from a constant only by periodic

terms. Thus we again arrive at the result that the three poles C, Z, M lie very

nearly on the same great circle, at distances apart which are sensibly constant.

We may show that the pole Z always lies between C and M by examining the

relative positions when the longitude of E has any convenient value. When 6= \ir,

the disturbing body E lies on the great circle MZ, so that the points M, Z and E
lie on the circle AC very nearly. Also, since E is then in north latitude, EM is

greater than EZ, i.e. AM is greater than AZ. But, when has the value ^?r, the

expressions for p and q in Art. 562 show that p is negative, if we assume that the

magnitude of the forced oscillation is greater than that of both the free oscillations.

The arc AZ is therefore greater than AC. It follows, on these suppositions, that Z
lies between C and M.

564. Inclination of the moon s equator to the ecliptic and the numerical value of

* If we represent by d\(//dt the angular velocity of GG round GZ we have by
Art. 19 (p

2 + q
2
) $= (ang. vel. about GZ} -

(ang. vel. about GG} cos GZ

Substituting for c^ ,
w2 from equations I. of Art. 560 we have

-

&quot; &quot;

t r

This expression for d^/dt is accurate, and therefore when we substitute for p and q

their approximate values we shall be able to estimate the effect of rejecting any
small terms. This result may also be deduced from Euler s geometrical formula

since p = - sin 6 cos 0, q = sin d sin 0.

Effecting the substitution and retaining the squares of N/M, we find that d\f/jdt

differs from -
&amp;lt;/,

and sin CZ from M, only by small periodic terms.

It is known that the pole M moves backwards round the pole Z of the ecliptic

with a mean angular velocity which we have called g. Thus M and C regrede round

Z with the same mean angular velocity. It follows that the angle MZC remains

very nearly constant throughout the motion.

By examining the value of the angle MZC when E is 90 from the node of its

orbit and remembering that E is very close to the meridian CA we easily find that

the angle MZC is very small.

232
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(C-A)IB. It appears from what precedes that, when we neglect the free oscil

lations, the inclination CZ of the moon s equator to the ecliptic is given by

This is very nearly constant, the variations from its mean value being at most -^^th

part of the inclination itself. The period of these variations is about half a month,

strictly half a synodic month of the moon and node.

The mean inclination is M, a quantity not arbitrary but depending on the values

of (C -A)jB and g. Now g is well known, we may therefore use the expression for

M given in Art. 562 to deduce an approximate value of (G-A)jB. The actual

numerical value of the inclination has been found by Mayer and Nicollet to be 1 28 .

Neglecting all the periodical inequalities as being at most only a small fraction

of If, Laplace found in this way (C-A)IB= 000599, which is nearly equal to ^g/n.

565. Motion of the instantaneous axis in the body. Taking the complete values

of p and q with the complementary functions given in Art. 562 we easily find o^, w2

by the help of the formulas w
l
= np + dqjdt, &amp;lt;a2=nq -

dp/dt,

given in Art. 560. We thus find

Wl= N-jiS! sin (sj + HJ,

u = 2gMcos{(n +g)t-p}-ZNn
2 ^-^ cos (st + H) -INfi* cos (s.t + H,).C C

If we disregard all but the forced vibration we have

Thus the instantaneous axis moves in that principal plane which is at right angles to

the axis pointed to the earth. It oscillates about the axis of figure GO with a period

which is about a month. The extent of the oscillation is however very small since

the maximum value of w
2/w is about 45&quot;.

566. Ex. Taking the same degree of approximation as before, deduce from the

third of equations (II) in Art. 560 that the rotation of the moon, as found in Art.

552, is not affected by the obliquity of the ecliptic to the lunar equator.

567. Effect of the motion of the ecliptic. The dynamical equations (II) in Art.

560 are referred to axes fixed in the body and are therefore unaltered by making the

pole Z move. In that article we substituted in these equations sin I - p for v and

k sin {(n + g) t- ft}
for sin I or tan Z. To make this correct it is sufficient to regard

p, q, r as the direction cosines of the instantaneous position of GZ. We must

therefore put on the right-hand sides of the geometrical equations (I) the resolved

velocities of Z in space parallel to the axes GA, GB, GO. (See Art. 18.) Writing
a and

/3 for these additions we see that the equations (III) are altered only by such

small terms as Adpjdt and (B
-
C) na.

Let GZ be referred to axes X
1 , Fj , Z^ fixed in space and let each of the Eulerian

co-ordinates of GZ, viz.
lt \f/ l

be expressed in a series of the form 2fl&quot;sin (ht + e),

the values of the constants in the several terms being supplied by the planetary

theory. The angular velocities in space of GZ resolved along and perpendicular to

the plane Z^GZ may therefore be represented by two series of the form SiHh cos (ht + e).

To resolve these velocities parallel to the axes GA, GB, we multiply them by the

cosines of the angles their directions make with those axes. Since the axes GA
and GB are turning round GC with an angular velocity n, these cosines take the

form
cos(?i&amp;lt; + 7). Thus on the whole we see that each of the quantities a and p

may be represented by a series of the form Kh sin {(nh) t- I}.

Owing to the extreme smallness of all the values of II and h such terms as these
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may be regarded as insensible unless they rise into greater importance after solving
the differential equations. Referring to Art. 560 we see that it is unnecessary
to repeat the solution, for the expression for sin I in terms of t has the same form
as the general term of the series for a or

/3.
If we replace

- 3n2& by Knh and g by
h, the expressions already found for P and Q will give the effect of the term added

to the second of equations (III). In this way we see that amplitudes of p and q

corresponding to the general terms of a and
/3 are of the order P, where

Kh(C_-B)
3n(C-A)-2Bh

All the values of h are so small that the ratio of h/n to (C-A)jC is insensible,

hence the order of P is the same as that of ^Khjn. The general effect of the

additional terms a and is therefore to introduce periodical terms of the order

Kh into the expressions for p and q.

The conclusion is that the motion of the lunar equator relatively to the true

ecliptic is independent of the motion of that ecliptic, so that the mean inclination of
the lunar equator to the true ecliptic remains always the same notwithstanding the

displacements of the latter. This theorem is given by Laplace, Mecanique Celeste,

Vol. n. p. 420.

568. Second Approximation. Poisson s term of long period. Having obtained

a first approximation to the values of p and q in Art. 560 we may proceed to a

second approximation by substituting the values thus found in the terms which

were rejected in the first approximation. The terms of the first approximation

being themselves very small, we can expect those of the second to become sensible

only when they are magnified in the solution as explained in Art. 338. By
referring to that article we see that those terms are magnified whose periods are

nearly the same as those of the complementary functions. Hence, by Art. 561,

those terms of the second order will be magnified whose periods are very long

or nearly equal to that of the moon round the earth. We shall look for such terms,

and if any be found we can then determine if they are sufficiently magnified to

become sensible.

The only term which thus rises into importance is one of long period

discovered by Poisson, see the Connaissance des Terns for 1821 published in

1819. The phase of this term is the difference between the longitudes of the

apse of the Moon s orbit and its node on the ecliptic. The former of these

advances slowly at the rate of 3 per month, while the latter regredes at the rate of

1^ per month. Thus the period at which they separate by 360 is very long and

equal to about 80 months or six years. Let h be the rate at which the apse

advances, then the longitude of the moving apse is a^ht + a. The longitude of

the moving node is
/3X
= -gt + fi.

For the sake of brevity we shall put

then E is the phase of Poisson s term, and g + h= -g^n.

569. To investigate the coefficient of Poisson s term we must recur to equations

(H) of Art. 560. We must examine the terms fj.v and v\ to discover what combi

nations will give rise to terms of the form sin E or cos E.

Let us begin with the term pv. Since fj,=cosEB and is positive when E is in

front of A, we see that -/* is the same as
&amp;lt;j&amp;gt;

in Art. 552. Taking the elliptic

inequality, we have 2e
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Again v= sml-p= (k + M) sin {(n + g) t-p}. Combining these two and rejecting

all terms in the product except those of long period, we have

/j,v=e (k + M)cosE.
We have also rejected the small term 3 (B

-
A) /C= -QQ167 in the denominator,

as this only alters the result by about one six hundredth part.

Let us next examine the term v\ in the second of equations (II). If be the

longitude of the moon we have, as in Art. 560, sin 1= k sin (6+gt- p).

But, by the theory of elliptic motion, = nt + 2e sin (nt
- ax).

Substituting and retaining only that term of the second order whose phase is E, we

have 8ml=ksin{(n+ g)t-p}-kesiiiE.
In the Lunar Theory

* we find an additional term in the expression for sin Z, so that

we should write sin I= k sin { (n+ g) t - p}
- ke (1

- 3m2
)
sin E,

where m is the ratio of the angular velocities of the sun and moon round the earth

and is about equal to ^. But this additional term is a very small fraction of those

retained, and is of only slight importance. As in Art. 560 we have sin I=p\ + q/^ + rv.

Now q= -M cos {(n + g)t-p} and fj.=2e sin (rat -c^). Also X= l and r=l. Hence,

substituting and retaining only that term of the second order in which E is the

phase, we find sin I=p + v + Me sin E.

Hence, substituting for sin I, we have, since X=l,
v\= (k + M)[&in{(n + g) t-p} -e sinJ5] + 3m2 ke sin E.

Again, referring to Art. 519, we see that the moment of the forces about the axis

of y contains in the denominator the factor E9
. Hence we must multiply the term

- 3rc2 (G
- A) v\ on the right-hand side of equation (II) in Art. 560 by 1 + 3e cos (0

-
oj).

Effecting the multiplication, and retaining only those terms of the second order in

which the phase is E, we have

(k +M) fsin (nt + gt
-
p)

- e sin E + - sin E~\ + 3m2 ke sin E.

We thus find for the right-hand side of the second of equations (II)

- fn
2
(C

-
A) [2 (k + M) sin (nt + gt-p) + (k +M+ Gm?k) e sin E].

Though the period of the term we are seeking is as long as 6 years, yet that of

the long free vibration is over 200 years, see Art. 561. Thus though dujdt
and du.Jdt contain the small factor dEjdt, yet this latter is about 35 times as great

as the small coefficients n (C-B)/A or n (C -A)jB which occur in the second terms

on the left-hand side of equations (II). If then we reject these terms, we only lose

about ^Vth part of a very small inequality, while we greatly simplify our result.

Omitting then these two terms, the equations (III) of Art. 560 now take the form

~

*
Eeferring to Godfray s Lunar Theory, Arts. 31 and 46, we find that the

differential equation to determine the latitude is

d?s m u 3

+ tw.+ ......

= - fma
fc {

1 - 4e cos (cd
-

a) }
sin (g0-y) + ...

= - %m?k {1
- 4e cos (0

- a
x ) }

sin (0-yl ) + ...

where a
a
and y1

are the longitudes of the moving apse and node. Combining these

and retaining only the term with the phase E, we find the above

= + fm2k . 2c sin E.

Solving the differential equation as in Godfray, Art. 51, we find s = 3nMce sin E.
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The first term on the right-hand side of the second equation may be added to the

principal term already considered in the first approximation. We may omit it for

the moment, as we merely want the term whose phase is E.

Integrating these we find

dq 9
C--

dp 3w2 C-A k + M+6m?k (nq-~ = t&amp;gt;}.&amp;gt;

= ----
T

------ e cos E I

dt 2 B g + h )

It is not difficult to solve these in the usual way. But it is evident that the

terms dpjdt and dq[dt on the left-hand side contain the small factor g + h, and

therefore are about -^th of np and nq. Eejecting these we have

,
C-Bk +M BnC-A k + M+6m*k

p = 3n ----esmE, = ^-- r
--- ecosJE.

A g + h 2 B g + h

570. Eepresenting Poisson s terms by w^RnsmE and &amp;lt;&amp;gt;}2
= SncosE, and in

cluding these in the first approximation we have, by Art. 565,

0^ =En sin E, w2
= Sn cos E + 2gM cos D,

where D = (n + g) t - /3,
so that D is the mean angular distance of the moon from

the ascending node. We have omitted the complementary functions as they appear

to be almost insensible. Substituting these values of w
l
and o&amp;gt;2 in Euler s

geometrical equations, and writing (f&amp;gt;

=D -
|TT we have

6 - = -
(gM/2n) cos 2D - R sin D sin E - S cos D cos E

\

(&amp;lt;//

-
\// ) sin = -

(gMj2n) sin 2D +R cosD sin E - S sin D cosE
j

*

571. The theory of the term of long period is given by Poisson in the

Connaissance des Terns for 1821, and the numerical values of the coefficients are

deduced from Nicollet s measures in the volume for the succeeding year. These

coefficients have been improved by C. Simon in the third volume of the Annales de

Vecole normal, 1866. The coefficients as calculated from the Kdnigsberg observations

are very different from Poisson s. They may be found in Tisserand s Mecanique

Celeste, 1891. As it cannot be considered that the ratios of the moments of inertia

A, B, C have yet been determined with accuracy, it seems needless to examine into

these differences. Merely to indicate the order of the several terms, we reproduce

Simon s result

e= eo
-

(10&quot;-7)
cos 2D -

(10&quot;-5)
sin D cos E -

(94&quot; -15) cos D cos E
\

$= \f/Q
-

(414&quot;-7)
sin 2D + (405&quot;-5)

cot D sin E -
(3649&quot;-3)

sin D cos E
j

These equations give the nutations of the polar axis of the moon. The precession

of that axis is included in the term ^ and has been determined in Art. 563. The

real libration round the polar axis has been found in Art. 552. The visible oscillation

of any spot is the resultant of all three.

572. Ex. 1. Let the motion of the moon be given by the equations

p= -MsmD + RsinE, q= - M cos D + S cos E,

see Arts. 562 and 569. Let I and X be the lunar longitude and latitude of a spot

referred to the moon s first meridian and equator; L and A the longitude and

latitude of the same spot referred to the ecliptic and the first point of Aries. Prove

that if X be small

L= 6
i+ ir + l-M tan X cos (D + J)-R tan X sin I sin E + S tan X cos I cos E,

A = X +M sin (D + 1)
- R cos I sin E - S sin I cos E,

where
X
is the mean longitude of the moon seen from the earth.
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Poisson remarks that, in the case of the spot Manilius for which 1=8 46 ,

X = 14 26 ,
the inequalities dependent on the angle E are very small and may

be omitted. This circumstance however is peculiar to the spot chosen and would

not be true for spots remote from the equator and from the apparent centre of the

lunar disc.

Ex. 2. If the moon move so as always to turn the same face to the earth

and if the instantaneous axes be nearly fixed in the body and nearly perpendicular

to the axis pointed to the earth, prove that these two axes are principal axes.

This follows from equations (II) Art. 560.

573. A difficulty in the figure of the moon. It appears from Bouvard s

and Nicollet s observations on the moon s true libration in longitude that

(B-A)IC= -000564, (Art. 555); and from Mayer s observations on the inclination

of the moon s equator to the ecliptic Laplace found that (C-A)jC= -000599, Art.

564. We therefore have (G
-
B)/C= -000035. These values may appear very small,

but they are much larger than could have been expected if the moon s surface had

the form of equilibrium given by theory. Supposing the moon to be homogeneous
and attracted by the earth, we may deduce from the principles of hydrostatics (as

Laplace does) that (B-A)IC= 0000003618X and (C -^)/0=-0000004824X, where X

is the ratio of the mass of the earth to that of the moon. Nicollet remarks that,

even if we put X = 1000 (instead of 80), these cannot be made as large as the values

deduced from his observations on Manilius. Laplace observes that for a hetero

geneous moon, if we suppose the density to increase from the surface to the centre,

the hydrostatic theory would give values for (B-A)IC &c. even less than for a

homogeneous moon. He therefore concludes that the moon has not the figure of

equilibrium which it would have if originally fluid. Laplace considers that the

high mountains and other inequalities on the moon have a very sensible effect on

the moments of inertia, and that this effect is the greater because the ellipticity of

the moon s surface is small and its mass is inconsiderable. Poisson considers that

the omission of the complementary functions by Nicollet may partly explain the

difficulty; he thinks it doubtful that these functions should have entirely dis

appeared; Connaissance des Terns for the year 1822.

When it is remembered that the real libration of 4^ observed by Nicollet only
subtends

I|&quot;
at the earth, it maybe well believed that the errors of his observations

may account for much of the discrepancy. This is rendered more probable when
we learn from Tisserand that the more recent observations at Konigsberg make the

real libration in longitude about half that found by Nicollet. On the other hand
these later observations make

(B- A)1C= -000315, (C-A)IC= WOQU, (C-B)jC= -000299,

and thus do not help to explain the discrepancy between the hydrostatic theory of

the figure of the moon and the observations made on its surface.



CHAPTER XIII.

MOTION OF A STRING OR CHAIN.

The Equations of Motion.

574. Cartesian equations. To determine the general equa
tions of motion of an inextensible string under the action of any
forces*.

Let Ox, Oy, Oz be any axes fixed in space. Let Xmds, Ymds,
Zmds be the impressed forces that act on any element ds of the

string whose mass is mds. Let u, v, w be the resolved parts of the

velocities of this element parallel to the axes. Then, by D Alem-
bert s principle, the element ds of the string is in equilibrium
under the action of the forces

dv\ , dw

and the tensions at its two ends.

Let T be the tension at the point (x, y, z), then Tdxjds,

Tdyjds, T dzjds are its resolved parts parallel to the axes.

* The Cartesian equations of Art. 574 agree with those given by Poisson, Journal

de I Ecole Poll/technique, 1820, and reproduced by him in his Traite de Mecaniquc.
The geometrical equation is not there given, being replaced by Hooke s law. He
thence deduces the differential equations of the motion of a tight string given in

Art. 612. The proofs of the tangential and normal equations (1) to (4) for two

dimensions in Art. 577 are very nearly the same as those given in Vol. iv. of the

Quarterly Journal. Though the date of the volume is subsequent to that of the

first edition of this treatise yet that of the paper itself must have been so nearly

the same, that the solutions should be regarded as having been obtained inde

pendently. The author has not met with the two equations (5) and (6) of Art. 580

in any place with a date earlier than that of their publication in this treatise.

Their application to initial motions is given further on. The two equations (1)

and (2) for impulsive forces in Art. 583 appear to have been first given in College

examination papers. The author believes the first to be due to the late Dr Tod-

hunter.
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The resolved parts of the tensions at the other end of the element

dx

and two similar quantities with y and z written for as.

Hence the equations of motion are

du^d^(T
dx\

dt ds \ ds)

dv

dt

dw d
rp
dz\m ~7T = j 4 -y ] + m &quot;

dt ds \ ds/

In these equations the variables s and t are independent.
For any the same element of the string, s is always constant, and

its path is traced out by variation of t. On the other hand, the

curve in which the string hangs at any proposed time is given by
variations of s, t being constant. In this investigation s is

measured from any arbitrary point, fixed in the string, to the

element under consideration.

To find the geometrical equations. We have

Differentiating this with respect to t, we get

dx du dy dv dz dw _
~~r~ ~j h ~7 7~ T ~7 7 v
as ds ds ds ds ds

The equations (2) and (4) are sufficient to determine x, y, z,

and T, in terms of s and t.

575. The equations of motion may be put under another form. Let 0, \f/, x
be the angles made by the tangent at x, y, z, with the axes of co-ordinates. Then

the equations (2) become m-^= (TGOB&amp;lt;j&amp;gt;)+mX ........................... (5),

with similar equations for v and w.

To find the geometrical equations, differentiate
cos&amp;lt;f)

= dxlds with respect to t
;

dd&amp;gt; du , .

Similarly, by differentiating cos\p= dyjds and cosx= dzlds, we get two similar

equations for
i/&amp;gt;

and x- Taking these six equations in conjunction with the

following, cos- + cos-
1/ + cos2x 1 (7)

we have seven equations to determine u, v, iv, &amp;lt;, \f/, x and T.

If the motion takes place in one plane, these reduce to the four following

equations : m -^ = -=- (T cos 0) +mX }
dt ds

(8),
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d&amp;lt;b du dd&amp;gt; dv

The arbitrary constants and functions which enter into the solutions of these

equations must be determined from the peculiar circumstances of each problem.

576. Elastic Strings. Let a be the unstretched length of the arc s, and let

mdcr be the mass of an element da- of unstretched length or ds of stretched length.

Then, by the same reasoning as before, the equations of motion become

and two similar equations for v and w. To find the geometrical equations we must

differentiate
( d~ )

+
\cT)

+
( &amp;lt;T )

=
\d~

the independent variables being now a and t. Differentiating with regard to t, we

dx du dii dv dz dw ds d fds\
have -5- T~+J 3 l~ i~~ T~ = 3~ 3: I &quot;3&quot; Ida da da da da da da dt \daJ

But, if X be the modulus of elasticity of the string, we have --= ! + - (ii).

dx du dy dv dz dw ( T\ 1 dT
Substituting we have T~T- + j3- + T~T~ r=

(
1 + T T ^r (

m
)da da da da da da \ \J X dt

The two equations (ii), and (iii) together with the three equations (i), will suffice

for the determination of u, v, iv, s and T in terms of a and t.

If we wish to use the equations of motion in the forms corresponding to (5) or

(8), the dynamical equations become

at aa

with similar equations for v and iv.

The geometrical equations corresponding to (6) or (9) may be found thus. We

dx ds /, T
have = COS0 = C08 *

Differentiating, we have
l~= - sin

&amp;lt;f&amp;gt; -^
+ -

^ (T cos 0),

with similar expressions for v and w.

577. Tangential and Normal Resolutions. When the

motion of the string takes place in one plane, it is often con

venient to resolve the velocities along the tangent and normal

to the curve.

Let u, v be the resolved parts of the velocity of the element ds

along the tangent and normal to the curve at that element. Let

(j&amp;gt;

be the angle which the tangent at the element makes with the axis

of x. Let Pmds, Qmds be the impressed forces on the element ds,

resolved respectively in the directions of the tangent and normal.

Then, by Chap. IV. of Vol. L, or by putting 3
=

&amp;lt;ty/cU,
dl
= 0, d =

in Art. (5) of this Volume, the equations of motion are

du d dT

mp
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The geometrical equations may be obtained as follows. If ux

be the resolved velocity parallel to Ox, we have

ux = u cos
(f&amp;gt;

v sin 0.

Differentiating with respect to s, we have, by Art. 575,

d&amp;lt;b . fdu d6\ idv
d&amp;lt;f&amp;gt;

. .

^-sind)=-1 v~r\ cos d&amp;gt; -y- + u -j- sm d&amp;gt;,

dt \ds ds) \ds ds

Since the axis of x is arbitrary in position, let us take it so that

the tangent to the element during its motion is parallel to it at the

instant under consideration
;
then $ = 0, and we have

f._du d&amp;lt;f&amp;gt; (
.

-ds
V
Ts

Similarly, by taking the axis of x parallel to the normal,

.. (4).
d$ _ dv d(j)
~~77 ~J~ ~i U ~7
at as as

These four equations are sufficient to determine u, v,
(f&amp;gt;

and T
in terms of s and t.

If the string is extensible, the dynamical equations become

To find the geometrical equations, we may differentiate ux= u cos - v sin
&amp;lt;f&amp;gt;

with

regard to a. This gives by Art. 576

d(b 1 d I du v ds\ { dv u ds\ .- sm -* + - (T cos 0) - )
cos -

I + -- -=-
)
sm 0.

dt X dt
\d&amp;lt;r p dffJ \d&amp;lt;r p da]

By the same reasoning as before, this reduces to

ldr_rfu_v/ 1
F

X dt d(? p \ X

d$
lit

578. The equations (2) and (3) may also be obtained in the following manner.

The motion of the point P of the string being represented by velocities u and v

along the tangent PA and the normal PC at P, the

motion of a consecutive point Q will be represented

by velocities u + du and v+dv along the tangent

QB, and normal QC at Q. Let the arc PQ = ds,

and let QN be a perpendicular on PA. Since the

string is inextensible, the resultant velocity of Q
resolved along the tangent at P must be ultimately
the same as the resolved part of the velocity of P
in the same direction. Hence O

(u + du) cos
d&amp;lt;f&amp;gt;

-
(v + dv) sin d$= u,

or, proceeding to the limit,

du-vd(b= Q: .-.
- -= fl

ds o
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Again, d^jdt is the angular velocity of PQ round P. Hence the difference of

the velocities ofP and Q resolved in any direction which is ultimately perpendicular

to PQ must be equal to PQ d&dt ;

.*. (u+ du) sin
d(f&amp;gt;

+ (v + dv) cosd0- v= ds ~,

orinthelimit
d = dv u

dt ds p

579. Examples. Ex. 1. If V be the vis viva of any arc AB of a chain;

Tj, T2 the tensions at the extremities of the arc; w/, w2 the velocities of the

extremities resolved along the tangents at those extremities, w, v, w the Cartesian

components of the velocity at any point, prove that

| dV\dt= T2w2
-
TjuJ + j(Xu +Yv + Zw) mds,

the integration extending over the whole arc.

Ex. 2. Investigate the polar equations of motion of a string in two dimensions.

Let u, v be the resolved parts of the velocity of the element ds along and perpen

dicular to the radius vector, let Pmds, Qmds be the resolved forces in the same

directions, then

du v2 dT T . dv uv I d
-mn# + P. _ + _ = -_

dd&amp;gt; du dd) dv u sin d&amp;gt;- sin d&amp;gt; -j- = -T-
&amp;gt;

cos -- = +^
dt ds

^
dt ds r r

where
&amp;lt;/&amp;gt;

is the angle the radius vector makes with the tangent and p is the per

pendicular on the tangent.

Ex. 3. An elastic ring without weight, whose length when unstretched is given,

is stretched round a circular cylinder. The cylinder is suddenly annihilated, show

that the time which the ring will take to collapse to its natural length is (Mair/8\fi,

where M is the mass of the string, X its modulus of elasticity, and a is the natural

radius.

Ex. 4. A homogeneous light inextensible string is attached at its extremities

to two fixed points, and turns about the straight line joining those points with uni

form angular velocity. Let the straight line joining the fixed points be the axis of

x. Show that the form of the string, supposing its figure permanent, is a plane
curve whose equation is 1 + (dy/dx)

2 = b (a
-
y
2
)

2
,
where a and b are two constants.

580. The four equations of motion of Art. 577 may be reduced
to two by the elimination of u and v. It will be found that we
thus obtain two equations of convenient form which contain only
the two unknown quantities T and &amp;lt;. By eliminating T we may
reduce these two equations to one and thus make the determination

of the motion of the string depend on the solution of one differen

tial equation. The elimination presents no difficulty but the result

is not very simple.

Differentiating equation (1) with regard to ,9 and (3) with

regard to t we have

du __dv:_ d4 _dP \ d 2T
ds ds ds ds m ds2

du
,d&amp;lt;f&amp;gt;

dd&amp;gt;

-T-V-V y=o,ds ds ds
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where the dot represents differentiation with regard to t. Sub

tracting and substituting for v and dv/ds from (2) and (4), we have

- ......... (5).
dsj \dtj

In the same way, differentiating the equation (2) with regard to s,

(4) with regard to t, and substituting, we have

1 d
(T-

d
*} + n(p% +^ -m^ (6)

TdsV ds)
4n Vds +

ds)
n

dff&quot;

If the string is heterogeneous m is a function of s. Putting mds=
d&amp;lt;r,

we find in

d*T /d&amp;lt;

2 dP
thesameway -*

_

T dff\ d&amp;lt;j)
dff do- mdt*

The equations (5) and (6) are of considerable utility. If the

forces P, Q, the angular velocity &amp;lt;,
and the angular acceleration $

of each element are known in terms of s, we can deduce the tension

of the string and the intrinsic equation of the curve in which it

lies. Conversely if the distribution of tension, the curve of the

string and the forces are known, the angular velocity and accelera

tion of every element are given at once.

581. Consider the position of the string at any instant. Let M he any point

on the string, draw a straight line ON from the origin parallel to the tangent at

M and proportional in length to the tension of the string at M. The locus of N for

all positions of M represents (as a kind of hodograph) the instantaneous distribution

of tension along the string.

To simplify matters, let us suppose that the impressed forces P and Q are zero.

The equations (5) and (6) show that the instantaneous values of T, 0, s,
- 2

,
for

a string are connected together just as the radius vector, longitude, time, radial

and transversal forces are connected for a particle describing the hodograph.

By this analogy we may sometimes translate a question as to the instantaneous

distribution of tension along a string into a more familiar problem on the motion

of a single particle. If the string form a closed curve the allied curve is also

closed. If the string have two ends, the terminal conditions must be made to

correspond in the two curves.

582. Examples. Show how to deduce the analogy of Art. 581 from the

Cartesian equations of motion of a string, Art. 574 ;
and thence deduce equations

(5) and (6) from the analogy. Show also that the analogy holds when the string
moves in three dimensions.

Ex. 2. Determine the intrinsic equation to the form of a closed string and the

distribution of tension when it is given that initially the square of the angular

velocity of each element is proportional to the tension of that element, and that

the angular velocity remains constant for a time dt. It is supposed that there are

no impressed forces.

In this case, equations (5) and (G) become

T
1 d

* Tdt
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If s represented the time these would be the equations of motion of a particle

moving under a central force varying as the distance. This particle must describe

an ellipse. Thus we have

1 cos2 sin2 b

These give the distribution of tension and the intrinsic equation. If I be the length

of the string we see that fJfj.l
= 2Tr. If a= b the curve is a circle.

Ex. 3. Show that the resultant acceleration of any point M of a string is

represented in direction and magnitude by the tangent at N to the allied curve

and in magnitude by the ratio of an elementary arc at N to the corresponding
arc at M. Put A =0, 7=0 in the equations of Art. 574.

583. Impulsive forces. When the forces are impulsive the

equations undergo some modifications. These may all be deduced
in the usual manner from the corresponding equations for finite

forces by integrating with regard to the time. But generally it

will be found simpler to obtain them from first principles.

A string rests on a smooth horizontal table and is acted on at one

extremity by an impulsive tension, to find the impulsive tension at

any point and the initial motion.

Let T be the impulsive tension at any point P, T+ dT the

tension at a consecutive point Q, then the element PQ is acted on

by the tensions T and T -f dT at the extremities. Let
&amp;lt;f&amp;gt;

be the

angle made by the tangent at P to the string with any fixed line
;

u, v the initial velocities of the element resolved respectively

along the tangent and normal at P to the string. Then, resolving

along the tangent and normal, we have

muds = (T + dT) cos
d&amp;lt;j&amp;gt;

-
T]

1 dT 1 T
therefore, proceeding to the limit, u --=-

,
v =m ds m p

But, by Art. 577, we have du/ds = v/p. Hence the equation to

find T becomes
d
l
T-- T =

. . . . (1).
ds2

p*

If the chain be heterogeneous we easily find in the same way

-- ..(2).
ds \m ds / m

p*&quot;

If co be the initial angular velocity of the element ds, we have

by Art. 577, + .....................(3).
ds p T ds \rnpj

584. If the string be in motion just before the action of the

impulsive tension at one extremity, only a very slight modification
of these equations is necessary. Let (M, , v-^ (u.2 ,

v2) be the resolved

velocities of the element PQ just before and just after the impulse.



368 MOTION OF A STRING. [CHAP. XIII.

We then simply modify the equations of the last article by writing

u = u&amp;gt;2 iii, v = v.2 v-L.

Each of the resolutions (u^, (u^) must of course satisfy the

geometrical equations obtained in Art. 577.

585. Ex. If Tlt
T2 be the impulsive tensions at the extremities of any arc of

the chain, ult u.2 the initial velocities at the extremities resolved along the tan

gents at the extremities, prove that the initial kinetic energy of the whole arc is

This readily follows by integrating m (u
2 + v2

)
ds along the whole length of the

arc. But it also follows at once from the proposition proved in Vol. i. that the

work due to an impulse is the product of the impulse into the mean of the resolved

velocities of the point of application just before and just after the action of the

impulse. Hence, since the string starts from rest the work done at either extre

mity is the product of the tension into half the initial tangential velocity.

586. To find the impulsive tension and the initial motion when the string forms

a curve of double curvature.

Let u, v, w be the resolved initial velocities of an element ds in the directions

of the principal axes of the curve at that element ; the axis of x being the principal

normal, that of y the tangent, and, z the binormal. Since the only forces on the

element are the impulsive tensions at the extremities we have as in Art. 583,

IT 1 dT
.
u---

,
v= -y-, w = Q ..................... (1).m p m ds

To find the geometrical equations, we notice that while (u, v, w) represent the

resolved velocities at one extremity A of the element ds along the principal axes at

A, (u + du, &c.) represent the resolved velocities at the other extremity B of the

same element along the principal axes at B. It follows that the relative velocities

(du, 5v, Sw) of the extremities A and B resolved along the principal axes at A are

given by Art. 21, where d01} d&amp;lt;f&amp;gt;2 , d03
are the angular displacements by which the

principal axes at A are screwed into the positions of those at B. If dr and de are

the angles of torsion and contingence, we have
d&amp;lt;f&amp;gt;l

= 0, d^2=-dr, d(f&amp;gt;3=-de.

But, if Wj, w2 ,
o&amp;gt;3 are the angular velocities of the element ds in space about the

principal axes at A, we have du=-wsds, dv = 0, 8w = w
l
ds. Equating these two

sets of values of 8u, 8v, 8w, we have

u dv u .. du v

where r and p are the radii of torsion and contingence.

Substituting from (1) in (2) we find

T d dT T Id T2

The second of these determines the initial tension when the form of the string

is known, it is the same as the corresponding equation in two dimensions, so that

the initial tension does not depend on the angle of torsion of the curve. The other

two equations determine the initial angular velocities of the element, the angular

velocity about the tangent not being required to find the initial motion.

We may verify these equations by a geometrical proof similar to that given in

Art. 578 for a string in two dimensions.

587. If the form of the string is given by its intrinsic equation p= F(s), the
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initial tension is to be found by solving the equation 5-
= 0... (1).

ds- p*

The solution is known to be of the form T=
A&amp;lt;f&amp;gt; (s) + B\f/(s) (2),

where
&amp;lt;f&amp;gt;

and ^ are some determinate functions of s and A and B are two undeter

mined constants. These constants must then be determined from the known values

of the tension at the two extremities of the string.

The tension at any point of the string having been found, the velocity and
direction of motion of any element may be deduced from the expressions given for

the components u and v, Art. 583.

It is thus apparent that the determination of the motion depends on the

solution of the differential equation (1). We have therefore thought it worth while

to state in order a few solutions likely to be useful.

In some problems we have an additional term, say /(s), on the right-hand side

of the differential equation (1). The two first terms of the solution (1) constitute

the complementary function, and when this has been found the particular integral
due to /(*) can be deduced by some one of the various rules given in the theory of

differential equations. Perhaps the most convenient method is to substitute

T-z&amp;lt;f)(s)
or T= z\l/(s)\ the differential equation then takes a linear form from

which z may be found. In what follows therefore it will be sufficient to suppose
that the right-hand side of the differential equation is zero.

Case 1. Let p be constant, say p-a. The form of the string is then a circle.

The solution is evidently T.Aes/u+ Be~ s^a
.

Case 2. Let p be a linear function of s, say p= a + bs. The form of the string

is then an equiangular spiral whose angle is cot&quot;
1
b. To solve the equation we put

a + bs = ex
t
the equation then takes the form considered in the last case. The com

plementary function reduces to T= A (a + bs)
m + B (a + bs)

n
,

where m and n are the roots of the quadratic b2K (K- 1)
= 1.

Case 3. Let p be a quadratic function of s, say p= a + bs + cs2 . If the factors

are real we may write this p= c (s
-

a) (s
-

p). Assume as a trial solution

T=A(s-a)m (s-p)
n

.

Substituting in the differential equation and dividing by (s
-

a)
m ~&quot;

(s
-

j8)
n~2 we find

(m + n-l){(m + n)s
2
-2(an + pm)s} \ _

+ a2n (n
-

1) + Zapmn + p2m (m - 1)
- c~2

J

~

The equation is satisfied if we choose m and n so that the coefficients of the

several powers of * are zero. The two first powers lead to m + w=l, and the last

then gives mn (a-j3)
2 + c~2= 0. .The required solution is therefore

T=A(s- a)
m

(s -p)
n + B(s- a)

n
(s
-
p)
m

,

where m and n are the roots of the quadratic #2 - x= {(a
-
p) c}~

2
. This solution is

given by Sir G. Stokes in the eighth volume of the Cambridge Phil. Trans., 1849.

If the factors of the quadratic p= a + bs + cs- are imaginary, we may deduce the

solution by rationalizing the value of T just found. But, putting p= c {{s-fa)
2 + /3

2
},

it will be more convenient to proceed thus. If we put s-^-a pt&nd, the differen

tial equation takes the form

The solution of this equation is well known, and is trigonometrical or exponential

according as ^c is greater or less than unity.

If the factors of the quadratic p=a + bs + cs* are equal, we may solve the equation

R. D. II. 24
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d?z z

by writing T= (s
-

a) z and s - a= ljx. The equation then reduces to
-^

-
^
= 0.

We therefore have T=(s-a) \Ae
(s

If
C/5
_

S
2 + C2 t fre string has the form of a catenary. The solution is then

where y is the ordinate measured from the directrix, and 6 is the angle the tangent

makes with the horizon. This result may be found, as just explained, by writing

s = c tan 6. But it may also be easily obtained by another process. We notice that

T=y is one solution; putting T= yz we have to find dz/ds a linear equation of the

first order. See Cambridge Senate House Problems for 1860 ivith Solutions, page 65.

Another solution is given in the ninth volume of Liouville s Journal, 1844, by

Besge, who reduces the equation to one solved by Euler.

d 2T AT
Let us write the equation in the form

-y^,
=

, ^r 2 v 2

Putting log T= J Ufa, we find by substitution + U 2=
,

+ 2&g +^y
.

The denominator on the right-hand side suggests that a solution can be found of

tbef rm

Substituting in the differential equation we find

^ (a + 2bs + cs 2

) + (V- b - cs)
2=

Now it is obvious that if we put V-b-cs = k, where k is some constant, the

equation reduces to ac - b2 + k2=A .

Thus we have two values for k. Two particular integrals have therefore been

n n

found, viz. log T= I ..-. ds.
2

f= I

J

Each of these integrations can be effected in finite terms. If the values of T
thus found be

(f&amp;gt; (s) and
\}/ (s), the general integral required is T=M(f&amp;gt; (s) + N\{/(s),

where M and N are two arbitrary constants.

Case 4. If p
2
(not /&amp;gt;)

be a quadratic function of s, say p
2= a + bs + cs*, we may

find a solution in finite terms of the form

T=A + A ls+ ...... +Ans
n

,

provided the quadratic cn(n-l) = l gives a positive integral root. This quadratic

expresses the condition that the series for T has a highest term, it is therefore

easily remembered by substituting only the highest power Ans
n of the series in the

differential equation and rejecting all lower powers as they occur. The relation

between the successive coefficients may be easily found by substitution. This

relation will be much simplified by previously clearing the quadratic for p
2
of

either of the terms bs, or a. This is effected by writing s = s + m and choosing the

constant m properly.

If n be an integral root of the quadratic en (re
-

1)
= 1, a solution may be written

in either of the forms

see a paper by the author in the Proceedings of the Mathematical Society, April
1885.
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Case 5. If l//o
2 be a quadratic function of s, say I/p

2= a + bs + cs2
) put T=zeas+^.

Substituting, and choosing a and
j3 properly, we reduce the equation to the form

^l + (2a + 4/3*) + hz = 0.
ds2 ds

This artifice is attributed to Liouville.

Putting a + 2ps = &amp;lt;r,
a solution in the form of a finite series, viz.

z= A [ff
n + i, t (n

-
1) cr

n-2 + 1
. |/i (w

-
1) (n

-
2) (?i

-
3) /3V

n-4 + &c.]

may be found by substitution when
4/3&amp;gt;t

+ h gives a positive integral value of n. It

is also shown in the paper already quoted from the Math. Soc. that

one form or the other being used according as n is a positive or negative integer.

588. Ex. 1. If the curve in which the string is placed be such thatV=
S &quot;~ a

,

where i is any positive integer, show that one solution is T=$Pidx, where x= sja and

Pi is a Legendre s function of x of the i
th order.

Ex. 2. Trace the curve
/&amp;gt;=(*- a) (s

-
6).

The curve has three branches
;
the first extends from s= a to 6, the curvature

is always in one direction and the branch terminates at each extremity with an

infinite number of diminishing convolutions, being ultimately an equiangular spiral

whose angle is t&rr1
pl(a

-
b). The second branch extends from s = b to oo

,
it

unwinds like an equiangular spiral with an infinite number of turns. The winding
and unwinding branches have the same directions of curvature when the arc in each

is measured from the infinitely small cusp. The unwinding branch finally proceeds
to infinity, like one branch of the catenary /3p

= s
J + /3

2
, the tangent being ultimately

parallel to that at s = (a + b). The third branch extends from s= -c to - oo and

resembles the second branch.

Ex. 3. A string at rest on a table is jerked at one end, and begins to move so

that the direction of motion of any element makes a constant angle with the

tangent at that point. Prove that the curve in which the string rests is an

equiangular spiral.

Ex. 4. An impulsive tension in the direction of the tangent is applied to one

extremity of a uniform perfectly flexible heavy string lying on a smooth plane. If

all the particles of the string start with equal velocities, prove that the string must

lie in the form of a catenary or of a straight line. [May Ex.

Ex. 5. An inelastic string, at rest in a circular tube which it just fills, is

plucked at one end in the direction of the tangent at that end and begins to move

with kinetic energy E. If the same string were unconfined and similarly plucked

when at rest, show that it would move off with kinetic energy 2irE coth (2?r).

[Math. Tripos.

589. Initial motions. A string in one plane is either at rest

under the action ofgiven forces or has its instantaneous motion known.

Supposing a fracture or some other change to occur, it is required to

find the initial changes of motion and the initial change of tension.

Let mPds, mQds be the resolved parts of the forces respectively

along the tangent and radius of curvature at any element ds of the

string. Let u, v be the resolved parts of the velocity in the same

242
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directions. Let mT be the tension. Let ^ be the angle which

the tangent at the element ds makes with the axis of x, and

let to = d^jdt be the angular velocity of the element ds.

We have, by Art. 577, the equations

T m du v_ .

(1).
--

From these we deduce as in Art. 580 the two equations

ds* p
2 ds p

n J,*

(6).
p ds dt

The instantaneous motion of the string being given and also

the forces, co, P and Q are all known functions of s. Thus (5) is

the differential equation from which we have to find T. This

differential equation is the same as the one already considered in

Art. 587. We shall therefore suppose its solution to have been

found. The constants of integration are to be determined by the

given conditions at the extremities of the string. Thus the initial

tension is found.

The initial values of u, v, &&amp;gt;, P, Q and T being known, the

values of u, v and co are found from (1), (2) and (6). Thus all the

initial accelerations have been determined.

Differentiating (5) with regard to t, we have another differential

equation to find t of the same kind as before. Having solved this,

we may find il, v and co by differentiating (1), (2) and (6).

Proceeding in this way we may find the instantaneous values

of all the differential coefficients of u, v, co at the instant when the

fracture occurs.

If u t, vt ,
co t be the values of these quantities after any time t,

we have by Taylor s theorem (see Vol. I. Art. 199)
ut
= u + ut + ^ut

2 + . . .

with similar expressions for vt and co
t . Thus the initial motion

has been found to any degree of approximation.

590. To find the initial radius of curvature R of the path in

space of any element of the string, we resolve the forces on that

element in a direction perpendicular to the tangent to its path and

equate the result to (u- + v 2

)/R. The direction of motion of the
element makes angles with the tangent and normal to the string
whose sines are v/(u? + vz

)* and u/^ + v*)*. The forces on the
element are P + dT/ds and Q + T/p. We therefore have



ART. 592.] INITIAL MOTIONS. 373

To find the rate at which the radius of curvature of the string

begins to change, we notice that - = ~
. Hence - =

.

p ds dt p ds
Thus by differentiating (5) with regard to s, we find the rate at

which the curvature of the string begins to change. By differen

tiating (6) with regard to s, we find the acceleration of the change
of curvature.

591. If the string start from rest, v, v and w are all zero. In this case the

equations (5) and (6) of Art. 589 follow immediately from the corresponding

equations for impulsive forces. Following Newton s argument in Prop. 1 of his

second section we may treat the forces Pdt, Qdt as small impulses. The argument
is then the same as that given in Art. 583.

The initial direction of motion of any element is found by compounding the

velocities udt, vdt so that the direction of motion makes with the tangent to the

string an angle equal to tan&quot;
1
v/u. To find the initial radius of curvature of the

path of any particle, we see by Vol. i. Art. 212, that we must find w, v by differ

entiating twice the equations (1) and (2).

592. EXAMPLES. A string is in equilibrium in the form of a circle about a

centre of repulsive force in the centre. If the string be now cut at any point A,

prove that the tension at any point P is instantaneously changed in the ratio

n -TT TT 9 (nff) IT TT

e +e -e -e v
: e +e ,

where 6 is the angle subtended at the centre by the arc AP.

Let F be the central force, then P=0, and mQ= - F. Let a be the radius of the

(PT T F
circle. Then the equation of Art. 589 to determine T becomes -j-^

- = .

ds2 a2 a

Let s be measured from the point A towards P, then s = a0; also F is independent
9

of s. Hence we have T=Fa + Ae + Be

To determine the arbitrary constants A and D we have the condition T=0 when

and d= 2-rr; also just before the string was cut TFa. Hence the result given

in the enunciation follows.

Ex. 2. A string is wound round the under part of a vertical circle and is just

supported in equilibrium at the ends of a horizontal diameter by two forces. The

circle being suddenly removed, prove that the tension at the lowest point is

instantly decreased in the ratio 4 : e +e~*
rr

.

Ex. 3. The extreme links of a uniform chain can slide freely on two intersect

ing straight lines, which are at right angles and equally inclined to the vertical.

The chain is in equilibrium under the action of gravity. If now the chain break

at the lowest point, show that the tension at any point P is equal to the statical

tension multiplied by 20/(?r + 2), where is the angle which the tangent at P
makes with the horizon.

Ex. 4. A string rests on a smooth table in the form of an arc of an equiangular

spiral, and begins to move from rest under the action of a central force F which

tends from the pole and varies as the nth
power of the distance, show that the initial

tension is given by T= -rF
,

7l cosJ a + Sin2a
+Arp + Brq

f
where a is the angle

n (n + 1) cos- a - sin2 a

of the spiral, and p, q are the roots of the quadratic x(x- 1)
= tail- a. Show that

the solution changes its form when o is such that the first term is infinite, and find

the new form.
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Ex. 5. A given heavy uniform inelastic chain is stretched nearly straight with

the two ends at the same level
; suddenly one end is released, prove that, to a

first approximation, half the product of the tensions at the other end before

and after release is equal to the square of the weight of the. chain.

[Math. Tripos, 1888.

693. Ex. 1. An endless string in the form of a circle is rotating in its own

plane \\ith a uniform angular velocity u. The string being cut at any point, find the

initial tension, the initial radius of curvature of the path of any element, and the

rate at which tlie tension is changing.

Let OCA be the diameter through the point of fracture A, and let the arc be

measured from 0. Let a be the radius and let s = a&amp;lt;. Since there are no

impressed forces, P= 0, Q = 0. We have at once by (5), since p= a,

T= a2ur + A cosh + B sinh
&amp;lt;p,

where A and B are such that T=0 when (p
=

TT,

. . T=a2ur (l-coshi/ /coshTr).

To find the radius of curvature of the path of any element, we notice that each

element is moving with a velocity u= au along the tangent to the string. Resolving

these along the normal to the string, we have M2
/J2
= T/a whence E u2

a/T. This

result follows at once from equation (7) since v = 0, Q 0. To find
u&amp;gt;,

we have

from (6), since p= a, aau= 2dTfd\f/. By differentiating (5) with regard to t we

obtain

d?T_ r_2Td__ 2
.

ds 2
p
2

P ds

Since dw/cfe = 0, we find by solving this differential equation,

cosh TT sinh IT )

By differentiating (5) and (6) with regard to s we may also show that the rate p at

which the radius of curvature of the string is changing is initially zero and that

the acceleration is initially equal to 2aw2 cosh
\j/

. sech ?r.

Ex. 2. A string moves under the action of a central force F (r) tending from

the origin. The instantaneous motion being known, show that T may be found

from d^T T dF F .

&-? + &*++,****-+
If the string start from rest and both its extremities are free, prove that dT/dt is

initially zero throughout the string.

Ex. 3. A string of length 2aa is at rest in the form of an arc of a circle of

radius a and is acted on by a central force F (r) tending from the centre of the

circle. Show that the instantaneous tension at any point P is

T=aF (a) (1
- cosh 0/cosh a),

where is the angle subtended at the centre by the arc OP measured from the

middle point of the string.

Ex. 4. A heavy uniform string of given length is placed at rest on a rough
table whose coefficient of friction is p., and is acted on by a finite force at each end.

If each element of the string begin to move in a direction making a given angle /3

with the tangent at the element, prove that the intrinsic equation to the string is

1_ !
&amp;lt;?

-2/&amp;gt;cot2/3
l

pa b
C
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where is the angle the tangent makes with a fixed straight line. Prove also that

the force at either end must be fj.b sin /3e^
cot ^ where X

is the value of at that

end. If a is infinite the curve is an equiangular spiral and the string is in

equilibrium.

Ex. 5. If, in the last example, each element begin to move in a direction

making an angle with the tangent, prove that the intrinsic equation is

ajp = l + b sec2 0, where a and b are arbitrary constants and the force at either

end is pa sin 0.

On Steady Motion.

594. DEF. When the motion of a string is such that the

curve which it forms in space is always equal, similar, and similarly
situated to that which it formed in its initial position, that motion

may be called steady.

To investigate the steady motion of a homogeneous inextensible

string.

It is obvious that every element of the string is animated with

two velocities, one due to the motion of the curve in space, and
the other to the motion of the string along the curve which it

forms in space. Let a and b be the resolved parts along the axes

of the velocity of the curve at the time t, and let c be the velocity
of the string along its curve. Then, following the usual notation,

we have
u = a 4- c cos

(/&amp;gt;,

v = b + c sin
&amp;lt;/&amp;gt;

(1).

Now a, b, c are functions of t only, hence du/ds = c sin
$d(f&amp;gt;/ds.

Therefore by equation (9) of Art. 575 we have

dw dd) /f) v

=* = c -r ( 2i ).

dt ds

Substituting the values of u arid v in the equations of motion?

Art. 574, we get
da dc . d6 v d (T .\
-j- + -T, cos 6 - c sin d&amp;gt;

-~ =X + -j- cos
c/&amp;gt;

dt dt r
dt ds \m ^

)

db dc . . dd&amp;gt; d (T .

-T, + -77 sin 6 + c cos 6 -~ = Y -I- -r-
{

sin
&amp;lt;jdt dt r dt ds \m

Substituting for d^/dt, these equations reduce to

da f v dc ,\ d (/T \
,}

-j-
= [X -j- cos 6 }

-\- -j- {( c- cos 6 V

dt \ dt r
/ ds (\m J

r
j

db / dc . A d ((T \ .
^ (3)*

-TT = 1 -T. sin 6 + ,- 4[ c3 sin c
dt \ dt r

/ ds [\m J

The form of the curve is to be independent of t
, hence, on

eliminating T, the resulting equation must not contain t. This

will not generally be the case unless da/dt, db/dt, dc/dt are

constants. The motion is then called a uniform stead)/ motion.

In any case their values will be determined by the known circum

stances of the problem. The above equations must then be solved,
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s being supposed to be the only independent variable, and t being
constant.

595. If a, b, c are constants, these equations take a simpler
form. We then have

=mX + f - (T
! cos ^),

= mY+ ~ (T sin ^),. . .(4),
Ct5 GtS

where T = T me2
. These are the equations of equilibrium of a

string acted on by the same given forces, viz. mX and mY. Thus
we have a very convenient analogy between the steady motion and
the equilibrium of a homogeneous string.

For example, if a string can move in a uniform steady motion
under the action of gravity, we see that its form at any and every
moment must be the same as that of a string in equilibrium under
the action of gravity. The form of the travelling curve must
therefore be a catenary. What catenary it is will depend on the

terminal conditions, and if these are inconsistent with the properties
of a catenary no uniform steady motion is possible.

Whatever catenary the string assumes, the tension T at any
point of the moving string will exceed the tension at the corre

sponding point of the stationary catenary by me2
. We have

therefore at any point T = m (gy + c2
),
where y is the ordinate of

that point measured from the directrix.

More generally, we see from the equations (4) that a string cannot move in

uniform steady motion unless every one of its positions is one in which a string

could rest in equilibrium under the action of the instantaneous forces. Supposing
this condition to be satisfied, the conditions at the extremities (if the string form an

unclosed curve) must also be consistent with this form of the string. These are the

necessary and sufficient conditions.

One important case of this theorem is when the string forms a closed curve

which does not travel in space. This case was first given in the Solutions of

Cambridge Problems, 1854, by Walton and Mackenzie, who enunciated the theorem as

follows. If a uniform endless chain rest in any form subject to the action of forces

depending only on the position of the particle acted on and to the reactions of

smooth surfaces, it will continue to move in the same form if put in motion in

such a manner that every point of the chain begins to move in the direction of the

tangent at that point.

596. Examples. Ex. 1. A horizontal cylinder revolves with uniform velocity
about its axis and an endless chain passing round it revolves with it in such a

manner that the form of the chain in space is always the same ; show that the form
of the curve is independent of the velocity. [Math. Tripos, 1854.

Ex. 2. A uniform string AB of any given length is placed in the form of an arc

of an equiangular spiral, and is acted on by a centre of repulsive force situated in

the pole O of the spiral whose accelerating force is equal to ^/(distance)
2

. Each
element starts with a velocity u along the tangent to that element, and the extremities

A, n are acted on by forces X\, t\. If F
1
= m (uP + p/OA) and Fs

= m(u3 + fijOB)
where m is the mass of a unit of length, prove that the string will describe the

spiral uniformly.
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Ex. 3. A light flexible inextensible tube of small uniform section suspended
from two points in the same horizontal line by its ends is full of water which flows

through it with uniform velocity. Prove that it hangs in the form of the common

catenary, and that the longitudinal tension is constant. [Math. Tripos.

597. Ex. Form of an electric cable. An electric cable is deposited at the

bottom of a sea of uniform depth from a ship moving with uniform velocity in a

straight line, and the cable is delivered with a velocity c equal to that of the ship.

Determine the form of the string when the motion is steady.

Consider the portion of the cable between the ship A and the ground B. If the

friction of the water on the string is neglected, gravity diminished by the buoyancy
of the water will be the only force acting on the string, let this be represented by g .

Then the form of the travelling curve is the common catenary, and the tension at

any point exceeds the tension in the catenary (see Art. 595) by the weight of a

length of string equal to c*/g .

To determine the particular catenary assumed by the string we consider the

conditions at the extremities A and B. At the point B where the cable meets the

ground the tangent to the catenary must be horizontal. For, if not, an element of

string at B would have the tangents at its extremities inclined to each other at a

finite angle. Then since T cannot be zero in a catenary, this elementary mass

would be acted on by a finite resultant force. Hence the element would alter its

position with an infinite velocity. The catenary therefore must be such that B is

its vertex.

To fix the catenary one more condition is necessary. If I be the length of the

portion of cable between the ship and the ground and h the depth of the sea, then

the parameter 7 of the catenary must satisfy the equation (h + y)
2= l

2 + y2
.

The problem of the deposition of an electric cable appears first to have been

considered by Longridge and Brooks (Institution of Civil Engineers, Feb. 1858).

Another solution was given by Sir G. Airy in the Phil. Mag. for July, 1858. A further

discussion by Mr Woolhouse may be found in the Phil. Mag. for May, 1860. All

these include in their investigations the friction between the water and the cable.

598. We shall now consider how the solution is affected when the friction of

the water on the cable is taken account of. We shall assume that the friction on

any element of the cable varies as the velocity in space of that clement, and acts in a

direction opposite to the direction of motion of the element. Each element has

motions both along the cable and transverse to it
;
and the coefficients of friction for

these two motions are probably not strictly equal. In order however to simplify

the formulae we here treat them as equal. Let
/j.
be the coefficient of friction.

Let the axis of x be horizontal, and let x be the abscissa of any point of the

cable measured from the place where the cable touches the ground, in the direction

of the ship s motion. Also let s be the length of the curve measured from the

same point. Then x= x + ct, and s= s + ct.

Following the same notation as before, we have

But w=

Hence the equations (3) of Art. 594 become

0= -
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To integrate these put sin
&amp;lt;j&amp;gt;

= dylds, cos
&amp;lt;p

= dxjds. Hence,

(2

1 \-- C*
J
COS

g B= -
g s + fjxy + (- - cM sin

where A and B are two arbitrary constants.

At the point where the cable meets the ground, we must have either T= or

= 0. For if be not zero, the tangents at the extremities of an infinitely small

portion of the string make a finite angle with each other. Then, if T be not zero,

resolving the tensions at the two ends in any direction, we have an infinitely small

mass acted on by a finite force. Hence the element will in that case alter its posi

tion with an infinite velocity. Firstly, let us suppose that = 0. Also, at the same

point, y Q and z = 0. Hence B=-ct.

Putting f
=

e, we get by division -
,
= --3L_ ........................... (2).

fl Cu ^rl CJO ~r~ CS

This is the differential equation to the curve in which the cable hangs.

To solve this equation we put *_p
for dy/dx and find s in terms of the other

quantities. Then differentiating, and writing 1 +p2 for (ds jdx)
2 and v for A - ex + e~y

we have dv - edp

The variables are now separated, and the integrations can be effected. The

equation can be integrated a second time, but the result is very long. The arbitrary

constant A may have any value, depending on the length of the cable hanging from

the ship at the time t= 0.

The curve in its lowest part resembles a circular arc, or the lower part of a com

mon catenary. But in its upper part the curve does not tend to become vertical,

but tends to approach an asymptote making an angle cot&quot;
1 e with the horizon. The

asymptote does not pass through the point where the cable touches the ground, but

below it, the smallest distance being A/e (e
2 + l)^; the asymptote also passes below

the ship.

If the conditions of the question are such that the tension at the lowest point

of the cable is equal to zero, the tangent to the curve at that point is not neces

sarily horizontal. Let X be the angle this tangent makes with the horizon.

Keferring to equations (1) of Art. 594 we have simultaneously

x = Q, y= 0, s = 0, r=0, and = X.

Hence Ag = - c2 cos X, Eg = - c2 sin X - g ct.

The differential equation to the curve now becomes

dy__ -c2 sin\ + g (s -ey)
(3)

dx - c
2 cos X + g (es

1 - ex )

which can be integrated in the same manner as before. One case deserves notice ;

viz. when e = cotX. The equation is then evidently satisfied by y = x /c. The two

constants in the integral of (3) arc to be determined by the condition that, when
.r = 0, y = Q, then dyldx = tan\. Both these conditions are satisfied by the relation

y~x \e. Hence this is the required integral. The form of the cable is therefore a

straight line, inclined to the horizon at an angle \ = cot~1
e; and the tension maybe

found from the formula T= m V
.

1 + cos X
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Ex. 2. Let a cable be delivered with velocity c from a ship moving with uni

form velocity c in a straight line on the surface of a sea of uniform depth. If the

resistance of the water to the cable be proportional to the square of the velocity,

the coefficient B of resistance for longitudinal motion being different from the

coefficient A for lateral motion, prove that the cable may take the form of a

straight line making an angle X with the horizon, such that cot2 \= Je
4 + ^

-
\,

where e is the ratio of the speed of the ship to the terminal velocity of a length of

cable falling laterally in water. Prove also that the tension will be found from the

equation T= ly
-
1 e2

(^
- cos \Y

g-gU- mg . [Phil. May.

Small Oscillations of a Loose Chain.

599. Chain suspended by one extremity. A heavy

heterogeneous chain is suspended by one extremity, and hangs in a

straight line under the action of gravity. A small disturbance

being given to the chain in a vertical plane, it is required to find
the equations of motion*.

Let be the point of support, let the axis Ox be measured

vertically downwards, and Oy horizontally in the plane of disturb

ance. Let mds be the mass of any elementary arc whose length

PQ is ds
y
and let T be the tension at P. Let I be the length of

the string, and let us suppose that a weight Mg is attached to the

lower extremity. The equations of motion, as in Art. 574, are

d2x _^dL ( rp
dx\ tfy-LiLfr

~dP~mds\ ds)
+ 0) dV~mds\ ds

Since the motion is very small, the point P will oscillate in a

very small arc, the tangent at the middle point being horizontal.

Hence we may put dxjdt 0. For a similar reason we may put
dx = ds. We therefore have by integrating the first equation

T = constant g jmdx.

But T = Mg when x = I, hence we find

T = Mg+gJ
l

x mdx (2).

When the chain is homogeneous, this equation takes the simple

form T= Mg + mg(l-x} (3).

It may be noticed (1) that this expression is independent of

* In the Seventh Volume of the Journal Polytechnique, Poisson discusses the

oscillations of a heavy homogeneous chain suspended by one extremity. Putting

(Z-x)&amp;lt;7^ equal to s or s according as the upper or lower sign is taken, and

?/
= ?/ (I

- xfi, he reduces the equation to the form 17-, -
7 , &amp;gt;\o

He obtains
ds ds 4 (s + s

)

3

the integral by means of two definite integrals and two infinite series. After a

rather long discussion of the forms of the arbitrary functions Avhich occur in the

integral, he finds that a solitary wave will travel up the chain with a uniform

acceleration and down with a uniform retardation, each equal to half that of

gravity.
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the time
; (2) that the tension at any point of the chain is equal to

the total weight of matter below that point.

The second equation may be written in either of the forms

= _
dt2 tn dx \ das m dx* m dx dx&quot;

where T is a function of x given by the equation (2), or (3).

600. Let us suppose that the displacements of the particles

forming any finite portion of the chain during a finite time are

represented by y = &amp;lt;f&amp;gt; (#, t),
where is a continuous function of x

and t. Let P be a geometrical point within this portion of the

chain which moves so that the particle-velocity at P, i.e. dy/dt, is

always equal to some constant quantity A. Let v be the velocity

with which P moves, then, following in our mind the motion of P,

we have by differentiating dy/dt = A with regard to t

.-0.. (5)-

Let Q be a point also within the portion, such that the tangent
to the chain at Q makes with the vertical an angle whose tangent,
i.e. dy/dx, is B/T, where B is some constant quantity. Let v be

the velocity with which Q moves, then

dxdt dx\ dxt

Eliminating the second differential coefficients of y from equa
tions (4), (5) and (6), we easily deduce that, if P and Q coincide at

any instant, w/ = T/m (7).

This reasoning requires that all the second differential coeffi

cients should be finite, and that y should be a continuous function

of x and t. It would not apply to any point P, if the discontinuous

extremities of two waves were passing over P in opposite direc

tions. But the consideration of these exceptions is unnecessary
for our present purpose.

Let AB be a disturbed portion of the chain travelling in the

direction AB on a chain otherwise in equilibrium. At the con

fines of the disturbance the two portions of the string must not

make a finite angle with each other. If they did, an element of

the string would be acted on by a finite moving force, namely, the

resultant of the two finite tensions at its extremities. In such

a case the disturbance would instantly extend itself further along
the chain and assume some new form. Supposing we exclude

any such case as this, we must have, as long as the motion is

finite, both dy/dt = and dyjdx = 0, at both the upper and lower

extremity of the disturbance. If then P be a point at which

dijjdt
=

0, and Q a point at which dyjdx = 0, P and Q may be
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considered as taken just within the boundary of the wave
;
P and

Q will therefore each travel with the velocity of that boundary.
Hence, putting v = v

,
we find for the velocity of either point

v* = T/m ......... (8).

It appears therefore that if a solitary wave travel up the chain,
the velocity increases as the wave approaches the upper extremity.
The upper end of the wave will travel a little quicker than the

lower end, because the tension at the upper end exceeds that at

the lower; thus the length of the wave will gradually increase.

When the wave travels down the chain, the velocity for the same
reason decreases.

601. Examples. Ex. 1. If the chain be homogeneous, show that the boundaries

of a solitary wave will travel up the chain with an acceleration equal to half that

of gravity, and down the chain with a retardation of the same numerical amount.

Ex. 2. Let the law of density be m= A (l + l -x)~% where I is the length of

the chain and A
,
V are two constants. Also let a weight equal to 2Ag^l be fastened

to the lower extremity, prove that

y=f{(l+l -x)*-(te)*t}+F{(l + l -z)* + (,,)* t}.

This integration may be effected by writing =
(I + Z )*

-
(I + V - xf. The equation

of motion then takes the form - = -, which can be solved in the usual manner.

Ex. 3. The chain is said to sound a harmonic note when its motion can be

represented by an expression of the form y = (f&amp;gt;(x]
sin (Kt + a) ;

so that the motion of

every element repeats itself at the same constant interval. Show that the harmonic

periods of the chain and weight are given by *Z
* tan K {(I + I f -

l&quot;~

}
= 1.

To prove this, we substitute y=f(&) sin (xt + a) in the differential equation

obtained in the last Example ;
we thus fmd/(0) to be trigonometrical. Since y =

when x for all values of
,
the expression for y reduces to

y = sin K0 {AK sin Kt (%g) + BK cos Kt

where A K and BK are two arbitrary constants. But, when x =
l, y must satisfy the

equation of motion of the weight, viz. d*yldt~= -gdyjdx. Whence the result

follows by substitution.

602. Chain suspended by both extremities. An in

elastic heterogeneous chain is suspended from two fixed points

tinder the action of gravity. Any small disturbance being given

in its own plane, it is required to find the small oscillations.

Let the axis of x be horizontal and that of y vertical. Let G
be any point on the chain when hanging in equilibrium, and let

the arc s be measured from C. Let (x, y) be the co-ordinates of

any point P determined by GP = s. Let T be the tension at P,

mgds the weight of an element ds situated at P. The equations
of equilibrium are

*
$ds
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Let a be the angle which the tangent at P makes with the axis

n i m W(J rf tan a /1X
of #, then we easily find T= - -

,
m = iv ^ ......... (1),

COS CL CIS

where w is an undetermined constant.

When the chain is in motion, let (x 4- f, y + 77) be the co

ordinates of the position of the particle P at the time t, and let

the tension at that point be T = T+ U. The equations of motion

will be

d2|_I 1 (T ,

dV~mds\ \y dV~mds \dsds

which, by subtracting the equations of equilibrium, reduce to

,rj _

dP~mds\ ds^ dsl dV~mds\ ds ds/&quot;

___ ,^ ~

when the squares of small quantities are neglected.

Since the string is inelastic, we have

(dx + d& + (dy + d^ =
(ds?.

Expanding, and rejecting the squares of small quantities, this

dx d dii drj
becomes ^- -f +-/y=0 ......... (3).

as ds ds ds

We have thus three equations to find f, rj and U as functions

of s and t.

603. Velocity of a wave. To find the velocity with which
a solitary wave will travel along the chain.

If we suppose a small disturbance to travel along this chain,
so that there is no abrupt change of direction of the chain at the

boundaries of the wave, we must have at those points d%/ds = 0,

drj/ds
= 0, dg/dt = 0, drj/dt

= 0, and U = 0. Let v be the velocity
with which one boundary of this wave travels along the chain,

then, following that boundary in our mind, we have as in Art. 600

#f ^f_ d^ ^f_ n
d?

* v
dsdt

~
dtds

4 V
d#

~

and therefore i = -y
2 S

,

dt2 ds*

with a similar equation for
77. Thus the dynamical equations be

come at the boundary

_m ds2 m ds ds m ds*
~
m ds ds

and the geometrical equation becomes -=? = - - -
.

ds* ds ds ds
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From these we easily get v2 = T/m. Substituting for T and m
their values, we have, if p be the radius of curvature at P,

v = V (gp c s ) .........W,
so that the velocity of either boundary of the wave is that due to one

quarter of the vertical chord of curvature at that point.

Ex. A chain is in equilibrium under the action of any forces which are

functions only of the position in space of the element acted on. Show that the

velocity of either boundary of a solitary wave is that due to one quarter of the chord

of curvature in the direction of the resultant force at that boundary.

604. Intrinsic equation of motion. To solve as far as possible the equations

of motion of a heavy slack heterogeneous chain.

It will be convenient to express the unknown quantities , 77, U in terms of

some one function &amp;lt;.

Let a + be the angle which the tangent at P makes with the horizon at the time t.

Then ,

-- ......... (5);

(6),

= - I ppsmada + A, -rj
= I

p&amp;lt;}&amp;gt;

cos ado. + D ......... (7),

where A and B are two undetermined functions of t.

The equations (2) now become by substitution from these and from (1)

dfi cos2 a da

A 1 d ( . .
U .,_

dfi cos2 a

For the sake of brevity let accents denote differentiations with regard to t.

Expanding the differentiations on the right-hand side, these equations may be

written in the form
/ dd&amp;gt; \ _T cos

2
ai-

|&quot;
sin a +

77&quot;
cos a - g ( &amp;lt; sin a + -T- cos a

J
= U ~^~
dU cos- a I

&quot;

cos a +
77&quot;

sin a + 00 cos a =
^- ~^~J

Differentiating the first with regard to a and adding the result to the second, we

od&amp;gt;&quot; d^d) . d fUcQSa
obtain

Differentiating the second and subtracting the first from the result, we obtain

d(f&amp;gt; _ d2 /Ucosa

These equations evidently give

I

where G and D are two undetermined functions of t. These are the general

equations to determine the small oscillations of a slack chain.
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The undisturbed form of the curve being given, p is known as a function of a.

We may then use the equation (10) to find as a function of a and t. The tension

is then found from the equation (9),
and the displacements , 77 of any point of the

chain by equations (7).

605. The determination of the whole motion depends therefore on the solution

of a single equation. Supposing the integration to have been effected, the ex

pression for will contain two new arbitrary functions of a and t. These we may
represent by \f/ (P) and x (Q) where

\f/
and x are arbitrary functions of two determinate

combinations P and Q of the variables. The arbitrary functions A and B are not

independent of C and D, and the relations between them may be found by substi

tuting in equations (8).

We have thus four arbitrary functions whose values have to be determined from

the conditions of the question. Let a , Oj, be the values of a which correspond to

the two extremities of the string. Then the values of and dQjdt are given by the

question when t= for all values of a from a a to a= al ;
also the initial values

of A and B are given. Thus the values of ^ (P) and x (Q) are determined for all

values of P and Q between the two limits which correspond to a = a , t= Q and a a1?

t = Q. The forms of
\[/
and x f r values of P and Q exterior to these limits, and the

values of A and B when t is not zero, are to be found from the conditions at the

extremities of the chain. If the extremities be fixed, we have both and rj equal to

zero for all values of t when a = a and 0. = ^. It may thus happen that the

arbitrary functions A, B,
\f&amp;gt;

and x are discontinuous.

In many cases the circumstances of the problem will enable us to determine

at once the form of C. Thus, suppose the string when in equilibrium to be

symmetrical about a vertical line, say the axis of ?/, and let the points of support be

fixed in the same horizontal line. Then if the initial motion be also symmetrical
about the axis of-?/, the whole subsequent motion will be symmetrical. Thus
must be a function of a, containing when expanded only odd powers of a. Sub

stituting such a series in equation (10) we see that C must be zero.

606. Oscillations of a cycloidal chain. There are several cases in which
the equation to find the small motions of a chain may be more or less completely

integrated. One of the most interesting of these is that in which the chain hangs
in equilibrium in the form of a cycloid. In this case we have, if b be the radius of

the generating circle, p= 4b cos a. The density of the chain at any point is given by
w=

2&amp;lt;;/4&co8

3
a, so that all the lower part of the chain is of nearly uniform density,

but the density increases rapidly higher up the chain and is infinite at the cusp.
The equation to find the oscillations now takes the simple form

&amp;lt;&quot;&amp;gt;

in which all the coefficients are constants.

There are two cases of motion to be discussed, (1) when the chain swings up
and down, and (2) when it swings from side to side. The results are indicated in

the two following examples.

Ex. 1. A heavy chain suspended from two points in the same horizontal line

hangs under gravity in the form of a cycloid. Find the symmetrical oscillations

of the chain, when the lowest point moves only up and down.
In this case we have C=0. To find the nature and time of a small oscillation,

we Put
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where S implies summation for all values of K, and R, R are functions of a only.

Substituting, we have
^
+ 4

(
1 +

)
J? ^

;

with a similar equation to find R . Therefore R =L sin 2a ( 1 + r
\ 9)

where L is an arbitrary constant, the other constant being determined by the
consideration that the motion is symmetrical about the axis of y. For the sake of

brevity, put X= 2 v/(l + i/c
2
/5f). Substituting in (7), we find that the terms derived

from R become . 26
,= SI/ -{Xcos Xa sin 2a - 2 sm Xa cos 2a} sin Kt,

77
= S - L -2 l {X cos Xa cos 2a + 2 sin Xa sin 2a}

- L cos Xa +H1 sin Kt,L A 4 X J
where H is a constant depending on the position of the points of support. The
terms derived from R must be added to these, but have been omitted for the sake

of brevity. They may be derived from those just written down by writing cos Kt

for sin Kt and changing the constants L, H into two other constants L
,
H .

Let the length of the chain be 21, then at either end sina =
Z/46. At both

extremities we must have = 0, 77=0. All these four conditions can be satisfied if

tan Xa _ tan
2a&amp;lt;,

X 2

This equation therefore determines the possible times of symmetrical vibration

of a heterogeneous chain hanging in the form of a cycloid.

607. If a be not very large, the oscillations are nearly the same as those of a

uniform chain*. In this case, since a is small but Xa is not necessarily small, the

equation to determine X is approximately

tan Xa = Xa .

The least value of Xa which can betaken is a little less than %ir, viz. Xa = 4-4934.

Hence X is great, and therefore K= \ (#/4ft) nearly. The expressions for and 77 now
take the simple forms

&amp;gt;7

= SLy {
c08 Xa -cosXa} s in

The terms depending on cos Kt have been included in these expressions for and

77 by introducing e into the trigonometrical factor.

The roots of the equation tan Xa = Xa may be found by continued approxi
mation. The first is zero, but, since X occurs in the denominator of some of the

small terms, this value is inadmissible. The others may be expressed by the

formula Xa =
(2i + 1) ?r - 6, where is not very large. This makes the time of

* The reader who may wish to see another method of discussing the small

oscillations of a suspension chain may consult a memoir by Mr Rohrs in the ninth

volume of the Cambridge Transactions. Mr Rohrs considers the chain to be homo

geneous, symmetrical about a vertical line, and nearly horizontal from the beginning
of the process. In the second edition of this treatise the small oscillations were

treated on the same hypotheses, but in a different manner. That method, however,

is not nearly so simple as the one here given in which the approximate oscillations

for a catenary are deduced from the accurate ones for a cycloid.

R. D. II. 25
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vibration nearly equal to j^ = . -7= Thus the times of vibration of the chain

are all short.

This result will explain why the marching of troops in time along a suspension

bridge may cause oscillations which are so great as to be dangerous to the bridge.

It is clearly possible that the &quot;

marching time &quot;

may be equal to, or very nearly

equal to, some one of the times of vibrations of the bridge. If this should occur

it follows from Arts. 338 and 340 that the stability of the bridge may be severely

strained.

It should be noticed that the terms in the expression for have the square of X

in the denominator, while those in the expression for 17 have the first power of X.

Since X is great we may as a first approximation reject the values of f altogether,

and regard each element of the chain as simply moving up and down.

608. Ex. 2. A heavy chain suspended from two points hangs under gravity in

the form of a cycloid. If it swings from side to side in its own plane so that the

middle point has only a lateral motion without any perceptible vertical motion, find

the times of oscillation.

As in the last example, we put = SE sin Kt + SJS cos Kt,

where R and R are functions of a only. Substituting in equation (11), we see that

20= 2h sin Kt + ~2,k cos Kt where h and k are arbitrary constants. The equation to

find R becomes ^+ 4
(l
+

&

&quot;)

R= -h.

If we put X2= 4 (1 + &K2/#) as before, we find R= -
ft/X

2 + L sin (Xa+ M).

Thence taking the term of which contains sin Kt,

. = ----
^-j

--- + 1*
j^7^{X

cos (Xa + M) sin 2a - 2 sin (Xa + M) cos 2a},

where h is an arbitrary constant introduced on integration. Substituting in

equation (8), we find h = -h(b + gJK*). Also, we have in the same way

- L^-^ {X cos (Xa + M) cos 2a + 2 sin (Xa + M) sin 2a}
- L ~ cos (Xa + M) + H.

If we suppose the two supports to be in the same horizontal line, we must have
=0 and 7?

= 0, when a=a . These conditions may be satisfied if we take

M=%TT, H=0, for then becomes an even and rj an odd function of a. In this

case 77
= at the lowest point of the chain. We have then two equations to find

L[h ; equating its values, we have

cos 2an X __ X tan Xa tan 2a + 2

2a + sin2a 4
2 cosj a +

^2 -j

609. If a be small, this equation is very nearly satisfied by Xa = iV, where i is

any integer. In this case the complete expressions for and 77 take the simple forms

=
2L^2 (cosXa - cos Xa - Xa sin Xa) sin

\(?-] Xf + el

4b . x .

i sin \a sin
A
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610. Examples. Ex. 1. If we change the variables from a, t to p, q, where

show that the general equation (10) of small oscillations takes the form

where ^i
4
=pcosa//o and = /A0 .

Show also that the coefficient of is a function of # + g, the form of the

function depending on the law of density of the chain.

This transformation may be useful, because it follows from Art. 603 that p is

constant for the boundaries of a solitary wave travelling in one direction, and q for

a wave travelling in the other direction.

Ex. 2. A heavy string hangs in equilibrium under gravity in such a form that

its intrinsic equation is -- = sin4
(2a 4-c), where b and c are any constants.

p y

Show that its law of density is given by m=w-- , If such a chain be set
g cos3 a

in motion in any symmetrical manner, prove that its motion is given by

Ex. 3. If, in addition to gravity, each element of the chain be acted on by a

small normal force whose magnitude is Fg, prove that the equation of motion

of the chain is -t- f* -
&amp;lt;^-4,-2C7

= -L **
+2 (-*- da.

g cos a dt2 da- cos a da j cos a

If the chain is nearly horizontal, so that a is very small, and if F=fsm (at-ca),

prove that the denominator of the corresponding term in the expression for &amp;lt; is

f(c
2
-4)-pa

2
.

Ex. 4. A heavy chain of length 21 is suspended from two points A, B in the

same horizontal line whose distance apart is not very different from 21. Each

particle of the chain is slightly disturbed from its position of rest in a direction

perpendicular to the vertical plane through AB. Find the small oscillations of the

chain.

Ex. 5. A heavy string is suspended from two fixed points A and 7?, and rests

in equilibrium in the form of a catenary whose parameter is c. Let the string

be initially displaced, the points of support A, B being also moved, so that

= ff (1 + cos 2a) + a sin 2a,

where a- and &amp;lt;r are two small quantities and the other letters have the same

meaning as in Art. 604. If the string be placed at rest in this new position, prove

that it will always remain at rest.

611. Ex. 1. A uniform string in the form of a circle of radius a rests on a

smooth plane under a central repulsion whose measure at a distance r is ga
n
jr
n

.

Show that, if the string be slightly displaced so that initially it is at rest and in the

form r = a + Sam cos m0, then at any subsequent time t its form will be determined by

(g m2 + n-2] J
-{- r = &amp;gt;-

[a w2 + l
j

where S implies summation from m - 1 to m= oo . Discuss the result (1) when m l

and n=l, and (2) when w= 3. [Math. Tripos, 1884.

252
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Ex. 2. A string is in equilibrium in the form of an equiangular spiral, of angle

a, under the action of a centre of repulsion in the pole, the force on an element

ds at a distance ^ being /ds/r^. In order that, when the string is slightly disturbed

from the position of equilibrium, the equations of motion may take a linear form

with constant coefficients, we shall suppose that the string is loaded with non-

attracted matter, so that the mass of an element ds becomes ads/r
3
,
where r is the

equilibrium distance of the element from the pole. Let the particle .whose equi

librium co-ordinates are (r, 6) occupy at the time t the position (rlt Q^ where

TI
= r (i + ), l

= e + 7;, and let the tension be Tj = T (1 + V) where T is the equilibrium

tension. Show that the equations of motion are

+ sin a cos a ^| + sin2 a - =
do at/

j at* dp

Hence show that the motion is represented by

=Am sin2 a sin m (vt
-

6),

-
v)
= A{cosm (vt

-
6} +m sin a cos a sin m (vt- 6)},

, cos2 a +w2 sin2 a /sin
2 a

where --- ~-

If the string is finite in length and its extremities A and B are fixed in space on

the spiral so that the angle AOB = p, and if the period of vibration is 2?r/p, prove

that the angle /3
must be a root of the equation

-) sin kp = 2 - (e + e~*) cos kp,

where 7t
2 and - &2 are the roots of the quadratic

#2/8in
4 a - x sin2 a (/cos

2 a - op
2
)
-
ap*= 0.

Ex. 3. A heterogeneous string OA of length I, whose line density at a point

distant x from O is Da/(6
2 - #2

)^, has a particle of mass M attached at the end A

where Ml= Da (b
2 - Z

2
) ,

and a, b are two given constants such that I is less than b.

It is placed on a smooth horizontal plane and set rotating with an angular velocity

w about the end as a fixed point so that each point describes a circle whose

centre is 0. If it is slightly disturbed, show that a possible transverse oscillation

is given by
tl
=A sin w rj(q

2 -
1) t . sin (q sin&quot;

1
xjb + Q) ,

where Q= cot-1 Mq/Da -
q sin&quot;

1
Ifi,

and 77 is the distance of an element from the uniformly revolving line OA.

Small Oscillations of a Tight String.

612. An elastic string whose weight may be neglected and
whose unstretched length is I has its extremities fixed at two points
whose distance apart is I . The string being disturbed so that each

particle is moved along the length of the string, find the equations of
motion.

Let A be one of the fixed points, and let AB be the string
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when unstretched and placed in a straight line. Let the extremity
B be pulled until it reaches the other fixed point E . Let PQ be

any element of the unstretched string, P Q the same element at

the time t. Let AP=x and let the abscissa AP be x. Let T
and T+ dT be the tensions at P and Q . Let M be the mass of

the whole string, m the mass of a unit of length of unstretched

string. Since the mass of an element is mdx, the effective

force on it is (mdx) (d?x
r

jdtf). The difference of the tensions at

the two extremities of the element is dT. Equating these, we
find that the equation of motion is

dT

If E be the modulus of elasticity, we have by Hooke s law

dx T

,;. . ,. rr
Eliminating T, we have ^ = --7 ......... (3).

at2 m dx2

It should also be noticed that, assuming as usual the truth of

Hooke s law, these equations and results are not merely approxi
mations, but are strictly accurate.

It is often more convenient to select some particular state of

the string as a standard of reference, and to express the actual

position of any particle at the time t by its displacement from its

position in this standard. Thus, if the unstretched state AB of the

string be chosen as the standard of reference, we put of = x + 1*, so

that f is the displacement of the particle whose abscissa in the

unstretched state is x. The equation of motion now takes the

,
d&amp;gt;%

E d^form -jJr
= -y^ ......... (4).

dt2 m da?

613. If the equilibrium position of the string when stretched between the fixed

points A t
B is taken as the standard of reference, the equation of motion is some

what different. Let x
: be the abscissa of the equilibrium position of that point of

the string which at the time t is at P , then x
lll =x/l. Let x = xl + ^lt then sub

stituting for x and x in (3), the differential equation becomes

dt* ml
614. If we put E = ma?, the integral of the equation (4) may

be written in the form % = f(at- x) + F(at + x) (6).

The most general motion of the string is therefore obtained by

R

~P~Q P Q B B
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superimposing the motions determined by X=f(at x) and

= F(at + x) )
where f = X + X . Let us consider these sepa

rately.

At each point P of the unstretched string draw an ordinate

PR equal to the longitudinal displacement X of P at a given time

t. The locus thus traced out by R exhibits to the eye the actual

displacement at the time t of every point of the string. When t

alters, this locus will change and adapt itself to the changing
motion of the string. If the string vibrated transversely this

construction would be unnecessary, for the displaced string would

itself form the locus of R.

Let a point C starting from any position travel along the axis

AB in such a manner that, if x be its abscissa, at x is constant

and equal to c. The velocity of C is therefore uniform and equal
to a. Since the displacement of the point of the string at any
instant coincident with C is equal to/(c), the displacement at C is

always the same. If then C at starting coincide with the foot of

an ordinate of given magnitude, it will always be at the foot of an

ordinate of the same magnitude. This is the same thing as saying
that every ordinate of the locus moves continually in the positive
direction with a velocity equal to that of C without changing its

magnitude. The locus travels along the axis as a wave travels on

the surface of water.

The conclusion is that the equation Xf(at x) represents
a ivave-like motion which travels in the positive direction ivith

a uniform velocity equal to a. In the same way the equation
X f(at + x} represents a wave motion which travels with a

velocity equal to a. Such a wave travels in the negative direc

tion of the axis.

In the case of the string the velocity of either of these waves,
when referred to the unstretched string as the standard, is (E/m)*.
If the equilibrium position of the string is taken as the standard,
the velocity of either wave is (E/m)* . (L /l). Shortly we may say
that the velocity is such that the time of traversing a length I of
unstretched string or a length I of stretched string is I (m/E)*. It

should be noticed that this time is independent both of the nature of
tJie disturbance and of the tension of the striny.

615. Each of the waves into which the motion has been

analysed may be further analysed by expanding the function into
a series of sines and cosines. Let this expansion be

f(at -x) = A l sin {^ (at x) + a^} + A 2 sin {?i2 (a*
-

x) 4- 2 } + &c.

Taking any one term, say Xn = A sin [n (at
-

a) + a},

the motion represented by Xn may be called a simple ivave or a
harmonic wave. The coefficient A expresses the maximum extent
or amplitude of the oscillation

;
its square is usually called the
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intensity of the wave. The period of the oscillation of any particle
is 27r/na ;

the reciprocal of the period is called itsfrequency. This
latter term is due to Lord Rayleigh. If we trace the curve whose
abscissa is x and ordinate Xn) regarding t as constant, we see that
the portions of the curve between the ordinates given by x,

x 27r/n, x
4&amp;gt;7r/n

&c. are similar and equal to each other. In
other words the values of the ordinates recur when x is increased

by 27r/n. The quantity %Tr/n is therefore called the length of the

wave. It follows that those waves in which n is least have their

periods greatest and their lengths longest. Of two oscillations of

unequal period, the one of shorter period is called the sharper of

the two and the one of longer period is said to be the flatter.

616. An elastic string, stretched as in the last proposition, is

slightly disturbed in any manner, to find the equations of motion.

Following the same notation as before, let (x , y , z) be the co

ordinates of P . Proceeding exactly as in Art. 574, we may form
the equations of motion. Since the mass of an element is mdx
instead of mds, the equations will be

cPx d dx dy d dy \ d?z&amp;gt; d dz

where ds is the length of the element P Q . If E be the modulus
of elasticity we have by Hooke s law

Since the disturbance is very small, dy jds and dz /ds are very
small, and dx Ids is very nearly equal to unity. Hence the first

d*x dT
equation takes the form m -5

=
-^

......... (5),

dx T
and Hooke s equation takes the form -=- = 1 +

-^
,

which are the same as equations (1) and (2) of Art. 612, so that

when the disturbance is small the longitudinal motion is inde

pendent of the motion transverse to the string.

In the second equation we may regard T as constant, its small

variations being multiplied by the small quantity di/ /ds . Hence

we may put T = T ,
where T, =E (I

1 -
1)1 1.

This gives, by equation (4), ds jdx = l /l{
and therefore ds = dxlt

where as before x^l ^xjl. The equation of motion therefore

becomes

_ f= _

dt* ~ml ~dx* dt* ml dxf&quot;

according as the unstretched or stretched string is the standard.

The third equation may be treated in the same way.

The velocity of a transverse vibration measured in units of length
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of unstretched string is therefore (T l/ml ^. The time of traversing

a length I of unstretched string or I of stretched string is (mll /Trf.

This velocity is independent of the nature of the disturbance, but

depends on the tightness or tension of the string.

If the string be very slightly elastic we may, in this last

formula, put l = l We then obtain the results given in all

treatises on Sound.

617. We may here notice one point of difference between the equations of

motion of longitudinal and transverse vibrations. In the former, supposing that

there are no transversal vibrations, no approximations are made, so that, as already

pointed out, the equations (4) and (6) of Arts. 612 and 614 hold for large and small

vibrations. In the latter, even if the longitudinal vibrations are insensible, we

assume that ds fdx and dx^dx are so nearly equal that we may write the one for

the other. We have to the second order of small quantities

If the string vibrate without sensible longitudinal vibrations ^ is of the second order

of small quantities, and as the substitution for ds jdx is made on the right hand side

of (2), which already contains the small quantity dy /ds ,
the differential equation (6)

is correct when we can neglect the cubes of small quantities. If however the string

oscillates simultaneously with longitudinal and transversal vibrations, x
is of the

first order of small quantities, so that the transversal and longitudinal vibrations

are independent only when we can neglect the squares of small quantities.

618. There are two modes of applying the equations of motion to actual cases.

We shall first illustrate these by solving a simple example by both methods, and we

shall then make some remarks on the results.

An elastic string whose unstretched length is I rests on a perfectly smooth table

and has its extremities fixed at two points A, B whose distance apart is I
, where I is

greater tJian L The extremity B is suddenly released, find the motion.

Solution by discontinuous functions. Following the same notation as in

Art. 612, the motion is given by the equation

f =f(at-ix)+F(at + x),

where is the displacement of the particle whose abscissa in the unstretched string
is x. The conditions to determine / and F are as follows :

1. Whenz= 0, =0 for all values of
,

2. When x= I, T=0 and /. d^[dx=Q for all values of t,

3. When = 0, =nc from #=0 to x= l, where l = (r + l)l,
4. When t= 0, d^dt = from x=0tox= l.

From the first condition it follows that the functions F and / are the same with

opposite signs. From the second condition we have / (at + 1)
-
-/ (at -I), so that

the values of the function / recur with opposite signs when the variable is increased

by 21. If then we knew the values of/ (z) for all values of z from z= z to z = z + 2l

where z has any value, then the form of the function is altogether known. Now
the third condition gives / (

-
x) -f (x) = rx and the fourth gives f (-x) =f (x) from

x= to x = I. Hence / (x)=-fr from x = - 1 to x = I. It follows that / (z)
= - r

from z= - 1 to I, f (z)
= %r from z = l to 31 and so on changing sign every time the

variable passes the values I, 31, 51, &c. Let us consider the motion of any point P
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of the string whose unstretched abscissa is x. Its velocity is given by the formula

vla=f (at-x)-f (at + x). Since x &amp;lt;l we have v[a= - r + r= 0; hence the particle

does not move until at + x l. The second function then changes sign, and we have

v]a -- -
\r

-
\r= -r. The particle continues to move with this velocity until at- x I,

when the first function changes sign, and so on. Let AD be the unstretched string,

and let a point R starting from B move continually along the string and back again
with velocity a. Then it is easy to see that when R is on the same side of P as the

loose end of the string, P will be at rest, and when R is on the same side of P as

the fixed end, P will be moving with a velocity alternately equal to ra. The

general character of the motion is
; the equilibrium of the string being disturbed at

B, a wave of length 4 travels along the string, so that P does not begin to move
until the wave reaches it. This wave is reflected at A and returns.

619. Solution by Trigonometrical series. The second method of conduct

ing the solution is as follows. Taking as before the expression

let us expand each function in a series of sines and cosines, so that we have

where S implies summation for all values of n, and A, B, a and p are constants

which are different in every term, and may conveniently be regarded as functions

of n.

Since the motion is oscillatory, we may suppose that all the values of n are real,

and it is clear that without loss of generality we may restrict n to be positive. We
do not propose to discuss the circumstances under which these suppositions may be

correctly made. For these we must refer the reader to Fourier s theorem. We may
here regard the assumptions as justified by the result, because we can thus satisfy

all the data of the question.

The four conditions of the problem enable us to determine the constants. From

the first condition we have /3
= a + K7r, B = (

-
1)
K+1

A, where K is any integer. It

easily follows, by expanding, that may be written in the form

= S (C sin nat +D cos nat) sin nx,

where C and D are to be regarded as functions of n. From the second condition we
have cosnl= 0, hence nl= \ (2i + l)7r, where i is any positive integer. The periods

of the principal oscillations (Art. 53) of the string, with proper initial disturbances,

one end being fixed and the other loose, are therefore included in the form

The initial disturbance is given by the third and fourth conditions. We have

SD sin nx= rx, SCn sin iix= 0.

To find the value of D in any term, we multiply the first equation by the coefficient

of D in that term, and integrate throughout the length of the string, i.e. from

x= to x= I. This gives
_ I fl sin nlD - = r I x sin nxdx = r

3
-

.

The other terms all vanish, since f

l

sin nx sin n xdx = 0, when n and n
1

are numerically
J

unequal. This follows also from the rule given in Art. 398.

Treating the second equation in the same way, we find (7= 0. Hence the

..... T*2r sin nl
motion is given by ~^T .2

cosnatsmnx.
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Writing for i its values 1, 2, 3, &amp;lt;fec. successively, this equation becomes when

written at length

Sri
|

irat . irx 1 3* . Swx 1 5-rrat . 5irax
\

*= ** |
cos

2T
sm

27
-
P cos

~2T
sm

-2T
+

5
cos

-2T
sm

~2T
- &c

j
This is a convergent series for

,
and it may be a sufficient approximation to the

motion to take only the first few terms. For example, let us reject all beyond the

first two terms, and, in order to compare the result with that obtained iu the

first solution, let us put at = ^l. If we trace the curve whose ordinate is -d^/dt and

abscissa x, we find that it resembles = for small values of x, then rises with a

point of contrary flexure, and becomes nearly horizontal as x approaches I. This

agrees very well with the result found in Art. 618.

620. If we examine these solutions, we shall see that we have two kinds of

conditions to determine the arbitrary functions. (1) There are the conditions at

the two extremities of the string. The peculiarity of these is, that they hold for all

values of t. (2) There are the initial conditions of motion. The peculiarity of

these is, that they do not hold for all values of x, but only for all values within a

certain range limited by the length of the string. The first set of conditions is

used to determine the mode in which the values of the functions recur, so that,

when their values are known through a certain limited range, they will become

known for all those values of the variable which occur in the problem. The second

set of conditions is used to determine their values during this limited range.

In the second form of the solution we replace the arbitrary functions by a

convergent series of harmonic expressions. Taking a finite number of terms as an

approximation, we have a perfectly continuous solution whose initial conditions

differ but slightly from those of the proposed problem. This difference is less and

less, the more terms of the series are included in the solution.

In comparing the two results, we see that each form has its advantages. The
first determines the motion by a simple formula. The second is more convenient

when the harmonic periods are required.

In both of these solutions the arbitrary functions were found to be discontinuous.

The discontinuity is plainly exhibited in that of Art. 618, though in Art. 619 it is

concealed in the series. It may be objected that no notice is taken of any possible

discontinuity in forming the equations of motion, (Art. 612), and that therefore

these equations cannot be applied, without further examination, to any cases which

require the arbitrary functions introduced into the solution to be discontinuous.

This question has been much discussed, but we have not space here to do more
than make a very few remarks on it. We must refer the reader to De Morgan s

Differential Calculus, Chap. xxi. page 727, where a short history of the dispute
between D Alembert and Lagrange, and a discussion of the difficulty, may be found.

In the Mecanique Analytique, SecondePartie,p&gQ 385, Lagrange shows that we may
avoid the use of discontinuous functions by regarding the string as the limit of a

light string loaded with masses in the manner described in Art. 402. Poisson gives

other reasons in his Traite de Mecanique. It is now generally admitted that the

functions may be discontinuous.

The discontinuity in the solution of Art. 618 has its origin in the contradiction

between the condition (2), viz. that T= when x=1, and the condition (3) that

T=Er from x= to I. But this contradiction is only apparent, for we may replace
the given initial conditions by others which are without ambiguity, and which differ

as slightly as we please from those given above. Let a be some finite quantity
however small such that a tension less than Ea may be neglected; then the
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condition (3) may be replaced by a continuous function =
(x), where

(.r) differs

from r by less than a for all values of x between x = and x= l-@, and then

decreases to zero while x increases from .r = I -
/3

to 1. Since /3 can be taken as

small as we please, it is evident that the solution given above is substantially

unaltered by this change of the initial conditions. The difference is that the tension

and the velocity, instead of changing suddenly, change only very quickly in the

small time /S/a. It is true that the mode in which this rapid change is effected is

unknown, but that is because there is nothing in the initial conditions to determine

it. By going to the limit when a and /3 are small we can make the new set of

conditions represent the former as nearly as we please. Some examples of such

changes may be found in De Morgan s Differential Calculus, pages 605 630.

621. An elastic string, whose unstretched length is I, has its two extremities fixed
at two points ivhose distance apart is I

,
and vibrates transversely. It is required to

find the notes which can be sounded.

Taking the equilibrium position of the string as the standard, let y be the

transversal displacement of any particle. Let m be the mass per unit of length
of unstretched string. The differential equation is then

where a?= TQ
l lml, as shown in Art. 616. Since the notes which can be sounded are

asked for, we adopt the solution in trigonometrical series. We therefore put

y = 2[Asm {n (at
- xj + a} + B sin {n(at + x

1)+ft} ].

When x
1
= Q, y is zero for all values of t, hence as in Art. 619

2/
= S (G ainnat +D cosnat) sin nxr

When x
l
= l

, we have again y = 0, hence nl = iir, where i is some integer. We
therefore find

where the S implies summation for all integer values of i.

The motion given by taking only the terms which have any one period and

neglecting the others is called a note. The notes which can be sounded from any
instrument are called the harmonics. The note of longest period, i.e. that de

termined by i = l, is called the fundamental note. The period of the fundamental

note is 2 . / -
. If this period be called T, the periods of the harmonics in

&amp;gt;
*

order are r, ^T, ^T and so on. The lengths of the corresponding waves are found

by multiplying the periods by the velocity a. If the length of the wave of the

fundamental note is X, we have \ = 2l
,
and the lengths of the harmonic waves are

^i i^ ^ and so on.

The points of intersection of the string with the straight line joining the

extreme fixed points are called the nodes, and the points of the string most remote

from this straight line are called the loops. Putting y = Q we see that the nodes are

given by sin i-jrxjl = ; putting dyjdx^Q, the loops are given by cos iirxjl = 0.

Thus the fundamental note has one loop and no node intervening between the fixed

extreme points. The next harmonic has two loops and one intervening node, and

so on. It is important to notice (1) that the positions of the loops and nodes are

fixed throughout the motion, (2) that the nodes and loops occur alternately, (3) that

the distance between any node and the consecutive loop is one quarter of the length
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of either of the waves forming the note, the length being measured on the stretched

string. See Art. 433.

In most cases in which strings are used as vibrating bodies, the stretched and

unstretched lengths are so nearly equal that we may put I V. The results then

become the same as those in ordinary use.

In order that the string may be made to sound any given harmonic, the initial

conditions must be such that the amplitudes of all the other notes are zero. In

practice this condition cannot be satisfied, and all that can be accomplished is that

the amplitude of the proposed note shall be very much greater than those of the

others. It follows that every note when sounded is accompanied by a number of

subsidiary notes whose periods are different from that of the note intended to be

sounded. When therefore notes of the given period are sounded by two instru

ments of different construction, they may be accompanied by different series

of subsidiary notes. This is usually expressed by saying that the notes are of

different qualities.

622. Examples. Ex. 1. A heavy elastic string AB, whose unstretched length

is I, is suspended from a point A under the action of gravity. If be the vertical

displacement of any point whose distance from A is x when the string is unstretched,

and if a be the velocity of a wave measured in units of uustretched length, prove

that ^^ +^ +f(at - x)
-f(at + x) ,

where / (z) recurs with an opposite sign when z is increased by 21. If the string

is initially unstretched and at rest, prove that / (z) ^j-g + H~S &amp;gt;

the upper sign being taken when z lies between - 1 and 0, and the lower when z

lies between and I. Thence show that the whole length oscillates between

I and 1 + gPla?.

Taking the other form of solution, show that the harmonic periods are

i
where i is any integer. Show also that

~
2a2 a2 7r

3
tt
2~

the summation extending from i= to i= oo .

Ex. 2. A string infinite in length in both directions has its initial state deter

mined by =/ (x) and d/dt=F (x). Show that the displacements at the time t are

given by t=$f(x+ at) + %f(x-at) +iI*J

(\) d\.
*aj x-at

[Kiemann s Partial Differential Equations.
Ex. 3. A string AB is stretched at a tension such that the velocity of a wave is

equal to a. One extremity A is fixed, while the other B is agitated according to

the law y = C sin pat. If A be the origin, show that the forced vibration is

y = C
--^

- sin pat. If the string start from rest, the additional free vibrations are

,
where ml=iir and J/(p

2
Z
2 -i2

7r
2
)= -2Cpl (- l)

f
. The S

implies summation for all integral positive values of i.

Ex. 4. If, as in the last example, the string start from rest and have the

extremity A fixed, but the extremity B agitated according to the law y-f(t), prove

that
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for all values of x between and I, the latter being excluded. Show also by an

application of Fourier s theorem that the result of the last example follows from

this.

Ex. 5. A heavy string is suspended vertically by one extremity without any of

its parts being stretched
;

if it be then left to the action of gravity, prove that the

lower end will oscillate as if it were acted on by an acceleration equal to that of

gravity tending to the middle point of its path. [Smith s Prize.

Ex. 6. If a stretched string of length I be fastened to two equal masses M,
controlled by springs of strength /* allowing transversal vibrations, and be plucked

at its middle point, the period p of vibration will be given by

Trl pfj, 2-rrM
ma tan = f2- ,

pa 2-jr p

where m is the line density and wa2 the tension of the string. [Math. Tripos, 1881.

Ex. 7. An elastic rod of length I lies on a smooth plane, and is longitudinally

compressed between two pegs at a distance I apart. One peg is suddenly removed
;

show that the rod leaves the other peg just as it reaches its natural state, and then

proceeds with a velocity equal to (I
- l )/l of the velocity of propagation of a

longitudinal wave in the rod. [Math. Tripos, 1883.

Ex. 8. A ring formed of elastic string, of mass M and natural length 2irl,

is stretched round a smooth circular cylinder; prove that the time in which a

longitudinal pulsation will travel round the cylinder is independent of the size of

the cylinder.

When the ring is in equilibrium, the ends of an arc subtending an angle 2a at

the centre of the ring are drawn together until the arc attains its natural length,

and these ends are then let go. Measuring 6 from the diameter bisecting the angle

2a prove that at any subsequent time the displacement from the position of

equilibrium of the end of the corresponding arc is equal to

a-l 2 ^ sin nd sin na cos nut

a . 7r-a
&quot;

i w2

where Ml^= 2irE, a being the radius of the cylinder and E the modulus of

elasticity. [Math. Tripos, 1886.

The first part of this example follows from the theorem on the velocity of a

wave given in Art. 614. In the second part the differential equation leads to

=SMsin?i0cosww. The values of M are found by using Fourier s Theorem

as in Art. 619.

623. Several strings. Three elastic strings AB, BC, CD of different materials

are attached to each other at B and C and stretched in a straight line between two

fixed points A, D. If the particles of the string receive any longitudinal displace

ments and start from rest, find the subsequent motion.*

* The problem of finding the transversal vibrations of a tight string composed

of two parts of different kinds appears to have been first solved by Poisson, Journal

de Vecole Poly technique, tome xi. 1820. Poisson points out that Euler and Bernoulli,

who had attempted the problem before him, had arrived at only incomplete results,

Memoires de Petersbourg, 1771 and 1772. The latter had indeed obtained an equa

tion giving the periods, but had not found the form assumed by the string at any

time during the motion. The results of the latter were to a certain extent erroneous,

as he had rejected the condition that the two parts of the string must have a
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Let A be the origin, AD the direction in which x is measured. Let the un-

stretched lengths of All, BC, CD be 7,,
7
3 ,

73 . Let Elt E2 , Es be their respective

coefficients of elasticity, w^, m2 , 7% their masses per unit of length. For the sake

of brevity let E^mjCt^ E2
=w2

a2
2

,
-E3
= w3a3

2
. Let the rest of the notation be the

same as before.

When the string is stretched in equilibrium between the two fixed points A and

Z&amp;gt;,
let T be the tension of the string. In this position the displacements of the

elements of each string from their positions when unstretched may be written

At the time t after the equilibrium has been disturbed, let these displacements

be respectively Ij + f/, l2 + ^ &amp;gt; 3 + 3 - We then have as in Art. 619

f/= SLj sin (njx + 3/j) cos n^f,

2
= SL2

sin
{?? 2 (x

-
IJ + 3/2 } cos W2a2f,

3
= ZL3 sin (n3 (x-l-^- 1%) +M3 \ cos w3

a3 ,

where 2 implies summation for all the harmonics. The terms containing sin n^aj,

sin 7*2^2, &c. are omitted because the string starts from rest, and therefore d^jdt,

d
2 ldt, &c. must vanish with t.

In order to compare the coefficients of the same harmonic we must suppose

W
1
a
1
= rc

2et2
= n3a3

=
27r/p, where p is the period of the harmonic. To find the con

stants we have the conditions

when x = 0, x= llt
x=ll + 1

2 ,
x

These give 3^ = 0,

L2 sin 3/2= Lj sin (w^ + lf
t )

1

E^L^ cos 3f2= 1
n

1
L

1 cos (rijij + 3/
a ) j

Z,3 sin l/3= L2 sin (?72 /
2 + 3/2 )

i

2n2L2 cos (n2 /2 + 3I2) |

These give the following equations to find the 3/ s
;

tan3f2 _tan(n1
^
1 + 3/

1 )
tan 3/3 _ tan (7^ +M2) tan (n3^ + 3/3 )

11
- =

common tangent at the point of junction. The problem has been again considered

by Bourget in the Annales de Vecole normale superieure, tome iv. 1867, where he

corrects some of the results of Poisson. He also discusses the vibrations of a tight

cord formed of three different parts, and gives a somewhat complicated rule to find

the periods when the cord is composed of n different parts. Finally he describes

ten different experiments showing the agreement between the theory and experience.
These experiments are again discussed in tome ix. of the Annales de Vobnervatoire

de Paris, 1868.
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Solving these we find

tan n^ tan??2Z2 taiui8
?
3 tann^ tanja, tan ;/

3
Z
3

1 ~ &quot;

&quot;

Substituting for nlt n.2 , n3 in terras of p, we have an equation to find the period p
of any principal oscillation.

624. The values of p being known, it is clear that the preceding equations
determine all the constants except Lr We have therefore one constant undeter

mined for each harmonic function of t. To find these we must have recourse to

the initial conditions. The rule to effect this has been fully given in Art. 399.

The equations may be written in the forms

where Pn , Qn and Rn stand for the coefficients as exhibited in the last article. The
first of these three equations represents in a typical form the motion of any particle
in the string AB, the second represents the motion of any particle in EC, and so on.

Referring to Art. 399, the three sets of multipliers may be typically represented by
?n

1
da;Pn , m.2dxQn , m3dxRn .

The summations spoken of in Art. 399 are here integrations and extend over the

lengths of the three strings respectively.

Suppose now that we have initially /=/! (x), 2 =/2 (x), 3 =/3 (x). We easily

find

fli
+h /7,+Z2 -H3

i (x) Pn + I m2dxf&amp;lt;, (x) Qn+ I m.
idxf3 (x) Rn

J Zi J h + l2

_ rh
2

rh+k
2

eh

Jo J i, J i,

These integrations can be effected when the forms of
f-^ (x), /2 (x) and /3 (x) are

given. Thus we have an additional equation to find the L which corresponds to

any value of p.

625. Examples. Ex. 1. If the three strings vibrate transversely, and alt a.2t

as be the velocities of a wave along them measured in units of length of unstretched

string, prove that the periods of the notes are given by the equation

tan WjZj tan ?i2
7
2 tan n3 l3 _ tan 7t

1
Z
1

tan n2l2 tan n^l3
_|

__ i_
-j

= ft2
-

. .
__ _

j

Tlj 712 Tig 71^
712 Tig

where ?i
1
a

1
=

r&amp;lt;2a2
= n

3
a
3 =:27r/p. If the initial disturbance is given show how to find

the subsequent motion.

Ex. 2. Two heavy strings AB, BG of different materials are attached together

at B and suspended under gravity from a fixed point A. Prove that the periods of

the vertical oscillations are given by the equation

. ,

tan . tan a = -
,

iP a*P ^2 i

the notation being the same as before. If the two strings be initially unstretched,

find their lengths at any time.

Ex. 3. Two strings AB, BG of different materials are attached at B to a particle

of mass M, while their other extremities A and C are fixed in space. If the particles

of the system vibrate along the length of the straight line AC, prove that the

period p of any principal oscillation is a root of the equation

1I/
,27r E

l 27T?! 7?o ,
27r72M = cot- + cot- ,

P j
alPl a

-2
a

-2P-2

where l
lt

lz are the unstretched lengths of the strings, E
lt
E2 their elasticities,
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and a
1 ,

a.2 the velocities of a wave measured in units of unstretched length per unit

of time. The values of p obtained by equating (when possible) the cotangents

simultaneously to infinity are to be included.

If the system make small oscillations transverse to the straight line AC, the

periods will be given by the same equation if we replace E-^ and E2 by T the tension

of the string when in equilibrium.

Ex. 4. A particle is suspended from a fixed point by an elastic string and

performs small oscillations in a vertical direction, supposing the string uniform in

its natural state and of small finite mass, show that the time of a small oscillation

will be approximately the same as if the string were without weight and the mass

of the particle were increased by one third that of the string. [Smith s Prize.

Ex. 5. Two uniform heavy elastic beams AB, CD equal in every respect are

connected by a light inextensible string BC ;
the beam AB lies unstrained on a

smooth horizontal table, while CD is suspended at rest under the action of gravity

by a string which, being held at B, passes over a smooth pulley P at the edge of

the table, PBA being a straight line. Investigate the motion of the string when set

free; prove that its tension, after being instantaneously diminished by one half,

remains constant, and that its velocity receives equal increments at equal intervals.

[Math. Tripos, 1876.

The problem is unaltered in its physical relations if we suppose the rods to be

in one straight line on the table and CD only to be acted on by gravity ;
in this

way the problem is simplified by eliminating the pulley. To keep the centre of

gravity of the whole stationary let us next apply to every particle a force half that

of gravity in the opposite direction. The result is that the rod AB is acted on by

\g in the direction BA, and the rod CD by $g in the direction CD. The solution

then follows the lines of Ex. 1, Art. 622.

Ex. 6. A particle is fixed to the middle point of a heavy string, which is

stretched to double its length between two fixed points on a smooth horizontal

table. The unstretched length of the string is 21, its modulus is n times, and the

weight of the particle is r times, the weight of the string. The particle is then

moved through a distance \l towards one of the fixed points, and when the string

has been reduced to rest the particle is set free. Show that there are sufficient

conditions to determine completely the four arbitrary functions, and indicate how
they are to be employed. Prove that the velocity of the particle during the first

21 j&
interval is \a (1 -e ri), where a? = 2gnl and t is the time from rest.

[Caius Coll., 1871.

Ex. 7. Three strings OA, OB, OC of the same material but of different lengths
are united at O and are kept tight by being fastened to fixed points A, B, C, the

angles BOG, COA, AOB being denoted by a, 0, 7. Show that the times of

transversal vibration of the different notes sounded when O is free are determined

by the equation for T

^/sin a . cot TTTJT + ^/sin /3 . cot 7rT2/T + ^sin 7 . cot 7rT3/T= 0,

where r,, T2 ,
T3 are the times of the gravest notes of OA, OB, OC when is fixed.

[Math. Tripos, 1884.

Ex. 8. A uniform string of length 21 is stretched with tension T between two
fixed points. Prove that, if the string is initially pulled aside by a force Y at a

point distant b from one end, the motion of the string is given by

Y . iirb . i-rrx COS nt
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where m is the mass per unit of length, a the velocity of propagation of waves along
the string, 2nl= iira, and the summation is from i = I to i = &amp;lt;x&amp;gt; .

The string has its ends fastened to two masses each equal to M which are kept
in place by springs of strength /* and has a mass M fastened at its middle point.

Prove that if M is plucked transversely the period of the vibrations is 2?r/pa where

p t&npl {M a? (Mp*a?
- M)

- 2T2
}
= T

{2MpW -
2/A +MpW}.

[Math. Tripos, 1885.

In the second part of the question take the middle point as origin, then for the

string on the positive side y = (Pcospx+ Qsmpx) cos pat. The conditions are (1)

M d?yldt*=
-
ZTdyjdx when x= (2) M&amp;lt;Pyjdt*

= - Tdy/dx - ny when x = L Sub

stituting for y and eliminating QjP we obtain the result.

Ex. 9. The ends A, B of a string AIIB are fastened to light rings which are

free to move on smooth rods parallel to one another. At A, H, B forces act

transversely to the string and parallel to the rods with intensities

X=FcosKt+Gsm Kt, Y=Lcos\t + M8in\t, Z= E cos fit + S sin fit,

respectively. Show that at the time t the consequent displacement, in the direction

opposite to that of the forces of any point P in AH is

aX cosK(l-x)la aY cos X (I
-
h)ja . cos \x/a aZ

TK sin idfa TX
*
~

sin \l/a 2&amp;gt;
sin fd[a

where T is the tension of the string, a its wave velocity, and x, h, I the natural

lengths of AP, AH, AB respectively. [Math. Tripos, 1886.

Consider the forces separately. Taking Y first, let rj, ^ be the transversal

displacements of two points one in each of the strings AH, HB distant x and x
l

fronT.4 and B respectively. The conditions are (1) drj/dx^Q, drj^dx^Q at A and

B respectively; (2) 17=^ and T(dij{dx+difl{dxl)
= Y at H. The displacement due

to Y having been found, that due to Z is deduced by writing h = l and changing

Y, \ into Z, fj..
The displacement due to X may be deduced from that due to Z.

Superimposing all three the result given is obtained.

Ex. 10. A metal rod fits freely in a tube of the same length but of different

substance, and the extremities of each are united by equal perfectly rigid discs

fitted symmetrically at the ends. Show that the periods of the notes emissible,

which have a node at the centre of the system, are given by 2-irllx, where 21 is the

length of the rod or tube and x is a root of the equation

2Mx ma cot xja +m a cot xja ,

and where M, m, m are the masses of a disc, the bar, and the tube, and a, a are

the velocities of propagation of sound along the bar and the tube.

Discuss the particular cases (1) when M is very large, and (2) when M is very

small, especially when ma=m a . [Math. Tripos, 1883.

Ex. 11. The extremities of a uniform bar of length I are attached to two fixed

points, distant I apart, by springs of equal strength. If the longitudinal vibrations

of the bar are represented by = {P sin mxjl + Q cos m.r//| sin rt,

prove that (m
2
q
2 - l

2
^) tan m + 2mql/j,= Q, where /x is the strength of either of the

springs and q the ratio of the tension to the extension of the bar.

[Math. Tripos, 1880.

Ex. 12. Supposing that the resistance of the air to a vibrating string may be

represented by a force on each element which varies as the velocity of that element,

d2 d2^ dj-

the equation of motion takes the form -^=o
2
33~V 3:

R. D. II. 26
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Show that the motion is given by

=e~& 2 (A sin pt + B cos qt) sin qx,

where p~= q~a?-f
2

,
and the summation extends to all the values of q which the

conditions of the problem admit of.

If the string is unlimited in length, show that the velocity v of a series of

waves of length X is given by v2= a2 -
(/X/2?r)

2
. Thus the velocities of all waves are

diminished by the resistance, but if/is small the diminution depends on the square

of / and is therefore insignificant. If the length of the wave is so great that v is

imaginary, show that the motion is given by

smqx,

where
/&amp;gt;

2= -
g
2a2+/ 2

. Thus the motion ceases to be oscillatory.

If the length of the string is finite and equal to I, and each end is fixed in space,

show that the motion is given by writing q = iir/l, where i is any integer. Thence

show (1) that, whatever note the string is sounding, the extent of the vibration is

reduced by the resistance to the same fraction of its original value in any given

time
; (2) that the positions of the nodes and loops are the same as if the resistance

were absent
; (3) that the pitch of the note sounded is flattened by the resistance and

the flattest notes are the most altered. If the initial displacement of the string is

given by ^=A simrxjl and the string start from rest, determine and compare the

subsequent motions in the two cases in which, (1) there is no resistance and (2) the

resistance is such that /is greater than irall

Ex. 13. One effect of viscosity is to resist the compression or extension of an

element of string whose extremities are moving with slightly different velocities, see

Art. 333, Ex. 2. To represent this analytically, let us suppose that the tension

exerted by a stretched element of string, instead of being given simply by Hooke s

law, has an additional term proportional to the relative velocity of the extremities

of the element. Show that the equation of motion of longitudinal vibrations is

Hence show that the motion is given by
_ e -/V!&amp;lt;2 (^ sinpt + B cospt) sinqx,

where mp*= Eq--F*mq* and the summation extends to all existing values of q. If

p is imaginary we replace the trigonometrical functions of t by real exponentials.
If the string is unlimited in length, show that the short waves are sensibly

extinguished by the resistance more quickly than the long ones.

If the string has its extremities fixed, show that the sharp notes disappear

quicker than the flat ones.

This differential equation follows from Art. 612. The relative velocity of the

two extremities of an element is ~ (^} dx; hence T=E ^+2Fm- T̂ . Sub-
dx \dtj dx dx2dt

stituting this value of T in the differential equation of the article referred to, the

result follows at once.

626. Impact of Rods. Ex. 1. Two perfectly elastic rods AB, CD of the same
form and material but of lengths llt 72 are placed in the same straight line. AB is&quot;

projected with a velocity V to hit CD placed at rest, both rods being without
initial compression. Supposing ^ to be less than L2 find when the rods separate.

We regard the rods as being in contact when the distance between the extremities

B, C of the rods becomes equal to the distance of molecular action. The two rods
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may then be treated as if they formed portions of a single rod, with the condition
that the two portions remain in contact as long as they push against each other,
i.e. as long as the tension at the point of contact is negative. They separate when
the common tension at B and C becomes positive. As soon as this occurs the rods

begin to move as separate bodies, but their mutual action may recommence if this

motion bring the extremities B and C again within the distance of molecular action.

The problem of the impulse of rods has been considered by Cauchy, Academie
des Sciences, 1827 and Bulletin des Sciences de la Societe Philomathique, 1826, and

by Poisson, Traite de Mecanique, 1833, Tome n. In Lioiiville s Journal, Vol. xn.,
1867 there is a long memoir of 140 pages by Saint-Venant in which he enters fully
into the conditions of separation. These great authorities differ considerably in the

interpretation of their results, and especially in the conditions of separation.
Let P be any point of either rod, v its velocity. Let * be the dilatation, or

extension of an element at P per unit of length, then by Art. 612, s = d^dx and also

s= HE. We have if x is measured from A towards D
as=

-&amp;lt;f&amp;gt;(at-.r)
+ $ (at + x).

To find and
\f/
we use the following conditions: (1) when t = Q, v= V from x= Q to

?! ;
v = from x = l

1
tol

i + l2 ;
s= Q from x= Q to^ + L,, (2) when .r = 0, = always,

and when x=l
1 + l%, s = always.

We easily find that the functions
&amp;lt;f&amp;gt;

and
i/&amp;gt;

are the same, and that the curve

y = &amp;lt;f&amp;gt;(x)
consists of a series of finite straight lines whose lengths are alternately 2/j

and 2/
2 ,

the ordinates being \V and zero respectively. These are represented in

the diagram. The axis of y divides the system symmetrically.

19

F E D B A BC D E F G

The figure having been drawn, the following easy rule enables us to find the

state of motion at any time t of a point P distant x from A. Measure AP equal to

AP in the negative direction, and let two points E, R starting from P and P
respectively travel each with velocity a in the positive direction. The equations

show that at the time t after the commencement of the impact

v at P= ordinate of J^ + ordinate of E,

as at P - ordinate of E + ordinate of E.

To determine if the rods separate, we must find when the common tension at B
and C vanishes and becomes positive. Let therefore E and E start from B and

B
; at first the ordinates at E and E are equal to zero and \V respectively.

After a time given by at= 2^ the point E reaches B, and its ordinate falls to zero.

Since ?
x is less than 12 the point E has not reached E where DE =BD t and its

ordinate is still zero. Both v and s therefore at this instant become zero at the

point of contact B.

If JY, -Ri a
?
e tne guiding points for any particle of the rod AB, it is clear

that jRj and E^will always lie between E and E, so that when E reaches B the

two guiding points of every particle of the rod lie on BE. It is therefore easy to

see that at this instant both v and s are zero at every point of the rod AB, and

must remain equal to zero until the point E which started from B or C arrives

at E.

At the time given by at=2l2 the point E starting from C arrives at E, and its

262
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ordinate becomes equal to \V. The tension at C then becomes positive and the

velocity becomes \V, so that from both these causes the end C begins to move

away from the end B. The tension and velocity at B would immediately begin to

undergo similar changes if the rods were to remain in contact, but this is not the

case. Since the whole of A B is at that instant without velocity or tension, the end

B remains at rest.

The results are (1) the rods push against each other for a time 2^/a ; (2) they

remain in contact but without reaction for an additional time 2(Z2 -Z1)/a; (3) the

rod CD then separates from AB, leaving the latter at rest and without tension in

any part.

When the rods have different initial velocities, say l\ and F2 , we may reduce the

latter to rest by superimposing on every particle of both rods a velocity equal and

opposite to F2 . The general results are unaltered, except that AB instead of

remaining at rest has a final velocity F2 .

In the impact of these two rods the whole momentum MV of one has been

transferred to the other, whose centre of gravity therefore moves away with a velocity

Vljl.}. The vis viva has also been transferred to the second rod, a part J/F 2
Zj//2

being transformed into vis viva of translation and the remainder, viz. MV 2
(1
-

^/?2)

into the energy (kinetic and potential) of the internal vibration. This internal energy

is zero if the rods are equal in length.

It is useful to compare the results obtained by theory with those given by
Newton s experimental law of impact ;

Vol. i. Art. 179. Since vis viva is apparently
lost in the impact, the rods (though stated to be elastic) are in Newton s formula to

be regarded as imperfectly elastic. We easily see by putting u = in his formula

that the coefficient e is equal to 1^1%. We notice that this does not depend only on

the nature of the materials.

Ex. 2. Two elastic bars AB, CD of length 71? 12 masses Mlt M2 and initial

velocities Vlt F2 but without initial strain impinge in the same straight line ABC
on each other. If A be the origin show that the displacements for the two rods are

2 sin (pljaj sec2 (pljaj cos (px^) smpt= ii zz &
M^Mz&quot; Zj p2

t = ii s2 t-lV -v\ y - sin (j??2/a2) sec
2

(j??2/a2 )
cos (jp.r/a2) sin pt

M
l +M2 Z2 ^_p2 Jft se

1 l
?2 2

where 2 implies summation for all values of p given by the third equation and a^ ,

rt
a are the wave velocities in the two bars. [Saint-Venant.

Poisson also gives the corresponding expressions in the case considered by him.

Ex. 3. Two rods AB, CD, lengths Zlt 12 and velocities Vlt F2 , impinge in the

same straight line, and at the moment of contact the tensions of the rods are Es
l

and Es.2 respectively. Show that the two rods immediately separate or remain in con

tact for a time according as F2 + as2
is greater or less than Vl

- as
l

. [Saint-Venant.

Ex. 4. Two rods, lengths llt 12 , impinge, and at the moment of contact are

moving with velocities Fj , F2 and have dilatations s
l ,

s2 uniformly distributed over

their lengths. If V
1 ^as 1 , F2 + as2 are positive, and both the values of the former

greater than that of the latter, prove that the rods will push against each other for a

time 2/j/a, remain in contact without reaction for a time (Za
-2Z

1)/a, if Z2
&amp;gt;2/lt and

then, if 2 is negative, separate. If *2 is positive they again push against each other

for a time 2Z,/a, cease to react for a time (Z2
--

2Z,)/a and then separate.
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627. Energy of a string. An clastic string is stretched betiveen two fixed
points A and B and is set in vibration, it is required to find the energy.

Let the notation be the same as that used in Arts. 612 and 616.

First, let the vibrations be longitudinal. The equation of motion is ,=a2
.

at- dx~

Hence we have =-x + ^[Asm {n (at-x) + a} +B sin {n (at + x) -f/S}].

Since must vanish when x = and be equal to I -I when x=
l, we find, as

I I
in Art. 619, = x+ ZCsin nx&in(nat + y),

where nl= iir and 2 implies summation for all positive integer values of i. The
letters C and 7 are constants which may be different in every term, and which de

pend on the initial disturbance. The kinetic energy of the whole string is

/H
/dA 2

[II- mdx (

J
= I - mdx {2Cna sin nx cos (nat + y) }

2
.

Now
JJ

sin nxsin n xdx= when n and n are numerically unequal, since nl and

n l are both integer multiples of IT. Hence, when the square of the series is ex

panded, the integral of the product of any two terms is zero.

Since
J

sio^nxdx = ^l t
the kinetic energy becomes =nila? 2&amp;lt;7

2n2 cos2 (nat + y).

To find the potential energy ;
we notice that the work done in stretching an

element from its unstretched length dx to its length dx + dj- is (see Vol. i.) equal
1 /d\ 2

to - E (
j-

-
\ dx. Hence the whole work done in stretching the string is

=
P|

Edx (
JL

\

2

= I

*

i Edx
|?~ + 2(771 cos nx sin (nat + y)\

&quot;

.

Now f
l
cos nx cos n xdx = or 1 according as n and n are numerically unequal

n
or equal to each other ; also

*
cos nxdx= 0. Hence, as before, the integral becomes

J

= i E ---9* + i E12CW sin2
(nat + 7).

The first term is the work done in stretching the string from the unstretched

length I to the stretched length V. If we refer the potential energy to the position

of the string when stretched in equilibrium between the extreme points A and B
as the standard position, we retain the latter term only.

The energy is the sum of the kinetic and potential energies. Since =7/ia2 ,

this becomes energy= | mla?2CPn*.

This result might have been deduced more simply from Art. 72, where it

is shown that the energy of a compound vibration is the sum of the energies of the

simple vibrations into which it may be resolved. The kinetic energy of any single

harmonic is easily seen by integration to be w^CV2 cos2 (nat + y). Hence the

whole energy is wZa2S(72;i2 .

We may also notice that, as in Art. 73, the mean kinetic energy is equal to the

mean potential energy, the means being taken for any very long period.

Next, let the vibrations be transversal.

Following the notation of Art. 616, the motion is given, as before, by

7/
= S(7 sin nx sin (nat + 7),

where nl=iir, and S implies summation for all positive integer values of t.

The kinetic energy by the same reasoning as before is equal to

J mta SC8
;*
8 cos2 (nat + 7).
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To find the potential energy, we notice that the work done in stretching an

element from its unstretched length dx to its stretched length ds is (see Vol. i.)

equal to
g
^
(.

~ 0* Jjr Now (** )*=(** )* + (
dJ )*=

(7
d

ds I

^ =
7

Kemembering that, by Art. 616, ma?=E (I -1) 1 1
;
we find that the whole work

done in stretching the string is I

^dx \E I-
pj

+ ma? [5
J

I .

Substituting for y and integrating, we find that the work is equal to

1 E ^-
2

+ i mWZC-n* sin2 (nat + y).
2i I 4

If we take the position of equilibrium of the string when stretched between the

extreme points A and B as the position of reference, we find that the

energy= mla?2 (7
2n2

.

This we may call the energy of the disturbance.

Prof. Donkin in his treatise on Acoustics, page 128, has found the energy of a

string vibrating transversely by an ingenious application of the method of sub

tractions.

Ex. An elastic rod AB has the end A fixed and B free. Being placed on a

perfectly smooth table, it vibrates longitudinally. Show that the energy of a disturb

ance represented by = SC sinn.r sin (nat + y), where nl=% (2i + l) TT, is fynlaPZCPn?.

628. Vibrations of rods. A thin uniform straight rod is in equilibrium under

the action of forces at its two extremities, and when disturbed it makes small oscilla

tions in one plane. It is required to form the equations of motion.

The line which passes through the centre of gravity of every perpendicular

section of the rod is called the axis. Let the axis AB in the position of equilibrium

be taken as the axis of x, and let the plane of vibration be the plane of xij. Let D
be the density of the rod, w the area of any perpendicular section, and w/o2 the

moment of inertia of that area about a straight line through its centre of gravity

drawn perpendicular to the plane of vibration.

Let P be any point on the axis of the rod
;
the finite portion PB is in equi

librium under the action of the reversed effective forces and the forces at the

extremities P and B. Let x be the abscissa of P in the position of equilibrium,

co-ordinates at the time t.

Q R ^

Let the action of the portion AP of the rod on PB be resolved into (1) two
forces X, Y acting at P parallel to the axes, and (2) a couple L measured positively

opposite to the direction in which the hands of a watch move. In the same way
let the forces at the extremity B be resolved into the forces X

1 , Y^ and the couple
L!. In equilibrium both Y and Y

l are zero, and X= - T, X^T where T is the

given tension of the rod. Hence during the motion
and both A and X

l differ from T in magnitude by small quantities.



ART. 628.] TRANSVERSE VIBRATIONS. 407

Let QR be an element of the axis of the rod PB when in the position of

equilibrium, QlRi
its position at the time t. Let the co-ordinates of Q and Q be

respectively (;rlt 0) and fo + k, ^ ; and let ^ be the small angle the tangent
to Qj-Zvj makes with the axis of x. Consider the particles contained in an elemen

tary slice of the rod bounded by two planes perpendicular to QR. The linear

effective forces are respectively Dwdx^&quot; and Dudx^&quot;, where accents denote

differential coefficients with regard to the time. It is also usually assumed that

the angular momentum about an axis through the centre of gravity perpendicular
to the plane of vibration is Ddx wfc

2
^ .

Taking moments about the instantaneous position of P, we have

+
JUi&quot; toi

- f) -V (*i + 1
- * -

)
-

fci&quot;] wDdffi + L! + r
x (l-x-$- Xl (h -rj) = 0,

where I and h are the co-ordinates of B at the time t, and the limits of the integral

are x
t
= x + and x=l. Rejecting some small quantities of the second order, this

becomes

L - V (*i
~ x

)
Ddx

i
~ w^i&quot; DdXl + L^ + Yj (l-x) -T(h- -rj)

=
0...(l).

By a theorem in statics we may write L = F/p, where p is the radius of

curvature at P, F=k2
(EW + T), and E is a constant which depends on the material

of the rod and is usually called Young s Modulus. The moment L in the equation

(1) has been taken in the positive direction, hence, since the rod tends to straighten

itself, the constant F must have the negative sign.

Since we reject the squares of small quantities, we may write -= 9- = ?-t .

p ax dx*

Differentiating equation (1) with regard to x and remembering that Llt Ylt I, T
and h are independent of x, we have

This differentiation is easily followed if we recollect the rule in the integral calculus,

that A /% (x, *)d*=-4 (x, x) + P **p* dz.
ax J x J x ax

Differentiating again with regard to #,

_ Fp vD^ + vVD
&amp;lt;^

+T
d^= Q . ... {3).dx4 dt2 dx^dt2 dxz

By resolving parallel to the axes of x and y we find in the same way

Since w/c2 is very small, the terms containing it may be neglected when it is not

multiplied by E. It is therefore usual to omit the third term of equation (3). If

the rod, when in the position of equilibrium, is unstretched, we have also T=0.

With these two simplifications the equation (3) takes the form

where a*=

The theory of the transversal vibrations of rods was given by Poisson in his

memoir on the equilibrium and the motion of elastic bodies, Memoires de VAcademic

des Sciences, vol. viii., and also in his Traite de Mecanique, Vol. H. Art. 518. The

term containing w#ty&quot;
is not found in Poisson s solution, but is given by Clebsch

in his Theory of Elasticity; see also Donkin s Acotistics, 1870.
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629. When the differential equation (5) has been solved, the arbitrary functions

or constants which have been introduced must be determined by the conditions at

the extremities and the initial motion.

At the extremity B we have x = I, and the integrals in both equations (1) and (2)

vanish. Remembering also that the terms containing ty&quot;
and T are to be omitted,

these equations become, when x=
l,

.(6).

If the extremity B is free, both Lx and Y1 are zero, the conditions (6) therefore

become ^?=0, ^=0 when x= l.

dx2 dx3

If the extremity B is fixed to a point on the axis of x, L = but Y
1 may have

any value, the conditions are therefore 77
= 0, j4=0.

doo

If the extremity B is clamped, both the point B and the tangent at B are fixed.

The conditions are then 77 =0, -p
= when x=l. The reactions at B are then

given by equations (6).

If the extremity B is free, except that a particle of mass SI is attached to

it, we put L
1
= and replace Y

1 in equations (6) by -Hd2
h/dt-, where h is

the value of 77 when x=l. The terminal conditions are therefore ^= 0, and
dx*

630. Ex. 1. To find the oscillations of a rod with both ends free.

The equation of motion is --J + a4 -

^?= 0.

Let
77
= S (P sin m?a-t + Q cos inWt) ,

then P and Q are functions of x which satisfy

. . P=A sin mx + B cos mx + \H (e
- e~mx

) + %K (e* + e~mx
).

At each extremity d-r)ldx*=Q and d^dxA=Q. When x = these give A=H and
B = K, and when x=l

A (2 sin ml - eml + e~ml
)
=B

(e&quot;

u + e~1ia - 2 cos ml),

B (2 sin ml + eml - e~ml
)
= A (2 cos ml - eml - e~mj).

Eliminating BjA, we have

^(e^ + e-^coswZ-l^O .............................. (1).

The equation for Q obviously leads to the same result.

If wij, w2 , &c. are the roots of the equation (1), the periods of the possible
oscillations of the rod are 27r/??i1

aa 2
, 27r/?rc2

2a2
, &c. This agrees with Poisson s

result.

We easily see that the expression for
77 may be written in the form

77
= 2Xm (L sin m*a*t +M cos ;

2a2
t)

Xm= (pi* + e &quot;* _ 2 cos ml) (sin mx + \e
mx -

%e~
mx

)

+ (2 sin ml - e* + e~m
i) (cos mx + %e

nuc + ^c~
tnx

),

where the S implies summation for all values of m which satisfy equation (1), and
L, M are two undetermined constants.
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If the initial circumstances of the motion are given by 77
=

(x) and 77
= ^ (x),

we may find the values of L and M by the method of multipliers. Imagine the
values of

77 for all the elements of the rod written down in successive rows, then by
Art. 399 the proper multiplier to separate the column occupied by cosm^a-t is

represented by the type DdxXm . We therefore find by Art. 398

J0 (x) Xmdx =MfXm*dx, ty (x) Xmdx=LaWjXn?dx,

where the limits of all the integrals are x=0 and x= l.

Ex. 2. Show that the periods of oscillation of a straight rod clamped at one
end and free at the other are given by \ (6* + e~M

) cos ml+ 1 = 0. [Poisson.

Ex. 3. Two rods have equal sectional areas, and in one the section is a circle,

in the other an equilateral triangle. Prove that the squares of the periods of their

corresponding notes are as 2?r to 3 ^/3.

Ex. 4. Having given the equation d2uldt* + d4
nldx

4 =Q, and the values of u and
of dujdt for all values of x when t=0, find u in terms of t and x, from x - oo to

X=CD .

An elastic wire indefinitely extended in one direction is firmly held in a clamp
at one end. If a series of simple transverse waves travelling along the wire be

reflected at the clamp, show that the reflected waves have the same amplitude
as the incident waves, but that their phase is accelerated by one quarter of a wave

length. What will be the result if the end be free instead of being clamped ?

[Math. Tripos, 1879.

Ex. 5. Two equal and similar elastic rods AC, EG are hinged at G so as to

form a right angle, while their other extremities are clamped. One vibrates trans

versely and the other longitudinally ; prove that the periods are 2jrP//
2 2

,
where

is given by 1 + cos cosh + ( cosh - cos 6 -

) |= cot -4-= 0, Us the length
V & 9 J J 9l

of either rod, and /, g are two constants depending on the material.

631. Ex. 1. The natural form of a thin inextensible rod when at rest is a

circular arc, and the rod makes small oscillations about this form. If the arc is a

complete circle prove that the periods, 27r//&amp;gt;,
are given by p

2
(i

2 + 1)
= at 2 (i

2 -
1)-

where i is any integer and a is a constant depending on the flexibility of the rod.

If the arc is not a complete circle, but has both ends free, show that it can be made
to vibrate symmetrically about its middle point by suitable initial conditions in a

period 2?r//), provided that the angle 20 which the arc subtends at its centre satisfies

the equation

tan 7i0 tan^0 tanw2

where n3
, Wj

2
, n2

2 are the roots real or imaginary of the cubic ax (x
-

1)
2= (x + 1) p

1
.

Deduce from this Poisson s expression for the periods of vibration of a straight

rod with both ends free.

Let X, Y, L be the tension, shear and stress couple at any point P of the rod,

then these are all small quantities of the order of the oscillation. Let the un

disturbed and disturbed co-ordinates of P be a, 0, and a(l + -u), + 0, respectively.

The equations of motion, when the squares of small quantities are neglected,

become

dX O cf
2 dY ,d% dL

m*?mm*& arx-&quot;*ar je
+al=0

&amp;gt;

where m is the mass per unit of length, and the couple L is measured as in Art. 628.
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Let p and q be the proportional elongation and increase of curvature of an element

of the rod at P, we find

Since the rod is inextensible we have p = Q, and, by a theorem in statics, L= - Eq.

Eliminating X, 7, L and u from these equations, we obtain the linear equation

where 5 stands for djdd, and a= E/ma3
.

To solve this equation we put = SMsinp sin (n0 + e). Substituting, the

equation reduces to p- (n
2 + 1) = an-

(n
2 -

I)
2

.

If the circle is complete, the values of
cf&amp;gt;

must recur when 9 is increased by 2ir

and therefore n must be an integer. If the circle is incomplete, the value of n

is unrestricted, except that p and n must be connected by the above equation. It

follows that each value of p has three corresponding values of n, so that &amp;lt; takes

the form

&amp;lt;

= S sin (pt + f ) {
M sin (nd + e) + 1^ sin (1^6 + e

x) + J/2 sin (w2 + c2 ) }
.

The condition in the question is obtained by making Xt
Y and L vanish at each

end of the rod.

The oscillations of a complete circle are discussed in a different way in Lord

Rayleigh s Treatise on Sound, Vol. i. Art. 233. The equation giving p in terms of

the integer i is ascribed to Hoppe who published it in Crelle, 1871.

Ex. 2. The natural form of a rod is a circle of radius a, and the rod is both

extensible and flexible, it is required to find the small oscillations.

Consider the elementary portion of the undisturbed rod which is bounded by
two planes normal to the axis at two consecutive points P, Q. Making the usual

assumption that these planes continue to be normal to the axis after the curvature

has been increased, we notice that the imstretched lengths of the fibres of the

element which lie on either side of PQ are not equal to the unstretched length

of PQ, but are longer on the convex side and shorter on the other. Let E be

Young s modulus of elasticity, w the area of the section at P, w/c
2 the moment

of inertia about an axis through its centre of gravity perpendicular to the plane of

bending, and a the undisturbed radius of the axis of the rod. We then find by

integration that the resultant tension X of all the fibres which cross the section w,

and their bending moment L, are given by

X=Ewp - E -\- q = Ap - Bq,

L _, w/c2--=E =- q = Bq,
a a2 J

where p and q have the same meanings as in the last example. In the same way
we find that the potential energy of the fibres of an elementary length ds of the rod

this last result is however not wanted in the following solution.

Substituting these values of X and L in the dynamical equations of the last

article, and eliminating Y, we find

wo9 = A dp, uia?ii= B(d~ + l)q-Ap,
where 5 stands for djde. Since the values of p and q are given in the last example,
we thus have two equations from which

&amp;lt;/&amp;gt;

and u may be found. To solve these we

put
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Substituting, and eliminating M/N in the usual way, we obtain

w%V - may {A (n
2 + 1)+B (n

2 -
I)

2
} + ABri2

(;i
2 -

I)
2 = 0.

If the undisturbed form of the rod is a complete circle, n may be any integer, and
the two periods, viz. 2ir/p, corresponding to each integer are given by this equation.
If the undisturbed form is an arc, n is unrestricted, except that p and n must be

connected by the equation. Each term in the expressions for and u defined by

any value of p has, as in the last example, three corresponding values of n, and

therefore contains three terms of the form If sin (nd + e).

The conditions that .Y, Y and L are zero at each extremity of the rod show that

p, q and 5q must vanish at the same points. These, as in the last example,
determine e, elt e2 ,

the ratios 1/j/J/, If2/l/, and give an equation connecting p with

the length of the arc. The existing values of p and n being now known the series

for and u have the two constants M and f in each term undetermined. Since

each value of n has two corresponding values of p given by the quadratic, we may
write each of these series in the form

S {M sin (pt + f)
sin (nd + e) +M sin (p t + f )

sin (nd + e
) } ,

where ?i, e, e have been already determined. The relations between the constants

in the two series have also been found, so that only four constants in each com

pound term, viz. M, M , f, f remain undetermined. These are found by the use of

Fourier s Theorem when the initial values of 0, 0, u and u are given for all values

of 0.

Another solution. We may also find the oscillations by using Lagrange s

equations. Let us regard the rod as made up of elements of equal mass, each

separated from the next by a short angular distance, viz. dd= l. Let the co-ordinates

of these in succession be (rlf 0J, (r2 , 2 ) &c. We then have

- 2 n+1

since
d&amp;lt;j&amp;gt;JdO

=
(&amp;lt;f&amp;gt;n+l -&amp;lt;pn)ll, &c. To obtain the two equations of motion we sub

stitute these functions in

dL^L ^L-o - ^-=0
fodj&amp;gt;n

d(
t&amp;gt;n~

dtdun dun
~

The resulting equations are easily seen to be the same as those already arrived at.

If the particle represented by (wn ,
&amp;lt;f&amp;gt;n)

is close to either extremity, the Lagrangian

equations give the conditions at that extremity of the rod.

See a note at the end of the volume.



CHAPTER XIV.

MOTION OF A MEMBRANE.

The transverse Oscillations of a plane Membrane.

632. LET us take as the subject of consideration a plane membrane equally

stretched throughout, whose boundaries are either fixed or subject to given con

ditions. Let this plane be called the plane of xy. Suppose this membrane to be

disturbed so that its particles are slightly displaced parallel to the axis of z. The

membrane will now make small oscillations about the plane of xy. It is the laws

of these oscillations which we wish to discover.

Let w be the displacement at the time t of a particle P whose co-ordinates when

undisturbed are x, y. Taking an elementary area dxdy at the point P, let pdxdy
be its mass

; thus, if the membrane be homogeneous, p is the mass of a unit of area.

The oscillations being transversal the effective force on the element will be

pdxdy dtic/dP.

Let us now consider the action across any side, as dy, of the elementary area.

In the general case of a lamina this might consist of a force and a couple. But

since a membrane, like a string, can be folded in any manner, and can only exert a

force along its length, it is implied that the couple is zero and that the force acts in

the tangent plane. Further, the membrane being equally stretched in all directions,

this force acts perpendicularly to the side across which it acts. Let us represent this

force by Tdy, then T is called the tension referred to a unit of length and sometimes

briefly the tension.

The actions across the two sides of the rectangular element which are parallel

to the axis of y have to be resolved parallel to the axis of z. These resolved parts

*

The resultant of the two is T ~ dxdy. In the same way the resultant of the two

actions across the sides parallel to x is T
7

dxdy. Taking both these resultants,

and equating them to the effective forces, we have the equation of motion*

d?w
T(** + **\

The reader will find a more complete discussion of those principles of the

theory of elasticity on which this equation is founded in the Lemons sur la theorie
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633. Since the axes of co-ordinates may be any whatever provided that they are

rectangular, this equation must be the same whatever be the directions of the axes.

If the membrane be referred to oblique axes inclined at an angle e, we may show

that the equation of motion is

T (d^w _ d*w d-w\

634. To obtain a solution of this equation of motion we notice that, if we dis

regard the boundaries, it must be possible for the membrane to vibrate as if it were

constructed of a series of strings laid side by side whose lengths were all parallel to

any fixed direction we pleased. Let a be the angle this fixed direction makes with

the axis of x. Then, putting T=m?p, one solution of the equation is certainly

w =f (x cos a + y sin a - mt) +F (x cos a + y sin a + mt),

where a is any arbitrary constant, and /, F are two arbitrary functions which may
be continuous or discontinuous as explained in Art. 620. Either of these functions

with a given value of a represents a wave travelling in the direction defined by a

with a front which is always parallel to the straight line x cos a + y sin a = 0. A more

complete solution may then be found by summing these for all values of a.

Since the motions under consideration are oscillatory, it will be more convenient

to expand the functions / and F in sines and cosines. Taking only a principal

oscillation, we write w=P sin pmt + Q cos pint,

where P and Q may be written in either of the following equivalent forms, but with

different constants,

S [A sin p (x cos a + y sin a) + B cos p (x cos a + y sin a) }

+ S {C siup (x coaa-y sin a) +D cosp (x cos a -
y sin a) }

The positive values of a are included in the first line and the negative values

in the second Hue. It follows that the 2 here implies summation for all positive

values of a.

635. Rectangular Membrane. To find the oscillations of a homogeneous rect

angular membrane wJiose four boundaries are fixed.

Let OACB be the membrane, and let the sides OA, OB, be taken as the axes of

x and y. Let OA = a, OB = b. Then we have to find a solution which (1) makes

io = Q when x = Q and when x-=a, independently of any particular values of y and

(2) makes w = Q when y = and when y = b, independently of any particular values

of x. Such a solution can be at once selected from the general form given in Art.

634, viz. w = 2L sin (px cos a) sin (py sin a) cos pmt,

with a similar expression to contain smpmt. Here we must have

^acosa = iV, #k sin a = iV,

where i and i are any two integers. The periods (viz. 2irlpm) are therefore given by

Mathematique de Velasticite des corps solides par M. G. Lam6. The equation itself

was first given by Poisson in his Memoire sw VequUibre et le mouvement des corps

elastiques in the eighth volume of the Memoires de VInstitut, 1828. The oscillations

of a rectangular membrane (Art. 635) were also first discussed by him.
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The question arises whether this solution is perfectly general or not. The

solution satisfies the equation of motion and all the boundary conditions. If then

it can be made to satisfy the initial conditions of the membrane it will certainly

include every case. Let the initial displacement be w = $(x, y); then putting t-Q

we have
&amp;lt;j&amp;gt;

(x, y) = 2L sin~ sin -^ ,

for all values of x and y respectively less than a and &. But by an extension of

Fourier s theorem such an expansion as this is always possible. The solution is

therefore perfectly general.

Ex. The weight W of a rectangular membrane and its tension T referred to a

unit of length are both given. Show that the gravest note is given when the

membrane is square, and that in this case the period of the note is (2JP/0!T)fc

Thus the period is independent of the area. [Poisson s Theorem.

636. When the period of vibration of a rectangular membrane is given by some

value of p, all the possible modes of vibration are included in the form

r^, T . iirx . tV?/~]w = \
SLsm sin-. \cospmt,

L a b J

with a similar term containing Bin pmt. In this form i and i represent any integers

which satisfy + =

If two sets of values of i and i can satisfy the last equation, it easily follows

that the squares of the sides are in the ratio of two integers. Supposing this

condition not to be satisfied, each oscillation will be of the form

w = sin sin ~- (L cospmt +L sin pmt),

and will contain just two constants, viz. L and L . In this case it will be seen that

each of these oscillations will be a principal oscillation and that all the periods will

be different.

But if several sets of values of i and i accompany the same period there will be

more than two constants in the expression for each oscillation. In this case it

appears that there are several ways in which a membrane may be set in vibration so

that the periods of oscillation may be the same. It follows therefore that the

Lagrangian equation (Art. 57) giving the periods of the principal oscillations has

a number of equal roots.

637. The nodal lines are those lines on the membrane which remain in their

positions of equilibrium during the whole motion. If the period be such that the

oscillation is accompanied by only one set of values of / and i
,
the nodal lines for

that oscillation are of course given by

. iirx . i iry _
sin- sin ~- J = 0.

a b

These values of x or y make the coefficients of both COBpmt and sin pmt equal to

zero. The nodal lines are therefore straight lines parallel to the sides. But, if

there are several sets of values of i and i which give the same p, and if the initial

conditions are such that the corresponding coefficients in the coefficients of cospmt
and smpmt have the same ratio, the nodal lines will be given by the equation

.

a b

They may assume a great variety of forms depending on the number of terms
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in the series and on the arbitrary values given to the coefficients represented by
the letter L. Lame in his Theory of Elasticity gives a brief sketch of these.

Another analysis is given in Riemann s Partial Differential Equations. They both

remark that if we take only two terms in the series, of the form

T . iirx . [ Try ,. . i irx . iiru ..

L sin sin -~- - L sin sin =0,
a u a I)

one nodal line will be the diagonal #/a = ?//&. Here the integers i and i have been

interchanged in the two terms. But, since the equation connecting these integers

with the given value of p must also be satisfied, we have

which requires that a = b. The rectangle must therefore be a square.

From this we may deduce that the oscillations of a membrane bounded by an

isosceles right-angled triangle are given by

T F inx . i lrii . I TTX . ITTU&quot;]w = SL sin sin - - sin sin - cos pmt,
L a a a J

with a similar term containing sin pmt, where i and i are integers connected by the

equation i&quot;

2 + 1
2=

(aplir)
1

,

and a is a side of the square. See Lord Rayleigh s Sound.

Ex. 1. If the squares of the sides of a rectangular membrane do not bear to

each other the ratio of any two integers, prove that the nodal lines of a rectangular

membrane must be straight lines parallel to the sides. [Poisson s Theorem.

Ex. 2. If the sides of a rectangular membrane are such that two sets of values

of i and i give the same period of vibration, then by proper initial conditions a

nodal line may be made to pass through any given point on the membrane.

638. Ex. Membrane bounded by an equilateral triangle. A membrane is

bounded by an equilateral triangle and its boundaries are fixed. If
, 77, f be the

trilinear co-ordinates of any point within the triangle, show by actual substitution

that the equation of motion is satisfied by

r . ?7r . iir-n . iirf
iv = HL sm -- sm -=-= sin - COB pmt.

ii ii It

where p= 2iirlh. Here 7i is the altitude of the triangle and i is any integer.

This result follows at once from the trigonometrical theorem that, if the sum

of three angles is equal to ITT, the sum of the products of their cotangents taken

two and two is equal to unity.

This is not however the most general form of solution, because we have only one

independent arbitrary integer, viz. i. We cannot therefore satisfy all the possible

initial values of w.

It is shown in Lame s Theory of Elasticity that a more general expression for

the period is given by p= (2ir/7i) (i- + i
2 + ii )*,

which contains the two arbitrary integers i and i .

639. Ex. 1. Loaded Membrane. A uniform rectangular membrane, whose

sides are a and b and mass M, has a finite mass equal to /* attached to it at the

point whose co-ordinates are Jt, k when referred to the sides as axes. Show that

the periods (2-irlpm) of the small transversal vibrations are given by

iirli . i irk
sm2 sm2 -T-Mla b
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where the S implies summation for all values of the integers i and i
,
and m (as

before) is the ratio of the tension to the density of the membrane.

To prove this we shall suppose the mass
/j.

to be distributed over a small area

equal to a/3. Let W be the displacement of this small area at the time t. The

sum of the resolved tensional forces round the perimeter of the area is equal to

p - = -E. We have therefore to find the motion of a membrane acted on by a

periodic force R at a given point h, k. Let us replace this single force by a

continuous force Zdxdy which acts at every point of the membrane, such that

Z= S&amp;lt;7 sin (/7r.r/fl)
sin (i lry/b).

Since Z vanishes all over the membrane except in the immediate neighbourhood of

the point h, k, and at this point Za.@= -pd-Wldt
2

,
we have by Fourier s theorem

d*W . iirh . i -irk-
d*

m -^ sm ir
The equation of motion of the membrane is now

To solve this we put w =f (.r, y) cospmt.

Substituting, we find by Theorem in. of Art. 265

. iirx . i lrii . iirh . i lrk
. . . sin sin -= sin - sin .M f(xy)_ a b a b

The form of the function / corresponding to any value of p has now been found.

Putting x= h, y = k, we have an equation to find^?.

Another solution is added in a note at the end of the volume.

Ex. 2. A rectangular membrane of mass M is oscillating with a period (Sir/pm)

such that only one set of values of i, i accompany this value of p. A small load of

mass
ft.

is placed at any point (h, k), prove that the new period of vibration, viz.

(Virlqm), is given by
/- 4/j, . iirh . i irk\

g2_ p2 (
l _ _c sm2 sin2 :

) .

\ M a b J

This follows from the result given in the last example, for only one denominator on
the right-hand side will be small. Kejecting all the terms except this one, we have

the result.

Ex. 3. A membrane of mass M is bounded by two concentric circles whose
radii are a and b, and the density varies inversely as the square of the distance from the

centre. The period P of any symmetrical oscillation is given by P = -
(^j log |V ,

where q = iir if both the boundaries are fixed in space. But if the outer boundary
only is fixed in space, while the inner is attached to a ring of mass /x, q is given by
q tan q = M/p.

If the ratio a/b is not very great, this membrane may be regarded as nearly
homogeneous, with the inner parts slightly denser than the outer.

Ex. 4. Show that the equation to find the periods of vibration of a loaded
membrane may be written in the form

^ 1 _ a sin
&amp;lt;f&amp;gt;h

sin (a
-

h) . ^i -n-k~ ~ Sm &quot;
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where 2 implies summation for all values of the integer i and 2=p2 -7r2i 2
/fc-.

This result may be obtained by expanding cos q (IT
-
x) in a series of cosines,

q not being an integer. We find

cos a; cos2# _ 1 TT cos q (IT
-
x)

1 - 32
+

22 -
g
2 +

~2q-2 2q sin qir

The expansion holds from x = Q to x = ir, both inclusive. Putting .r = 0, subtracting,
and writing 2y for x, we have

sin2 2y __
TT sin #?/ . sin q (IT

-
y)+

22 -
g
2 + -

~2g sin~gir~

The result given above easily follows.

640. Ex. Membrane acted on by a given periodical force. A rectangular
membrane is bounded by the co-ordinate axes and the straight lines x = a, y = b.

A finite accelerating force acts at the point (h, k) and is represented by A sinrt.

Show that the forced vibration is represented by

. iirh . i -rrk . iirx . i -mi .

. . sin sin -
, sm sin -~J sm rt4A _ a b a b

where 2 implies summation for all values of the positive integers i and i .

The free vibrations have been found in Art. 636. Joining these to the forced

vibration and supposing the membrane to start from rest in its position of

equilibrium, we have w 2P ( sin rt-- sin pmt ) ,

V pm J

where P is the coefficient of sin rt in the forced vibration.

We may deduce from this expression the effect of a force acting, like an impulse,

for a very short time. Let r be very great, and let the force A sin rt act only for

the short time irjr. If F be the momentum communicated to the membrane, we
have F=jA sin rtdt where the limits are t = and t= Tr/r. We thus have F=2A/r.
Substituting we find, when r is very great

^ . i-rrh . i trk . iirx . i mi i sin rt sinpint] 2F
iv= 2 sm sm -^- sin- sin =* x-- H----*- v .

a b a b
(

r pm \
M

The motion at the time =
7r/r is therefore given by

dw . iirh . i wk . iirx . i lry 4F
te = 0, -j- =2 sm sin, sm sin r^ . -^ .

dt a b a b M

Motion of a heterogeneous membrane.

641. We propose to show in this section how by the use of the theory of con

jugate functions we may deduce the motion of certain heterogeneous membranes

from the corresponding motions of homogeneous membranes. The corresponding
theorems for a network of particles are briefly given in Art. 421.

We shall begin by giving a list of those theorems on conjugate functions which

we shall afterwards require, and in the next article we shall consider their application

to the motion of membranes.

If we have two variables
, 77 connected with x, y by the relation

where / is any real functional symbol, then , 77 are called conjugate function*.

By taking the first differential coefficients of this equation with regard to .r and

R. D. II. 27
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y and equating the coefficients of the imaginary quantity we arrive at the well-

d$ d-n d d-n
known results ^ =

&amp;lt;fy to, Tx
m

Since we have also x + yj - I = F( + qj -
1) it follows in the same way that

dx _dy , &amp;lt;fy _ cto

Tt~ch, ~dt-~dj

We may also show by a simple transformation of variables that

d*w d?w_)d?iv d*w\ J/rfA
2

fd^\\& +
dy*

-W + VI \\&)
+
Vii) I

Since we may interchange x, y and , ij in this formula, it easily follows that

We shall also require a geometrical theorem. Let us draw two diagrams each

referred to a set of rectangular axes. In one let
, 77 be the co-ordinates of a point

which we shall call II, in the other let x, y be the co-ordinates of a point which we

shall call P. These points are said to correspond. In one diagram the loci defined

by =a, Tj=b, where a and b are constants, are straight lines parallel to the axes.

In the other, where and 77 are regarded as functions of x and y given above, the

loci will in general be curved lines. In the same way the equation 77
=

&amp;lt;()
will

represent two corresponding curves, one on each diagram. Let the tangents to these

curves at corresponding points II and P make angles e and e with the axis of x, then

tane= d?7/d and t&ne = dyldx. Through P draw the curve ??
= &, where b has its

proper constant value, and let the tangent to this curve make an angle A with the

axis of x. Then denoting differential coefficients with regard to x and y by suffixes,

we have rjx + 7jy tan A = 0. We also have, as proved above, *=% and &/= -i\x .

Since tan e =^ = ?
- tan ,4+ tan e

we see that e= e-A. It immediately follows that the angle made by any two

curves which meet at P is equal to the angle between the corresponding curves which

meet at n. In other words corresponding angles are equal.

If we draw two corresponding networks, one on each diagram, and if the meshes

of each be infinitely small triangles, it follows from the equality of the angles that

the networks are similar to each other at corresponding points. The scale or ratio of

the networks is not however the same all over the diagrams.
It also follows from the equality of the angles that the curves defined by =a,

rj
= b cut at the same angle in each diagram. They therefore cut each other at right

angles.

642. Suppose that we know the motion of a homogeneous membrane with given

bounding conditions vibrating transversely, say w &amp;lt;$&amp;gt; (, 77, t), where 10 represents the

displacement of a point whose co-ordinates are (, 77).
Then this value of w satisfies

the equation
ffiw f#w ffiw\

*

where Z) is the density and T is the tension of the membrane.
Let x, y be the co-ordinates of a point on another membrane which has sand

strewed over it and fastened to it, so that the sand vibrates with the membrane.
Let the density 7) of this heterogeneous medium be given by

dx
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Then the equation of motion of this new membrane is

ffiw_ fd^w d*w\

dt*~ \dx
z

dy*)

But, since f , t] are known functions of x, y, we obtain, by substitution in the equation
w =

&amp;lt;t&amp;gt; ( *? )&amp;gt;

*ne new relation w = \{/(x, ?/, ), which is the solution of the equation
of motion of the new membrane.

Thus the motion of the new membrane is deduced from that of the first with

corresponding bounding conditions.

643. Generally, we do not want the actual motion of the membrane, but only
its possible periods of vibration and nodal lines. We may notice that the two
membranes have the same periods of vibration and corresponding nodal lines.

644. In this transformation it is necessary that only one point of each mem
brane should correspond to any single point of the other membrane within the area

considered. If this be not attended to, some difficulties in interpretation may
occur.

645. The new membrane is of course heterogeneous, and it may be objected

that the cases now considered are not such as occur in nature. If, however, the

density is not very variable over the membrane, the results will nearly represent

the motion of a homogeneous membrane. At the same time we must remember
that the results to be obtained are not merely approximations, but are accurate

solutions of the equations. Such a solution, if short, and obtained by some simple

process, is sometimes preferable to one obtained by a long approximation, even

though the latter may appear to be more directly applicable.

To take a simple example, the oscillations of a homogeneous loose heavy chain,

suspended from two fixed points, can be found only by very troublesome algebraical

approximations. But if we suppose the chain to be heterogeneous, we may obtain

an accurate solution of the equations. This solution leads to nearly the same

results as the approximate investigations for a homogeneous chain. See Art. 607.

To take another example, we may notice that the motion of a homogeneous
membrane bounded by two radii vectores and two circular arcs, can be expressed by

the help of Bessel s functions. But the motion of a membrane bounded in the

same way and of the proper density, can be expressed by ordinary sines and cosines.

This is much simpler than a solution in Bessel s functions, and helps us to under

stand the nature of the motion.

646. We may, if we please, express all this in geometrical language.

Consider first a heterogeneous membrane with any fixed boundary which vibrates

according to the law w=
\}/ (x, y, t),

where w is the displacement of the point P whose Cartesian co-ordinates are x, y.

Trace on the membrane the two sets of curves whose equations are /(#,{/) =

and F(x, y) = r], where and 77
are two parameters. These curves are to be such

that, when the parameters , 77 increase by a constant increment d = a or ^77= a,

the two sets of curves divide the membrane into elementary squares. That the

corresponding increments of and 77 should be equal when these curves form

squares, follows from the proposition that the small corresponding figures formed

on the two membranes by the method of conjugate functions are similar. It may,

however, also be deduced from the relations mentioned in Art. 641. If ABCD be

one of the squares, draw a parallel to the axis of x through any corner A, and

then draw perpendiculars BM and DN from the two adjacent corners on this

272
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parallel. We have thus two equal triangles ABM, ADN-, the sides in each triangle

being the dx and dy produced by varying first only, and then 77 only. It follows

from this that d =^ (fy and ^ d-r,
= - % d. We therefore infer from Art. 641

d d-rj dfj a

that d^=drj.
fdx dy dx di/\

The area of one of these squares is f

-j- j
-
j-

-~
J
a2 .

D fdx\* I dx\ 2

Thus, since the density D is given by ^ = f ^J + (

j- J
,

it follows that the mass of each elementary square is the same.

Next, consider the corresponding homogeneous membrane. Draw on the mem
brane straight lines parallel to the axes of

, ? at a distance a from each other, so

that each straight line corresponds to one of the curves drawn on the heterogeneous

membrane. Let a new boundary be drawn which cuts these straight lines at the

same angles which the boundary of the heterogeneous membrane cuts the corre

sponding curves.

Then the motions of these two membranes are the same at corresponding

points. We may consider each to be given by iv= \j/(x, y, t),

according as we express w in terms of
, 17 or .r, y.

647. We may notice that the two membranes are so related that the masses of

corresponding squares on the heterogeneous and homogeneous membranes are equal to

each other. Thus the ivhole masses of the membranes are the same, but differently

distributed.

648. Similar theorems apply in changing from one heterogeneous medium to

another, but as this case does not present any novelty, and is not so simple as the

one just considered, we need not discuss it minutely.

649. Having traced on the membrane the two orthogonal sets of curves

f(x, y) = ,
F (x, y) ^, where and ?/ are constants, and the functions both satisfy

Laplace s equation, we may trace a third set of curves given by

/d\ 2 /dA 2
fdr,Y SdvY

[--} + -r- )
= I ir 1 +(T^) = constant.

\dxj \dyj \cLcJ \dyj
These are, of course, the curves of constant density.

A curve of constant density which passes through any point will cut the two

members of the two orthogonal sets which pass through the same point at comple

mentary angles. Then ice may show that the sines of these angles are as the radii of
curvature of the two members at that point.

To prove this, let us find tan 6, where 6 is the angle that the curve of equal

density makes with the curve f(x, y) = . By simple differentiation, we find

tan =
Wfa+W-ff)/*

where suffixes, as usual, imply differential coefficients. Since fx= F,, and/j,=
- Fx ,

we see, by substituting in the numerator, that

sin0

But the radius of curvature p of the curve / is given by

p

Hence, we see that ?
in
-^ = _ B.

.

sin 6 p
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650. It is not every heterogeneous medium whose motion can be deduced from
that of a homogeneous one. If we eliminate between

(fiY+fSY.2: ^it

\dx)
+
\dyj -D dx&amp;gt;

., , , . d2 log# &amp;lt;i

2 logDwe easily obtain -\
---5 = Q.

dx2 dy
2

It immediately follows (from Art. 641) that

d2 logD
&amp;lt;PlpgD

d? ~~dtf~

The density of the heterogeneous membrane must, therefore, be such that its logarithm

satisfies Laplace s equation.

651. For convenience of reference, let (.e, y) be the Cartesian co-ordinates, (r, 6)

the polar co-ordinates of a point P on the heterogeneous membrane; (, 17) the

Cartesian, (p, w) the polar co-ordinates of the corresponding point II on the homo
geneous membrane. Suppose we take as our relation between the two points,

L

ft

Then we find = clog-, TJ
= C&.

P

Thus straight boundaries on the homogeneous membrane parallel to the axis of

correspond to straight boundaries on the heterogeneous membrane which pass

through the origin. At the same time, straight boundaries parallel to the axis of 77

correspond to circles whose centre is at the origin.

The density D is given by -- = (
s

J
+ (

j- J
=

(
-

j
.

If r vanish, we have D infinite ;
it will therefore be necessary to exclude the origin

from the area of the membrane.

If, then, we know the motion of a membrane bounded by a rectangle, the trans

formation immediately gives the motion of a heterogeneous membrane bounded by two

circular arcs and any two radii vectores.

652. Example. The motion of a rectilinear homogeneous membrane bounded

by the straight lines =7^, =fe2 1
1
= ^

i ?? ^ *s known to be given by the type

10 =A sin iir ^ jj-
sini

7r| ^-cosjpnrf,

where the integers i, i are any which satisfy (JT^h \*
+

Ik -k\~~ ^-

and where m3= T/D .

It immediately follows that the motion of a heterogeneous membrane bounded by

the arcs of concentric circles, whose radii are h\ and h .2 ,
and by two radii vectores

= a
x and 0=a.2 ,

is given by

/ . log r - log li
-i
\ . /

., d - a, \
w=A sm ( ITT

j
, _ &amp;gt;-

J
sm ( i w -

J
cospmt,

i2 i 2
c-p~

where the integers i and i satisfy .-=
r&amp;gt;

: rrr^ + ,
--r = 5-- - 0-O 1 7T

2

and the density D of the membrane is given by = (

^
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653. Another useful relation between the corresponding points P and II is

Thisgives
= c

QTcosnfl,
7
?

and therefore, in polar co-ordinates, p= c fM ,
w = &amp;gt;0.

By this transformation all radii vectores are turned round the origin and altered

in a known manner.
^ / r\**-

Also, the density D of the heterogeneous membrane is given by = n9
(
-

J

Since 6= constant makes u= constant, we see that straight lines through the

origin correspond to straight lines through the origin. Also circles whose centres

are at the origin correspond to circles whose centres are at the origin.

If we choose n= -
1, we have the ordinary case of inversion ;

thus

r-2

In this case any circle inverts into a circle. The density of the membrane is then

civen bv = (
-

I . As this is infinite when r is zero, the centre of inversion must
DO \rj

be external to the membrane.

654. Example 1. The density of a membrane bounded by two concentric fixed

circles of radii a and b at any point distant p from the centre is A/p*. Let it

vibrate symmetrically so that the nodal lines are concentric circles, then by Ex. 3,

Art. 639, the possible periods of vibration are 2ir (A/p-Tfi, where p is such that

p (log a
-
log b)

=
t7r, and i is any integer.

Let us invert this with regard to an external point. We immediately have the

following theorem.

A heterogeneous membrane is bounded by two fixed circles, centres C and 6&quot;.

Let be that point which has a common polar line in both circles, and let this polar

line cut the straight line OCC in the point R. Let the density at any point P be

given by D = A .
(

=- ==
}

. Then the membrane can vibrate so that the nodal
\UP . HI J

lines are circles, and the possible periods of vibration are 2ir ( -^- J
, where p is

such that p log / =
&amp;lt;7r,and a and a are the radii of the circles whose centres

d . (JL&amp;gt;

are C and C .

Ex. 2. A heterogeneous membrane is bounded by two rigid circles whose

equations are respectively p = /j.r and p= \r, where p and r are the distances of any

point from two fixed points S and R. The former is the outer circle and is fixed in

space ; the inner is free to move and is so loaded that its centre of gravity is at R.

The surface density at any point P of the membrane is 44&2
/pV, where 26 is the

distance between the fixed origins S and R. Prove that the membrane can oscillate

so that the nodal lines are the circles p=kr, and that the periods P are given by

tan -ff
(
-

j
log

- = (A l )%&amp;gt;
where T is the uniform tension of the membrane,

and M the mass of the load.
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655. Example. The motion of a rectilinear membrane bounded by the axes of

and y and the straight lines = h, -r] k, is known to be given by the type

. . /TT . i Trri

w = A sm-p sin - cos pint,h k

j2 i
2

p-2
where i and / are any integers which satisfy P + P =^ *

Let us invert this with regard to the origin, we see that

The motion of an infinite membrane bounded by the axes of x and y, and the

arcs of two circles whose diameters are h
,
k

,
and which touch the axes of x, y at

. /7r/t cos0 . i lrk smB
the origin, is given by the type w= A sm sin cospmt,

where the integers i and i satisfy the equation

(

c\4

-) r,

r / m~
where T= tension of the membrane.

656. Example. If we transform the same theorem with ;i=2, we see that

The motion of a finite membrane bounded by two straight lines OA = h
,
OB= k

,

inclined at an angle ?r/4, and by two rectangular hyperbolas passing respectively

through A and B, and having OB and OA for asymptotes, is given by the type

. . i 7rr
2 sin20

w = A sin-; ;

- sin-
j-^
- cos pint ,

2 2 2
]_

where i and i are connected by y-^ + 7^2
=

~2 &quot;2

ll
&quot;

fi 7T&quot; C

fr\- T
provided that its density is given by D = 4 I

-

J
.

^
.

657. Suppose, in an infinite homogeneous membrane, a very small circular

area of radius c to become rigid, and to be constrained to move transversely with a

motion given by w = A cospmt. Then waves will spread out equally in all directions,

and, when the motion has become steady, the vibration at any point distant p from

the centre of disturbance will be given by w=J (pp) A cospmt.

Here we have supposed c to be so small that J (pc) = 1. Such a small circular

vibrating area may, for convenience, be called a source of disturbance1

,
or more

shortly a source.

If we transform this theorem by the method of conjugate functions, we see, for

the reason to be given in Art. 653, that the infinitely small circle will transform

into a similar figure, i.e., into another circle.

658. Example. The vibrations of an infinite homogeneous membrane bounded

by a fixed straight line taken as the axis of x, and acted on by a source at some

point (& , 77^, are given by w= {J (pp)
-

&amp;lt;7 (pp
1

)} A cospmt,

where P
2=(-iV + ( 7-&amp;gt;h)

2
.

and ^
&amp;gt;

(l-fJ
&amp;gt;+(v+lJ &amp;gt;

i

so that p, p are the distances of the point (, r}) from the source, and its image on

the other side of the axis of .

Hence we infer that the vibrations of an infinite heterogeneous membrane

bounded by two fixed radii vectores forming a corner of angle TT//J, and acted on

by a source at a point r^, are given by
w = {/ (pR)- J (pU

f

) }
A cos pmt,

where c-n~- E2= rin + /Y
2 1 - Wrf cos n (d

- 0J
.-jH-2 ft -i - r

-2n + r n _
2r&quot;r

n cos n
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j) / r\2(n-l)

provided that the density of the membrane is given by =?i2
I
-

)** \ c /

Here r, 6 are the running co-ordinates of any point of the medium, w is the

transverse displacement at the point p, u, and D is a constant.

The method of deducing the motion of a heterogeneous from that of a homo=

geneous membrane was given by the author in the twelfth volume of the Proceedings

of the Mathematical Society, 1881.



NOTES.

Art. 56. Transformation to principal co-ordinates. This method of trans

forming any co-ordinates 0, 0, &c. to the principal co-ordinates
, ?;, &c. may be

presented in a purely Mathematical form. Let us first assume the transformation

to be possible, so that we have

where the accents have been dropped from the co-ordinates in 2T as being

unnecessary for our present purpose. We have also omitted U from the second

equation for the sake of unity. Let the formulae of transformation, which we have

to find, be, as in Art. 69,

..A... ...(2).

Let us eliminate - from the equations (1) and differentiate the result with

regard to 0. Putting p^= - cn/au we have

(3).

This vanishes when we put 17 =0, f=0, &c. whatever may be. Hence if the

transformation be possible we have after substitution from (2)

(Aupl*+C1jll + (Aiap1*+C^ml + ...... =0 .................. (4).

In the same way by differentiating with regard to 0, we have, when 17
= 0, f=0, &c.

(A 12pi*+ Cja) li + (Aupf + Cy % + ...... =0.

Thus we see that p^ is one value of p* obtained from Lagrauge s determinantal

equation as given in Art. 58, while the values of l
: , wij ,

&c. are proportional to the

minors of the determinant. Eliminating T;
2

, f
2

,
&c. in turn from the equations (1),

the same argument applies to each of the other columns of coefficients in the

formula of transformation (2). Thus we obtain the rule given in Arts. 53 and 56.

The formula of transformation are written at length in Art. 56. We see that

the coefficients of x, y, &c. are the values of the minors In(p
2
), &c&amp;gt;

If there were on the right-hand side of the equations (1) any term such as 77,

this product would give on the right-hand side of (3) a term (a12p 1

3 + cls) tfy/&amp;lt;/0

when we eliminated 2 and differentiated with regard to 0. It would give

(a12 l&amp;gt;2

2 + ci2) !?
d%lde when we eliminated if and differentiated with regard to 0. Now

the differential coefficients of or t] with regard to the co-ordinates 0, 0, ^ &c.

cannot be all zero, for this would make or r; independent of all the co-ordinates.

Also, if Lagrange s determinantal equation have all its roots unequal, the coefficients

ai2#i
2+ c

i-2
an(* ai2TV

2 + Ci2 cannot both vanish. Hence in this case, when the right-

hand sides of (3) are made to vanish, there cannot be any products of co-ordinates

in either of the expressions on the right-hand side of (1).
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If Lagrange s equation have equal roots we know by Art. 61 that all the minors

will be zero. The ratios of I, &amp;gt;n,
&c. found by the preceding rule will therefore be

nugatory. To simplify the argument let us suppose that the equation has two equal

roots and let these be p-f and p.?. The ratios of the coefficients in the third and

following columns of (2) may be found as before, because they depend on unequal

roots in Lagrange s determinant. Since the first minors are zero for the equal roots,

the equations (4) to determine the coefficients of either of the first two columns of

(2) are not independent. Kejecting any one of these equations (as in Art. 273) we

obtain by using the second minors all the letters in the first column in terms of any

two, say 1}
and mv The letters in the second -column are found in terms of 12 and

m.2 by the same formulae. Thus we have two independent coefficients in each of

these columns instead of one as before.

But if we use these formulae of transformation without further limitation, we are

not sure that terms containing the product fr may not enter into the two right-hand

sides of the expressions (1) provided they enter both with coefficients in the ratio

px
2

: 1. To secure the absence of such terms, it will be sufficient to make the

coefficient of 17
in either of the coefficients T or U equal to zero. If we choose T,

we have by substituting from (2) in (1)

4n^2 + AM (l^m.-, + fa/wj) + =0,

or as it is written in Art. 316
A (1^ = 0.

Kegarding then ^ , 7% and 1.2 as arbitrary we have sufficient linear equations of the

first order to find all the other coefficients of the two first columns in the formulas

of transformation. Thus we have three arbitrary constants instead of two.

Art. 60. The conditions that a quadric should be one-signed. The con

ditions briefly quoted from Williamson s Differential Calculus have reference to the

quadric T, which is to be a positive one-signed function, and it is stated that the

successive discriminants should all be positive.

If we assume that the sign of the discriminant is not altered by any linear trans

formation of the co-ordinates we may obtain an easy proof of this proposition. Let

the quadric be

2T= A ll6- + 2A l
.

2e(f) + A 2.

2 (f)- + &c (1),

and to simplify the argument let there be only four co-ordinates 0, 0, i/s %. Let D
be the discriminant, Dl

the discriminant when any one co-ordinate, say x is put equal
to zero, D2 the discriminant when two co-ordinates, as x and ^i are both put equal
to zero, Z)

3 the discriminant when three co-ordinates, x, ^ and
&amp;lt;f&amp;gt;,

are put equal to

zero, and so on.

Collecting all the s together, then the s and so on, we may write T in the form

2T= B
l (d + !0 + brf + clX )

2 + B9 (0 + brf + c,x)
2 + 3 (t + c3x)

2 + #4*
2

&amp;gt;

where all the English letters on the right-hand side are rational functions of

A llt AW, &c. and therefore are real.

We may now write this expression in the form

2T= B
l
x* + BM* + Bs

z* + B4U* (2),

where u = x, z = t + csx, and so on.

Since (1) and (2) may be derived from each other by a linear transformation,
their discriminants have the same sign. Hence the product B^B^ has the same

sign as D. Again, putting u= x= and repeating the argument, the product B^BJS9

has the same sign as D
l

. Similarly the product L&amp;gt;

1Z^2 has the same sign as D., and
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#! has the same sign as D3 . Thus B
{ ,

/&amp;gt; 2 , 3 ,
B4 are positive when the discriminants

D, Dj, D2 ,
D3 are all positive and not. otherwise.

The conditions that T should be a one-signed positive quadric follow im

mediately. The conditions that T should be a one-signed negative quadric may be

deduced from these by changing the signs of all the coefficients Au ,
A V2 ,

&c. in the

expression for T.

That the discriminants of (1) and (2) keep the same sign may be shown by the

method indicated in Art. 71. Taking the second expression let us write

(3).

Substituting in (2) we obtain a quadric expression whose discriminant is easily seen

to be

Bj^Zjj + BgmjMg + . . . BjLj
2 + Ba

w
2
2 + . . . &c.

&c. &c. &c.

This is obviously the square of

jBtfll! v/Bg??!, &C.

Ac. &c. Ac.

The discriminant of T when expressed as a function of 0, 0, (fee. is therefore equal to

&amp;lt;fec.

w2 ,
Ac.

Ac. &c.

The sign has therefore not been altered.

The determinant on the right-hand side is the Jacobian of .r, y, &c. with regard

to 0,
&amp;lt;j&amp;gt;,

&c. We may therefore also immediately deduce from this result by a

double transformation the theorem quoted in Art. 69.

Art. 631. Stress in a curved flexible and extensible rod. The statical

theorems quoted in this article may be proved in the following manner. Let

PQ be any element of the axis of the rod in its unstrained position, P Q the

same element in the strained rod. Let ds, ds be the lengths of these elements,

a, p the radii of curvature at P, P . Then, since p, q are the proportional elonga

tion and increase of curvature,

.*:-!, 8 =(i-i\ tt (1).* d* \p a)

Let a, be the co-ordinates of P, a (1 + u), +
&amp;lt;j&amp;gt;

those of P . Then since

ds= ad0, (ds )
2 = a2

(dw)
2 + a2

(1 + w)
2
(d0 + d&amp;lt;f&amp;gt;)

2

we easily find that p = u + d^dS (
2

)-

Again, when we neglect the squares of small quantities we have

Let us refer the rod to the principal axes of the curved axis at P . Let the

normal measured inwards be the axis of z, let the tangent be the axis of .r, and let

y be perpendicular to the plane of the curve. We assume, as is usual in such

problems, that the material particles of the rod which lie in a plane perpendicular



428 NOTES.

to the axis continue to lie in a plane perpendicular to the axis when the rod is bent

or stretched, and that their distances from the axis are not sensibly altered.

Drawing two planes normal to the axis at P
, Q ,

let R S be any elementary

fibre of the rod parallel to the axis lying between these planes, and let RS be its

unstretched length. Let //, z be the co-ordinates of R
;

if ds be the unstretched

length of P Q ,
the unstretched and stretched lengths of R S are respectively

- -\ (4).

The resultant tension of all the fibres which cross the elementary area dydz

is evidently Edydz I
-jj-

- 1
J

. Substituting for dcr
, d&amp;lt;r, 1/p their values given by

(4) and (1) and rejecting all the powers of zja above the second because the rod is

thin, we find that the resultant tension of these fibres

= Edydz {p-(l+p)l(- + -t }\
(5).

Let w be the area of the section of the rod, w/c2 its moment of inertia about the

axis of
i/. Remembering that the centre of gravity of w is the origin, we find by

an obvious integration that the resultant tension T and couple L are given by

(6).

Since the rod oscillates about its unstrained position we may neglect the squares

and products of the small quantities p and q. These then reduce to the results

used in Art. 631. Ex. 2.

The work of a fibre per unit area of section when pulled from its unstretched

length da to the length d&amp;lt;r is proved in Vol. i. Art. 343 to be - ^E (dcr J&amp;lt;r)-/dcr.

Substituting as before for do; d&amp;lt;r and rejecting the cubes of zja, we find that the

work W is given by

(7).

This reduces to the result given in Art. 631 when only the lowest powers of p and q

are retained.

From the expression for W we may deduce the values of T and L. Keeping P
fixed, let the element P Q be further stretched, without altering the curvature, so

that its length becomes ds&quot;, then dp = (ds&quot;

- ds )fds. The work done by the tension

at the end Q is -
T(ds&quot;

- ds
) and that done by the couple at Q is L

(ds&quot;

- ds )lp.

We therefore have - T+- =^ .

P dp

Next let the rod receive an increase of curvature without altering the length of

the element. The tension at Q does no work, while the work of the couple is

L (lip
-

Ijp) ds , where 1/p is the new curvature. Since dq = (1/p
-

1/p) a, we

see that L= JL *
.

1+p dq

From these results we easily deduce the values of T and L given by (6).

The theorem quoted from statics in Art. 628, viz. that L=.Ffp where
F=kz

(Eu+T), also follows easily from the equations (6). Kemembering that

the unstrained radius a is here infinite, and putting q = a/p we have

T=Eup, L=- Eutf (1 +p)lp.

Eliminating p from the value of L, we have the result quoted.
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Art. 639. Loaded Membranes. We may also deduce this result from the

formulas in Arts. 76 and 77. We shall begin by referring the unloaded membrane to

principal co-ordinates. To effect this we write (see Art. 56) the complete expression
for w given in Art. 636 in the form

. TTIX . rri y . . irix . TTI V
w = sm sin -~ + sin sm --,- -n + &c.,a b

s
a b

then the quantities , 77, &c. are principal co-ordinates.

The vis viva of the membrane is easily seen to be

JJ (dwldt}
1*
pdxdy = $pab (

2+ 7/
2 + . . .

)

where accents denote differential coefficients with regard to the time. If we now
form Lagrange s determinant, every constituent will be zero except those in the

leading diagonal. If g^
2

, #2
2

,
&c. be the roots of the determinant and M=pab, these

constituents will be %M(q
2
-q^), i^(2

2
-&amp;lt;72-), &c. Here q stands for the quantity

represented by pm in Art. 636
;
the roots q l , q2 &c. are all found in that Article, and

are expressed by giving i and % all integer values.

Placing now a mass
/x,

at the point (h, k), its displacement will be given by

which we may abbreviate into

There will now be an additional term in the expression for the vis viva, while the

force-function will be the same as before. This additional term will be

There will therefore be an additional term to every constituent of Lagrauge s

determinant. The determinant will be

&C. = 0.

* -
q?) +^q 2 &G.

&c. &c. &c.

Expanding this, and remembering that by Art. 76 only the first powers of /* can

enter into the expansion, we have

-
?2

2
) &C. + /J

2
(g

2 -
9l

2
)
&c. + etc.

}
= 0.

Dividing by the first term we have

M
^

Substituting for a, , &c. their values given above, and writing q =pm, we have

the result given at length in Art. 639.

This method is clearly general, and will apply, when the proper values of a, /S, &c.

are substituted, to membranes of other forms.

Art. 641. Conjugate Functions. The application of the theory of conjugate

functions to Hydrodynamics is probably well known to the student. By that theory

the potential of a complicated fluid motion can sometimes be made to depend on

that of some simpler motion. But this of course is beyond the scope of the present

work. We may however notice some propositions which appear to be new.

When one fluid motion is changed into another by a method analogous to that

described in Art. 642 for membranes, the kinetic energies of the two fluids which

occupy corresponding elementary areas are equal. Thus the whole kinetic
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of the two motions are equal, but differently distributed over the areas of motion.

This corresponds to the theorem proved in Art. 646 for membranes.

Suppose a vortex II of strength m to exist at any instant in one fluid at a point

whose co-ordinates are fa 77). There will then be a vortex P of equal strength at

the corresponding point (.r, y) of the other fluid. These will not continue to move

so as to occupy corresponding points, but we may sometimes, without discussing

the motion of the rest of the fluid, deduce the motion of P from that of II by the

following rule. Let x (I. *?)
be a current function (not the current function of the

fluid) giving the motion of the vortex II, so that its velocities resolved parallel to the

axe* of and 77
are respectively -^

and -~ . Then the instantaneous motion of P

is given by a current function

x (*y) as x&amp;lt;M)-i|* 1
&amp;lt;*/i

dx d\
i.e. its velocities resolved parallel to the axes of x and y are respectively and -

-j^
,

and its path is found by equating x to a constant. Here
/-i

2 is the quantity called

D/D in Art. 642. Generally we may say that the current function of P is obtained

from that ofUby subtracting |m%/x, where

In using this rule the strength m of a vortex is to be considered positive when

the vortex rotates in the direction opposite to the hands of a watch, that is from the

positive direction of to the positive direction of 77.

To prove this theorem we notice that the current function at any point fa, 77^ in

one fluid, or at the point fa, y^ in the other is

where in the latter fluid the Greek letters are regarded as known functions of the

English ones. Here R represents a series of terms, similar to the first, due to the

presence of other vortices. Since the vortex P does not move itself, we can deduce

its motion from that of the neighbouring points by superimposing on the latter the

reversed motion due to the vortex. This relative motion is given by the current

function,

f - im log { fa
-

{)* + (77,
-

T7)
2
} + \m log { fa -

.T)
2 + (//!

-
?y)

2
} + R.

Let $!
= + , ?7j

=
77 + 1) , a-j

= x + x
, y^y + if. Let us expand the expression for

)/&amp;gt;

in powers of x
, y by substituting

with a similar expression for ^ -
77. Here the suffixes x, y Ac. denote differentiations.

We find, after retaining the cubes of the small quantities, that the factor

divides out. Expanding the logarithm we have

where /x-
= ^2 + /. The effect of the first term of this series is to give P resolved

velocities equal to -
fynd log/u/cfy and ^mdlognldx parallel to the axes of x and y.

Consider next any term of R due to the presence of a vortex at (f , 77 ), say

The resolved velocities of a point of the fluid at II are found by differentiating

this with regard to 77, ,
and changing the sign in the latter case ;

let these be u, r.

The resolved velocities of a point at P are similarly found to be u^-v^y and
-

uirij + rtj.. If there be only one independent vortex, the vortices included in I? are
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images of n and their positions are determined by that of II. Let the conditions of

the question be such that the resolved instantaneous velocities of II are u = x
r)

,

v = -
xgi

then the resolved velocities of P due to the same terms are
x&amp;gt;j

&amp;gt;

-
Xx-

Taking therefore all the terms of
\{/,

the resolved velocities of P are Xu
- iwrf log /x/d/y

and - xx + \nid log p/dx.

As an example of this rule, let us investigate the path of a vortex P swimming
in the corner formed by two straight lines inclined at an angle equal to ?r/. This

problem is discussed by Prof. Greenhill in the Quarterly Journal, Vol. xv. Let us

first suppose a vortex n to swim in the infinite space bounded by the axis of .

Placing an image on the negative side of this axis, we see that the vortex II moves

parallel to the axis of with a velocity m/2r]. Its stream function is therefore fynlog-r).

Taking any point on the axis of as origin, we shall turn the negative side of the

axis round the origin until it makes an angle equal to TT/H with the positive side.

To express this we use the formulas of transformation given in Art. 653. We thus

have 77=rc(?-/c)
n sin??0. The value of p is therefore n(r/c)

n~ l
. According to the

rule the stream function which gives the motion of the vortex P in the corner is

= w log (r sin n6).

The path is therefore given by r sin n0=c where c is a constant. It may be noticed

that n need not be an integer.

If two circles intersect in A and
/&amp;gt;,

we may find, by inverting this result, the

motion of a vortex V in the space between the circular boundaries. Let be the

angle the circle through A, B and the vortex V makes with either circular boundary,

and let a be the angle between the circular boundaries. Then the current function

of the vortex V is found by subtracting ^wtlog/x from the value of x given above,

where
At=(-,) , as shown in Art. 653. The current function of the vortex V is

m .

therefore
X=j-log

The path of the vortex is given by the equation AV . BV . sin = C, where C is

a constant.

The chief objection to using the method of conjugate functions in Hydrodynamical

problems is the difficulty of finding the proper formulae of transformation. But to

discover these we have a convenient rule, viz. that if we know the motion of a fluid

within the space bounded by one or two infinite curves, ice can in general find the

motion with the same boundaries when complicated by the presence of sources and

vortices. To prove this, let and 77 be the velocity and stream potentials of this

motion. Then 77 is constant along the boundaries. If we use , 77 as our formula?

of transformation, the given boundaries will transform into straight lines parallel to

the axis of . The motion due to vortices and sources in this space has already

been investigated. Hence the motions in the more general spaces may be deduced.

We may regard any closed curve, such as an ellipse, as a section of an infinite

cylinder. If we know its potential at any external point when charged with a

given quantity of electricity, we may immediately deduce the motion of a fluid with

vortices and sources outside this curve from the corresponding motion round a

circle.

For these theorems we refer the reader to a paper by the author published in the

twelfth volume of the Proceedings of the Mathematical Society, 1881.
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